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Asynchronous games 2
The true concurrency of innocence

Paul-André Melliès 1

Abstract

In game semantics, the higher-order value passing mechanisms of the λ-calculus are de-
composed as sequences of atomic actions exchanged by a Player and its Opponent. Seen
from this angle, game semantics is reminiscent of trace semantics in concurrency theory,
where a process is identified to the sequences of requests it generates in the course of time.
Asynchronous game semantics is an attempt to bridge the gap between the two subjects,
and to see mainstream game semantics as a refined and interactive form of trace semantics.
Asynchronous games are positional games played on Mazurkiewicz traces, which refor-
mulate (and generalize) the familiar notion of arena game. The interleaving semantics of
λ-terms, expressed as innocent strategies, may be analyzed in this framework, in the per-
spective of true concurrency. The analysis reveals that innocent strategies are positional
strategies regulated by forward and backward confluence properties. This captures, we be-
lieve, the essence of innocence. We conclude the article by defining a non uniform variant
of the λ-calculus, in which the game semantics of a λ-term is formulated directly as a trace
semantics, performing the syntactic exploration or parsing of that λ-term.

1 Introduction

Game semantics has taught us the art of converting the higher-order value pass-
ing mechanisms of the λ-calculus into sequences of atomic actions exchanged by
a Player and its Opponent in the course of time. This metamorphosis of higher-
order syntax has significantly sharpened our understanding of the simply-typed
λ-calculus, either as a pure calculus, or as a calculus extended with programming
features like recursion, conditional branching, local control, local states, references,
non determinism, probabilistic choice, etc.

Game semantics is reminiscent of trace semantics in concurrency theory. There,
a process is described as a symbolic device which interacts with its environment
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by emitting or receiving requests. A sequence of such requests is called a trace.
The trace semantics of a process π is defined as the set of traces generated by the
process. In many situations, this semantics characterizes the contextual behaviour
of the process. In other situations, it is refined into a bisimulation semantics.

Game semantics develops pretty much the same story for the λ-calculus. The ter-
minology changes of course: requests are called moves, and traces are called plays.
But everything works arguably as in trace semantics: the semantics of a λ-term M
of type A is the set of plays σ generated by the λ-term M ; and this set of plays σ
characterizes the contextual behaviour of the λ-term. The novelty of game seman-
tics, not present in trace semantics, is that the type A defines a game, and that the
set of plays σ generated by the λ-term M defines a strategy of that game.

The main thesis of this work is that game semantics is really the trace semantics of
the λ-calculus — and even more than that: its Mazurkiewicz trace semantics. The
thesis is quite unexpected, since the λ-calculus is often considered as the historical
paradigm of sequentiality, whereas Mazurkiewicz traces describe truly concurrent
mechanisms. The thesis is also far from immediate. It prescribes to reevaluate a
large part of the conceptual and technical choices accepted today in game seman-
tics... in order to bridge the gap with trace semantics and concurrency theory. Three
issues are raised here:

(1) The treatment of duplication in mainstream game semantics (eg. in arena
games) distorts the bond with trace semantics — in particular with Mazur-
kiewicz traces — by adding justification pointers to traces. This prompts us to
revisit this specific treatment of duplication in our first article on asynchronous
games [30]. We recall below the group-theoretic formulation of arena games
operated there in order to “eliminate” these justification pointers — or rather,
in order to reunderstand them as copy indices modulo group action.

(2) Thirty years ago, Antoni Mazurkiewicz developed a theory of asynchronous
traces in which the interleaving semantics and the true concurrency semantics
of a concurrent computation are related by permuting the order of independent
events in sequences of transitions. On the other hand, current game semantics
provides an interleaving semantics of the λ-calculus, in which λ-terms are
expressed as innocent strategies. What is the true concurrency counterpart of
this interleaving semantics? The task of this second article on asynchronous
games is precisely to answer this question in a satisfactory way.

(3) Ten years ago, a series of full abstraction theorems for PCF were obtained
by characterizing the interactive behaviour of λ-terms as either innocent, or
history-free strategies, see [2,18,35]. We believe that the present work is an-
other significant stage in the “full abstraction” program initiated by Robin
Milner [34]. For the first time indeed, we do not simply characterize, but also
derive the syntax of λ-terms from elementary causality principles, expressed
in asynchronous transition systems. This reconstruction requires the media-
tion of [30] and of its indexed treatment of threads. This leads us to an in-



dexed and non-uniform λ-calculus, from which the usual λ-calculus follows
by group-theoretic principles. In this non-uniform variant of the λ-calculus,
the game semantics of a λ-term may be directly formulated as a trace seman-
tics performing the syntactic exploration or parsing of the λ-term.

The treatment of duplication. The language of traces is limited, but sufficient
to interpret the affine fragment of the λ-calculus, in which every variable occurs at
most once in a λ-term. In this fragment, every trace (= play) generated by a λ-term
is an alternating sequence of received requests (= Opponent moves) and emitted
requests (= Player moves). And a request appears at most once in a trace.

In order to extend the affine fragment to the whole λ-calculus, one needs to handle
the duplication mechanisms semantically. This is a delicate matter. Several solu-
tions have been considered in the literature already, and coexist today. By way of
illustration, consider the λ-term chosen by Alonzo Church in order to interpret the
natural number 2:

M = λf.λx.ffx.

Placed in front of two λ-terms P and Q, the λ-term M duplicates its first argu-
ment P , and applies it twice to its second argument Q. This is performed syntacti-
cally by two β-reductions:

MPQ −→β (λx.PPx)Q −→β PPQ. (1)

Obviously, the remainder of the computation depends on the λ-terms P and Q.
The game-theoretic interpretation of the λ-term M has to anticipate all cases. This
requires the semantics to manipulate several threads of the λ-term P simultaneously
— and possibly many more than the two copies P(1) and P(2) appearing in the λ-
term P(1)P(2)Q, typically when the λ-term P(1) uses its first argument P(2) several
times in the remainder of the computation.

Now, the difficulty is that each thread of P should be clearly distinguished. A
compact and elegant solution has been devised by Martin Hyland, Luke Ong and
Hanno Nickau in the framework of arena games [18,35]. We recall that an arena
is a forest, whose nodes are the moves of the game, and whose branches m ` n
are oriented to express that the move m justifies the move n. A move n is called
initial when it is a root of the forest, or alternatively, when there is no move m such
that m ` n. A justified play is then defined as a pair (m1 · · ·mk, ϕ) consisting of a
sequence of moves m1 · · ·mk and a partial function ϕ : {1, ..., k} → {1, ..., k} pro-
viding the so-called pointer structure of the play. The partial function ϕ associates
to every occurrence i of a non-initial move mi the occurrence ϕ(i) of a move mϕ(i)

such that mϕ(i) ` mi. One requires that ϕ(i) < i in order to ensure that the justify-
ing move mϕ(i) occurs before the justified move mi. Finally, the partial function ϕ
is never defined on any occurrence i of an initial move mi.



The pointer structure ϕ provides the necessary information to distinguish the sev-
eral threads of a λ-term in the course of interaction — typically the several threads
or copies of P in example (1). The pointer structure ϕ is conveniently represented
by drawing “backward pointers” between occurrences of the sequence m1 · · ·mk.
By way of illustration, consider the arena m ` n ` p in which the only initial move
is m. A typical justified play (s, ϕ) of this arena is represented graphically as:

m · nTT · p
SS · n

xx
· p

YY · n
{{

· p
cc · m · nTT · p.||

(2)

Because adding justification pointers distorts the bond with trace semantics, in par-
ticular with Mazurkiewicz traces, we shift in [30] to another management principle
based on thread indexing, already considered in [2,17]. The idea is to assign to
each copy of the λ-term P in example (1) a natural number k ∈ N (its index) which
characterizes the thread among the other copies of P . In the case of the justified
play (2), this amounts to (a) adding a dumb move F in order to justify the ini-
tial moves of the sequence, (b) indexing every justification pointer of the resulting
sequence with a natural number:

F · m

17

TT
· n

5

TT · p

69

SS · n
4

xx
· p

20
YY · n

1

yy
· p

7

cc · m

5

xx
· n

70

TT · p

4

||
(3)

then finally (c) encoding the sequence (3) as the sequence of indexed moves below:

m17 · n17,5 · p17,5,69 · n17,4 · p17,4,20 · n17,1 · p17,5,7 · m5 · n5,70 · p17,4,4. (4)

Obviously, the translation of a justified play (s, ϕ) depends on the choice of indices
put on its justification pointers. Had we not taken sides with trace semantics and
concurrency theory, we would be tempted (as most people do in fact) to retract to
the notation (2) which is arguably simpler than its translation (4). But we carry
on instead, and prompted by our task, decide to regulate the indexing by asking
that two justification pointers starting from different occurrences i and j of the
same move n, and ending on the same occurrence ϕ(i) = ϕ(j), receive different
indices k and k′. This indexing policy ensures that every indexed move occurs at
most once in the sequence (4). In this way, we are back to the simplicity of the
affine fragment of the λ-calculus.

An interesting point remains to be understood: what can be said about two different
encodings of the same justified play? The first article of our series [30] clarifies this



point in the following way. Every game is equipped with a left and a right group
action on moves:

G × M −→ M (g, m) 7→ g �m

M × H −→ M (m, h) 7→ m � h
(5)

where M denotes the set of indexed moves, and G and H the two groups acting
on that set of moves. Intuitively, the left (resp. right) group action operates on a
move mk0,...,kj

by altering the indices k2i+1 assigned by Player (resp. the indices
k2i assigned by Opponent). Consequently, the orbit of a move mk0,...,kj

modulo a
combination of the left and right group actions is precisely the set of all moves of
the form mk′

0
,...,k′

j
.

Now, the left and right group action on moves induces a left and a right group action
on plays, defined in a pointwise manner:

g � (m1 · · ·mk) = (g �m1) · · · (g �mk)

(m1 · · ·mk) � h = (m1 � h) · · · (mk � h)
(6)

It appears that the justified plays of the original arena game coincide precisely
with the orbits of plays modulo left and right group action. Typically, the justified
play (2) is just the play (4) modulo pointwise group action (6). One significant
contribution of the present article is to reveal that the two group actions (5) are
inherently syntactical group actions on a non-uniform variant of the λ-calculus, see
Section 6 for details.

Asynchronous traces. After these necessary preliminaries on duplication and
thread indexing, we shift to the core of this article: the comparison of true con-
currency and interleaving in game semantics. Let us recall first a few principles of
trace semantics in concurrency theory. Two requests a and b starting from a pro-
cess π are called independent when they can be emitted or received by the process π
in any order, without interference. Independence of the two requests a and b is rep-
resented graphically by tiling the two sequences a · b and b · a in the 2-dimensional
diagram below:

π′

π1

b
>>|||||
∼ π2

a
``BBBBB

π
b

==zzzzza

aaDDDDD

(7)



The interleaving semantics of a process π is defined as the set of traces it generates
in the course of time. The true concurrency semantics of the process is deduced
from this by quotienting the traces modulo the homotopy equivalence ∼ obtained
by permuting independent requests. Expressing true concurrency by permuting the
order of events in a symbolic trajectory stands among the fundamentals of concur-
rency theory. The idea originates from the work of Antoni Mazurkiewicz on asyn-
chronous traces over a partially ordered alphabet [25,26] and leads to the notion
of asynchronous transition system developed in [36,20,40]. The same idea reap-
pears (independently) in Jean-Jacques L évy’s description of the λ-calculus [24],
and plays a key role in the author’s work on axiomatic rewriting theory [28,29].
The principle may be generalized to n-dimensional transition systems generated
by cubical sets — where permutation of events amounts to directed homotopy —
as advocated by Vaughn Pratt and Eric Goubault in [37,14].

In comparison to concurrency theory and rewriting theory, mainstream game se-
mantics is still very much 1-dimensional. By way of illustration, take the sequential
boolean game B, starting by an Opponent question q followed by a Player answer
true or false:

false

__?????? true

??������

q
OO (8)

The plays of the tensor product B ⊗ B are obtained by interleaving the plays of
the two instances B1 and B2 of the boolean game B. Thus, (a fragment of) the
game B ⊗ B defines a tree which looks exactly like this:

false2__??? true1 ??���
q2

__???
q1

??���
true1__??? false2 ??���

q1
ggOOOOOO

q2
77oooooo

(9)

We observe in [31] that the two plays in (9) are different from a procedural point of
view, but equivalent from an extensional point of view — since both of them realize
the “extensional value” (true, false). We thus bend the two paths, and obtain a
permutation tile with the shape of a 2-dimensional octagon:

false2
77oooooooo

true1

ggOOOOOOOO
q2

??�����
q1

__?????

true1
__?????

false2
??�����

q1

ggOOOOOOOO

q2

77oooooooo

(10)



By doing so, we shift from the familiar sequential games played on decision trees,
to a new kind of sequential games played on directed acyclic graphs (dags). We
analyze in this way the extensional content of sequential games, and deliver an
alternative (and game-theoretic) proof of Thomas Ehrhard’s collapse theorem [12].

The extensional framework developed in [31] is extremely instructive, but not en-
tirely satisfactory because the permutation tiles are “global” — that is, they involve
more than two permuting moves in general. In contrast, the asynchronous games
developed in the present article admit only “local” permutation tiles, permuting
two moves, and similar to tile (7). By way of illustration, shifting to asynchronous
games decomposes the “global” tile (10) into four “local” tiles:

false2
??�������
∼

true1
__???????

q2

??�������
∼

true1???

__???
false2���

??���

∼

q1

__???????

true1

__???????
q2
���

??���

∼

q1???

__???

false2

??�������

q1

__??????? q2

??�������

(11)

Note that shifting from a directed acyclic graph in Diagram (10) to an asynchronous
game in Diagram (11) induces concurrent plays like q1 · q2 in the model. This in-
dicates that a satisfactory theory of sequentiality requires a truly concurrent back-
ground, in which sequential plays like q1 · true1 · q2 · false2 coexist with concurrent
plays like q1 · q2 or q1 · q2 · true1 · false2.

The non-uniform λ-calculus. Here comes the most surprising, most difficult,
and maybe most controversial, part of the paper. An asynchronous game is defined
in Section 2 as an event structure whose events are polarized +1 for Player moves
and −1 for Opponent moves. This polarization of events gives rise to a new class of
events m · n consisting of an Opponent move m followed by a Player move n. We
call OP -moves any such pair of moves. Just like ordinary moves, two OP -moves
m1 · n1 and m2 · n2 may be permuted in a play, in the following way:

n2

??�������
∼

n1

__???????

m2

??�������
∼

n1???

__???
n2���

??���

∼

m1

__???????

n1

__???????
m2���

??���

∼

m1???

__???
n2

??�������

m1

__??????? m2

??�������

(12)



The permutation diagram (12) induces a homotopy relation ∼OP between plays.
The dual relation ∼PO is defined symmetrically, by permuting PO-moves m · n
together, where by PO-move m · n we mean a Player move m followed by an Op-
ponent move n, see Section 2 for a formal definition. Note that both ∼OP and ∼PO

preserve alternation of plays.

Now, there is a well-established theory of stable asynchronous transition systems
in which every equivalence class modulo homotopy ∼ may be represented as an
event structure of so-called canonical representatives, see for instance [36,20,28].
The canonical representative of a transition a in a given sequence of transitions s ·a
describes the cascade of transitions necessary in s in order to enable the transition a.
More formally, a sequence of transitions t · a is a canonical representative of a
sequence of transitions s · a precisely when:

(1) s · a ∼ t · a · t′ for some sequence of transitions t′, and
(2) whenever t ∼ t′ · b, the transition a cannot be permuted before the transition b.

The stability property ensures that this canonical representative t · a of the transi-
tion a is unique, modulo homotopy equivalence ∼ on the sequence t.

Now, the asynchronous transition system with OP -moves as transitions happens to
be stable. This implies that every OP -move m ·n in an alternating play s ·m ·n has
a unique canonical representative of the form t · m · n, modulo homotopy equiv-
alence ∼OP on the sequence t. Strikingly, this canonical representative coincides
with the so-called Player view d s · m · n e of the play s · m · n defined by Martin
Hyland, Luke Ong and Hanno Nickau in the framework of arena games [18,35] and
adapted to the more “concurrent” framework of asynchronous games in Section 3.

Now, Vincent Danos, Hugo Herbelin and Laurent Regnier observe in their work
on arena games that every Player view of a justified play (s, φ) corresponds to the
branch of an η-long Böhm tree, see [11] for details. The correspondence adapts
smoothly to the indexed treatment of threads devised by the author in [30]. In this
situation, every Player view of a play s corresponds to the branch of a non-uniform
η-long Böhm tree. From this results a non-uniform λ-calculus (defined in Section 6)
with a remarkable feature: the strategy σ associated to a non-uniform λ-term P
may be alternatively formulated as a trace semantics performing the syntactic ex-
ploration or parsing of the λ-term P .

In this way, we reconstruct by rational means a non-uniform variant of the λ-
calculus, starting from purely diagrammatic reflections on Mazurkiewicz traces and
two-player games. The simply-typed λ-calculus itself (or more exactly, the familiar
notion of η-long Böhm tree) follows by the group-theoretic techniques elaborated
in [30] and further studied in Section 6. Hence, a diagrammatic and integrated
framework emerges here, liberated from syntax, in which the evaluation of a λ-
term P against a context E[−] performs a symbolic trajectory s : ∗ � x



• whose homotopy class modulo ∼OP expresses the syntactic subterm of P con-
sumed during the evaluation of E[P ],

• whose homotopy class modulo ∼PO expresses the syntactic subterm of E[−]
consumed during the evaluation of E[P ],

• whose homotopy class modulo ∼ coincides with the target position x, and pro-
vides the type (or formula) of what remains unconsumed after the evaluation.

Related works. The idea of relating a dynamic and a static semantics of linear
logic is formulated for the first time by Patrick Baillot, Vincent Danos, Thomas
Ehrhard and Laurent Regnier in their early work on “timeless games” [8] and car-
ried on by Patrick Baillot in his PhD thesis [7]. The idea reappears then in the
concurrent game model of linear logic introduced by Samson Abramsky and the
author [5]. There, concurrent games are defined as complete lattices of positions,
and concurrent strategies as closure operators on these lattices. As a closure op-
erator, every strategy is at the same time an increasing function on positions (the
dynamic point of view) and a set of positions (the static point of view). The present
paper is the result of a long journey (five years!) to connect this concurrent game
semantics to mainstream sequential game semantics. See also the discussion in [1].

Martin Hyland and Andrea Schalk develop in [19] a notion of games on graphs
quite similar to the constructions presented here and in [31]. One difference is the
treatment of duplication: backtracking in [19,31], repetitive and indexed here. From
this choice follows that the permutation tiles are global in [19,31] and local here.
Another difference is that our positions are defined as downward-closed subsets of
moves.

This article reformulates arena games and innocent strategies using concepts im-
ported from concurrency theory. Conversely, much work has been devoted in the
process calculus community to clarify the connections between the π-calculus and
the λ-calculus — in particular by Martin Berger, Kohei Honda and Nobuko Yoshida
in their work on sequentiality [9]. This offers an opportunity for an elegant synthe-
sis of the two subjects, using asynchronous games, which we are currently investi-
gating. Besides, several game models of concurrent programming languages have
been already formulated in the interleaving framework of arena games [22,13]. It
will be certainly instructive to recast them inside our asynchronous framework.

Outline. In the remainder of the article, we define our notion of asynchronous
game (Section 2) and adapt the usual definition of innocent strategy to our setting
(Section 3). We then characterize the innocent strategies in two ways: diagrammat-
ically (Section 4) and positionally (Section 5). This leads to a non-uniform variant
of the λ-calculus, for which we define a trace semantics, and which we relate to the
usual λ-calculus (Section 6). Finally, we describe a series of possible refinements
of asynchronous games (Section 7) and conclude (Section 8).



2 Asynchronous games

We choose the simplest possible definition of asynchronous game, in which the only
relation between moves is an order relation ≤ which reformulates the justification
structure of arena games. This is enough to describe the language PCF, a simply-
typed λ-calculus enriched with arithmetic, conditional branching, and recursion. A
series of more expressive versions of the semantics are discussed in section 7.

Event structures. An event structure is an ordered set (M,≤) such that every
element m ∈ M defines a finite downward-closed subset

m ↓ = {n ∈ M | n ≤ m}.

Asynchronous games. An asynchronous game is a triple A = (MA,≤A, λA)
consisting of:

• an event structure (MA,≤A) whose elements are called the moves of the game,
• a function λA : MA −→ {−1, +1} which associates to every move a polarity

+1 (for the Player moves) or −1 (for the Opponent moves).

Positions. A position of an asynchronous game A is any finite downward closed
subset of (MA,≤A).

The lattice of positions. The set of positions of A is denoted D(A). Positions are
ordered by inclusion, and closed under finite union. The partial order (D(A),⊆)
thus defines a sup-lattice. The empty position is the least element of (D(A),⊆).
It is denoted ∗A. Positions are also closed under arbitrary nonempty intersection.
Adding a top element > to (D(A),⊆) provides a neutral element to intersection,
and induces a complete lattice D(A)> = (D(A),⊆)>. The greatest lower bound
and least upper bound of a family (xi)i∈I of positions in D(A) are computed re-
spectively as:

∧

i∈I

xi =











> if I is empty,
⋂

i∈I xi otherwise,

∨

i∈I

xi =











> if
⋃

i∈I xi is infinite,
⋃

i∈I xi if
⋃

i∈I xi is finite.

We call D(A)> the lattice of positions associated to the game A.



The asynchronous graph. Every asynchronous game A induces a graph G(A):

• whose nodes are the positions x, y ∈ D(A),
• whose edges m : x −→ y are the moves verifying y = x]{m}, where ] denotes

disjoint union, or equivalently, that y = x ∪ {m} and that the move m is not an
element of x.

We call this graph G(A) the asynchronous graph of the game A. We write s : x� y
for a path

x
m1−→ x1

m2−→ · · ·
mk−1

−→ xk−1
mk−→ y

between two positions x and y. Note that there is no repetition of move in the
sequence:

∀i, j ∈ {1, ..., k}, i 6= j ⇒ mi 6= mj.

The target y of the path s : x � y may be deduced from the source x and the
sequence of moves m1, ..., mk, using the equation:

y = x ]
⋃

1≤i≤k

{mi}.

A path of G(A) is thus characterized by its source (or alternatively, its target) and
the sequence of moves m1 · · ·mk.

Homotopy. Given two paths s, s′ : x � y of length 2 in the asynchronous
graph G(A), we write

s ∼1 s′

when
s = m · n and s′ = n · m

for two moves m, n ∈ MA. The homotopy equivalence ∼ between paths is defined
as the least equivalence relation containing ∼1, and closed under composition; that
is, for every four paths s1 : x1 � x2 and s, s′ : x2 � x3 and s2 : x3 � x4:

s ∼ s′ ⇒ s1 · s · s2 ∼ s1 · s
′ · s2.

We also use the notation ∼ in our diagrams to indicate that two (necessarily differ-
ent) moves m and n are permuted:

z

y1

n
>>|||||

y2

m
``BBBBB

x
n

>>|||||m

``BBBBB

∼ (13)

Note that our current definition of asynchronous game implies that two paths s1 :
x1 � y1 and s2 : x2 � y2 are homotopic iff x1 = x2 and y1 = y2. Thus, homotopy
becomes informative only in the presence of an independence relation between
moves, see Section 7.



Alternating paths. A path m1 · · ·mk : x� y is alternating when:

∀i ∈ {1, ..., k − 1}, λA(mi+1) = −λA(mi).

Alternating homotopy. Given two paths s, s′ : x � y of length 4 in the asyn-
chronous graph G(A), we write

s ∼1
OP s′

when
s = m1 · n1 · m2 · n2 and s′ = m2 · n2 · m1 · n1

for two Opponent moves m1, m2 ∈ MA and two Player moves n1, n2 ∈ MA. The
situation is summarized in diagram (12). The relation ∼OP is defined as the least
equivalence relation containing ∼1

OP and closed under composition.

Note that s ∼OP s′ implies s ∼ s′, but that the converse is not necessarily true, even
when the two paths s and s′ are alternating. A typical illustration of the phenomenon
occurs in diagram (12) when the moves n1 may be permuted in front of the move m1

by homotopy:
m1 · n1 ∼1 n1 · m1.

In that case, the sequence of moves m2 · n1 · m1 · n2 defines an alternating path,
which is homotopic to the path m1 · n1 · m2 · n2 modulo ∼ but not homotopic to
that path modulo ∼OP .

Plays. A play is a path starting from the empty position ∗A:

∗A
m1−→ x1

m2−→ · · ·
mk−1

−→ xk−1
mk−→ xk

in the asynchronous graph G(A). The set of plays is noted PA.

Equivalently, a play of A is a finite sequence s = m1 · · ·mk of moves, without
repetition, such that the set {m1, ..., mj} is downward closed in (MA,≤A) for every
1 ≤ j ≤ k.

Strategy. A strategy σ is a set of alternating plays of even length such that:

• the strategy s ∈ σ contains the empty play,
• every nonempty play s ∈ σ starts with an Opponent move,
• σ is closed by even-length prefix:

∀s ∈ PA, ∀m, n ∈ MA, s · m · n ∈ σ ⇒ s ∈ σ,



• σ is deterministic: ∀s ∈ PA, ∀m, n1, n2 ∈ MA,

s · m · n1 ∈ σ and s · m · n2 ∈ σ ⇒ n1 = n2.

We write σ : A when σ is a strategy of A.

3 Innocent strategies

Ten years ago, Martin Hyland, Luke Ong and Hanno Nickau introduced the no-
tion of innocent strategy in the framework of arena games, and solved in this way
the Full Abstraction problem for the language PCF, see [18,35] for details. Inno-
cent strategies characterize the interactive behaviour of the simply-typed λ-calculus
equipped with a constant Ω for non-termination. This enriched variant of the λ-
calculus appears under several guises in the literature: either as a calculus of η-long
Böhm trees [11], or as partial proofs of Polarized Linear Logic [23], or (after a
continuation-passing style translation) as the language PCF augmented with local
control [21,4,15].

The traditional definition of innocence is formulated in two stages. First, a notion
of Player view of a justified play (s, ϕ) is computed using the pointer structure ϕ
of the play in the arena game. Then, an innocent strategy is defined as a strategy
which plays according to the current Player view.

Here, we recast the definition of innocence in asynchronous games. The resulting
definition is simpler than in arena games, for two reasons. First, every move m
occurs at most once in a play of an asynchronous game. Consequently, there is
no need to distinguish the move m from its occurrences in the play — which is a
shallow but irritating difficulty of arena games. Then, every play s comes equip-
ped with an implicit pointer structure ϕ given by the causality relation ≤ between
moves. Thus, the definition of Player view of a play s does not require any explicit
pointer structure ϕ in an asynchronous game. We explain this key point now.

Justification pointers. Suppose that m and n are two different moves of an asyn-
chronous game A. We write m `A n, and say that m justifies n, when:

• m ≤A n, and
• for every move p ∈ MA such that m ≤A p ≤A n, either m = p or p = n.

A move m is called initial when it has no justifier, or alternatively, when it is mini-
mal in the ordered set (MA,≤A).



View extraction. We define the binary relation OP
 as the smallest relation be-

tween alternating plays such that:

s1 · m · n · s2
OP
 s1 · s2

for every alternating play s1, every nonempty alternating path s2, every Opponent
move m which does not justify any move in s2, and every Player move n which
does not justify any move in s2.

Player view. The relation OP
 defines a noetherian and locally confluent rewriting

system on alternating plays. By Newman’s Lemma, the rewriting system is conflu-
ent, see [6,10]. Thus, every alternating play s ∈ PA induces a unique normal form
noted d s e ∈ PA and called its Player view:

s
OP
 s1

OP
 · · ·

OP
 sk

OP
 d s e.

This definition by extraction improves in many ways the traditional definition by
induction formulated in [27,4,15]. The definition by extraction ensures for instance
that the Player view d s e of a play s is a play. This is not the case with the inductive
definition. We come back to that interesting point later in the section, when we
define the notion of visible play in an asynchronous game.

Asynchronous innocence. A strategy σ is called innocent in an asynchronous
game A when for every plays s, t ∈ σ, for every Opponent move m ∈ MA and
Player move n ∈ MA:

s · m · n ∈ σ and t · m ∈ PA and d s · m e ∼OP d t · m e ⇒ t · m · n ∈ σ.

This definition of innocence is more concise than the familiar one, formulated
in [18,35,4]. In particular, it does not require any visibility condition on the strat-
egy. It also generalizes the usual notion of innocence to more “concurrent” arenas,
in which several moves m1, ..., mk may justify the same move n — a situation
which does not occur in arena games associated to linear or intuitionistic types.

Before carrying on, we establish that in any asynchronous game A,

Lemma 1 Every innocent strategy σ is closed under ∼OP -equivalence:

∀s, t ∈ PA, s ∈ σ, s ∼OP t ⇒ t ∈ σ.

PROOF. It is sufficient to establish the assertion for two plays s and t of the form:

s = s1 · m1 · n1 · m2 · n2 · s2, t = s1 · m2 · n2 · m1 · n1 · s2,



where s1 and s2 are two paths, m1 and m2 are two Opponent moves, and n1 and n2

are two Player moves. The proof is by induction on the length of the path s2. First,
we establish the property when the path s2 is empty. Suppose that

s = s1 · m1 · n1 · m2 · n2

is a play of the strategy σ, and that

t = s1 · m2 · n2 · m1 · n1 (14)

is a play of the game. As prefix of (14) the sequence s1 · m2 defines a play. This
ensures that neither of the two moves m1 and n1 justifies the move m2, which
implies in turn that there exists an extraction step

s1 · m1 · n1 · m2
OP
 s1 · m2.

By definition of the Player view as the normal form of extraction, the Player views
of s1 · m1 · n1 · m2 and of s1 · m2 coincide. We apply here our hypothesis that the
strategy σ is innocent, and deduce from s1 ·m1 ·n1 ·m2 ·n2 ∈ σ that s1 ·m2 ·n2 ∈ σ.
We carry on, and establish now that s1 · m2 · n2 · m1 · n1 ∈ σ. As a prefix of (14)
the sequence s1 ·m2 · n2 · m1 defines a play. Since neither of the moves m2 and n2

justifies the move n1 (as testifies the fact that s is a play), there exists an extraction
step

s1 · m2 · n2 · m1
OP
 s1 · m1.

From this follows that the Player views of s1 ·m1 and of s1 ·m2 · n2 ·m1 coincide.
Again, we apply the hypothesis that the strategy σ is innocent, and deduce from
s · m1 · n1 ∈ σ that s1 · m2 · n2 · m1 · n1 ∈ σ. This proves the assertion when the
path s2 is empty.

Now, suppose that the path s2 is not empty, and factors as s3 · m · n. In that case,
the two plays s and t factor as:

s = s1 · m1 · n1 · m2 · n2 · s3 · m · n, t = s1 · m2 · n2 · m1 · n1 · s3 · m · n.

By hypothesis, the play s is an element of the strategy σ. By definition, a strategy is
closed by even-length prefix. Thus, the play s1 ·m1 ·n1 ·m2 ·n2 ·s3 is also element of
the strategy σ. By induction hypothesis, it follows that the play s1 ·m2 ·n2 ·m1 ·n1 ·s3

is an element of the strategy σ. Now, we observe that two ∼OP -equivalent plays
have ∼OP -equivalent Player views: this key property is a simple consequence of
the definition by extraction of a Player view. The property ensures that the Player
views of s1 ·m1 ·n1 ·m2 ·n2 ·s3 ·m and s1 ·m2 ·n2 ·m1 ·n1 ·s3 ·m are ∼OP -equivalent.
We may thus apply the hypothesis that σ is innocent, and deduce from s ∈ σ that
t ∈ σ. This concludes our argument by induction.

Corollary 2 If an innocent strategy σ contains a play s, it also contains its Player



view d s e. Moreover, if s·m is a play in which m is an Opponent move, then d s·m e
factors as d s · m e = t · m where the play t is an element of the strategy σ.

PROOF. By definition of the Player view of the play s ∈ σ, there exists a path s′

such that s ∼OP d s e·s′. We know by Lemma 1 that d s e·s′ ∈ σ. By definition, the
strategy σ is closed under even-length prefix. The Player view of a play s of even-
length, is itself of even-length. We conclude that d s e ∈ σ. The second assertion is
proved in exactly the same way.

Intuitionistic games. We conclude this section by showing that our definition of
innocence is equivalent to the traditional one when the underlying asynchronous
game satisfies:

• every Opponent move n has at most one justifying move m,
• when it exists, this justifying move m is a Player move.

By convention, we call intuitionistic any asynchronous game verifying the two
properties. This denomination is justified by the fact that any asynchronous game
interpreting an intuitionistic type satisfies the two properties.

Player view (HON). In order to work out the comparison, we recast in our asyn-
chronous framework the original definition of innocence — or more precisely its
familiar formulation devised by Guy McCusker in his PhD thesis [27]. We require
to that purpose that the underlying asynchronous game is intuitionistic. To every
alternating play s of the asynchronous game, we associate its Hyland-Ong-Nickau
(HON for short) view psq, defined by induction on the length of the play s, as
follows:

ps · nq = psq · n when the move n is Player,

ps · m · t · nq = ps · mq · n when the move n is Opponent and justified by m,

ps · nq = n when the move n is Opponent and initial,

pεq = ε where ε is the empty play.

The definition is valid because an Opponent move n has at most one justifying
move m in the intuitionistic game. It is worth stressing that the Player HON-
view psq of an alternating play s is not necessarily a play: it is only an alternating
sequence of moves. This is not particularly surprising, since the problem is recur-
rent in arena games. We have just imported it... The bad situation occurs precisely
when one applies the first clause:

ps · nq = psq · n (15)



to a play s · n in which a move m which justifies the Player move n does not
appear in the sequence psq. Note that this is precisely the situation in which the two
definitions of Player views (by extraction vs. by induction) differ. In that situation
indeed, the equation

d s · n e = d s e · n (16)

does not hold... since by construction, the Player view d s·n e contains the justifying
move m. The following lemma clarifies the situation:

Lemma 3 Suppose that s is an alternating play in an intuitionistic game. Then, the
equality psq = d s e holds iff the alternating sequence psq is a play.

PROOF. The left-to-right implication is immediate, because the Player view d s e of
an alternating play s is a play by construction. We prove the right-to-left implication
by induction on the length of s. Suppose that the alternating sequence psq is a play.
The assertion of the lemma is immediate when the play s is empty. Otherwise, we
proceed by case analysis on its last move. Suppose that the last move of the play s
is a Player move n. Then, the play decomposes as s = t · n. By hypothesis, the
sequence psq is a play. From the equality

psq = pt · nq = ptq · n (17)

follows that ptq is a play, and that every justifying move of the move n appears in
the play ptq. We apply our induction hypothesis on t, and deduce that

d t e = ptq (18)

Now, we claim that the equality

d t · n e = d t e · n (19)

holds. This is established as follows. By definition of the Player view d t e, there
exists a sequence of extractions:

t
OP
 · · ·

OP
 d t e.

This sequence induces in turn a sequence

t · n
OP
 · · ·

OP
 d t e · n

because all the justifying moves of the move n appear in the play d t e. Besides, the
play d t e · n is a normal form for extraction, since any step

d t e · n
OP
 u



would induce a step

d t e
OP
 v

with v · n = u, this contradicting the fact that d t e is a normal form for view
extraction. This proves our claim that d t e · n is the Player view d t · n e. We
conclude from equations (17) and (18) and (19) that

psq = pt · nq = ptq · n = d t e · n = d t · n e = d s e.

This concludes our argument by induction when the last move of s is a move by
Player.

Now, suppose that the last move of the play s is an Opponent move n. The assertion
of the lemma is immediate when n is an initial move: in that case, d s e = psq =
n. Otherwise, the play decomposes as s = t · m · u · n where m is the unique
move justifying n in the intuitionistic game. This move m is a Player move. By
hypothesis, the sequence psq is a play. From this and the equality

psq = pt · m · u · nq = pt · mq · n (20)

follows that pt · mq is a play. We apply our induction hypothesis on t·m and deduce
that

d t · m e = pt · mq. (21)

We claim that the equality

d t · m · u · n e = d t · m e · n (22)

holds. Note already that there exists a sequence

t · m · u · n
OP
 · · ·

OP
 t · m · n

which “extracts” the path u from the play t · m · u · n. By definition of the Player
view as the normal form of the extraction procedure, this implies that

d t · m · u · n e = d t · m · n e.

There remains to show that

d t · m · n e = d t · m e · n.

The sequence of extractions

t · m
OP
 d t · m e



induces a sequence of extractions

t · m · n
OP
 d t · m e · n

because m is the only move in t · m justifying the move n. Besides, the resulting
play d t · m e · n is a normal form for extraction, because any step

d t · m e · n
OP
 u

would induce a step

d t · m e
OP
 v

with v · n = u, this contradicting the fact that d t · m e is a normal form for view
extraction. This proves our claim that d t · m · n e = d t · m e · n. We deduce from
equations (20) and (21) and (22) that

psq = pt · m · u · nq = pt · mq · n = d t · m e · n = d t · u · m · n e = d s e.

This concludes our argument by induction when the last move of s is a move by
Opponent. This establishes the assertion of Lemma 3.

Visibility. We define a notion of visibility in asynchronous games, similar to the
notion of visibility in arena games [3,4]. Consider an asynchronous game, and an
alternating play s of that game. We declare that the play s is P -visible when the
equality

d t · m · n e = d t · m e · n

holds for every Player move n and prefix t·m·n of the play. This equality formulates
in a concise way that every justifying move of n appears in the Player view d s·m e.
Note that in the particular case of an intuitionistic game, the HON-view psq of a
P -visible play s is a play — and not just an alternating sequence of moves. From
this follows, by Lemma 3, that the equality psq = d s e holds for every P -visible
play s.

We prove that in any asynchronous game A,

Lemma 4 An innocent strategy σ contains only P -visible plays.

PROOF. Suppose that σ is an innocent strategy, and that s is a play of σ. Every
prefix t · m · n of the play s in which n is a Player move, is of even-length. By
definition of a strategy, the two plays t and t·m·n are elements of σ. By Corollary 2,
the Player view d t · m e factors as u · m where u ∈ σ. By definition of the Player
view, d t · m e = d u · m e. We apply here the hypothesis that σ is innocent, and
deduce from u ∈ σ, u · m ∈ PA and t · m · n ∈ σ, that

d t · m e · n = u · m · n



is a play of the strategy σ. The fact that d t ·m e ·n defines a play ensures that all the
justifying moves of n appear in d t · m e = u · m. Equivalently, that d t · m · n e =
d t ·m e ·n. This being true for every Player move n and prefix t ·m ·n of the play s,
we conclude that the play s is P -visible.

Innocence (HON). At this point, we recast the traditional definition of innocence
in our asynchronous framework, and show that it coincides with the definition of
innocence given previously. For the purpose, we suppose that the underlying asyn-
chronous game is intuitionistic — so that we may speak of the HON-view of a play.
In such a game, a strategy σ is called HON-innocent when for every plays s, t ∈ σ,
for every Opponent move m ∈ MA and Player move n ∈ MA:

s · m · n ∈ σ and t · m ∈ PA and ps · mq = pt · mq⇒ t · m · n ∈ σ.

Besides, one requires that every move justifying the move n in the play t · m,
appears in the sequence pt · mq. This last condition is called the visibility condition,
because it is equivalent to requiring that every play of the strategy σ is P -visible.

We prove that in any intuitionistic game A,

Proposition 5 A strategy σ is innocent iff it is HON-innocent.

PROOF. We start by the left-to-right implication. Suppose that the strategy σ is
innocent. We establish that the strategy σ is HON-innocent. Suppose that s and t
are two plays of the strategy σ, that m is an Opponent move, and n is a Player move
such that s ·m · n is a play of the strategy σ. Suppose also that t ·m is a play of the
game, and that ps · mq = pt · mq. We show that t · m · n is a play of σ in order to
establish that the strategy σ is HON-innocent. By Lemma 4, the play t is P -visible.
The move m is an Opponent move. By definition of P -visibility, the play t · m is
also P -visible. From this follows that pt · mq is a play. By Lemma 3, the two plays
pt · mq and d t · m e coincide. We may reuse the argument to show that ps · mq
is a play equal to d s · m e. By hypothesis, ps · mq = pt · mq. This implies that
d s · m e = d t · m e. We apply the hypothesis that σ is innocent, and deduce that
t · m · n is a play of σ. The proof is nearly finished. There remains to check the
visibility condition that every play of the innocent strategy σ is P -visible. This is
precisely what Lemma 4 states. We conclude that the strategy σ is HON-innocent.

We establish the right-to-left implication now. Suppose that the strategy σ is HON-
innocent, that s · m · n is a play of σ in which s is a play of σ, m is an Opponent
move, and n is a Player move. Suppose also that t is a play of σ, that t ·m is a play,
and that d s · m e ∼OP d t · m e. As elements of the HON-innocent strategy σ,
the plays s and t are P -visible. By definition of P -visibility, the plays s · m and
t · m are also P -visible, because the move m is Opponent. Thus, the sequences
ps · mq and pt · mq are plays. By Lemma 3, they are equal to d s ·m e and d t ·m e
respectively. The equivalence ps · mq ∼OP pt · mq follows from that. Here comes



the crux of the proof. Observe that, by definition, every Player move in the HON-
view ps · mq justifies the following Opponent move. This ensures that the ∼OP -
equivalence class of the play ps · mq is a singleton. The equality ps · mq = pt · mq
follows immediately. We apply the hypothesis that the strategy σ is HON-innocent,
and deduce that t ·m · n is a play of σ. This concludes the proof of the proposition.

Proposition 5 ensures that the homotopy relation d s · m e ∼OP d t · m e appear-
ing in our definition of innocence in asynchronous games may be replaced by an
equality d s · m e = d t · m e when the asynchronous game is intuitionistic. The
homotopy relation d s ·m e ∼OP d t ·m e appears in the definition only to deal with
“concurrent” asynchronous games in which, typically, an Opponent move may be
justified by several Player moves of the arena.

4 Diagrammatic innocence

The reformulation of Player views and innocence performed in Section 3 does not
really take advantage of the asynchronous structure of our games. It could be easily
carried out in arena games. In this section, we shift to a diagrammatic presentation
of innocence. This alternative presentation is inherently asynchronous, and could
not be formalized properly in arena games. It prepares the positional characteriza-
tion of innocence delivered in Section 5.

The diagrammatic presentation of innocence devised in this section is inspired by
rewriting theory, and more particularly by the diagrammatic approach developed by
the author and a few others in that field [28,29,39]. There is a well-established tra-
dition there, initiated by Alonzo Church and Barkley Rosser, to deduce the “global”
properties of the rewriting space (like confluence or standardization) from “local”
diagrammatic properties satisfied by redexes and residuals. We proceed in a similar
way below, and reduce the “global” definition of innocence devised in Section 3 to
exactly two “local” diagrammatic properties — called backward consistency (see
Figure 1) and forward consistency (see Figure 2). The two diagrammatic properties
should be understood as interactive variants of the familiar local confluence prop-
erty in rewriting theory. Each of them captures a particular aspect of innocence,
somewhat hidden in the original definition. We show below that, taken together,
they characterize innocence. Remarkably, the “global” notion of Player view dis-
appears completely from the resulting presentation.

Let us explain briefly the two diagrammatic properties. Backward consistency ex-
presses that an innocent strategy σ should react consistently to a change in the
order of Opponent’s inquiries. Consider a sequence of interactions s followed by
the strategy σ:

s = s1 · m1 · n1 · m2 · n2 · s2
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Fig. 1. Backward consistency

in which the moves m1 and m2 are played by Opponent, and the moves n1 and n2

are played by Player. Suppose that the move m2 is not justified by any of the two
moves m1 and n1. In that case, Opponent may permute her order of inquiry, and
play the move m2 before playing the move m1. Backward consistency ensures that
the strategy σ provides exactly the same answer to each inquiry m1 and m2 as in
the original play s. That is, Player plays the move n2 after Opponent has played
the move m2; then plays the move n2 after Opponent has played the move m1.
The remainder of the interaction (noted s2) proceeds then as previously. From this
follows that the play

s′ = s1 · m2 · n2 · m1 · n1 · s2

is also element of the strategy σ.

Forward consistency is a kind of converse to backward consistency, which captures
the liveness aspect of innocence. Consider two sequences of interactions followed
by the strategy σ:

s = s1 · m1 · n1 and s′ = s1 · m2 · n2

in which the moves m1 and m2 are played by Opponent, and the moves n1 and n2

are played by Player. Suppose that the two moves m1 and m2 do not coincide. In
that case, Opponent may extend the play s with the move m2. Forward consistency
ensures that the strategy σ provides an answer to this inquiry m2: this is precisely
the liveness property mentioned earlier. Besides, Player answers the move n2. Con-
sequently, the play

s′′ = s1 · m1 · n1 · m2 · n2

is an element of the strategy σ, and thus the “local confluence” diagram of Figure 2
may be completed in the same way as in Figure 1.

Backward consistency. A strategy σ is called backward consistent (see Figure 1)
when every play s1 ∈ σ, every path s2, every pair of Opponent moves m1, m2, and
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Fig. 2. Forward consistency

every pair of Player moves n1, n2 satisfying the properties:

s1 · m1 · n1 · m2 · n2 · s2 ∈ σ and ¬(n1 `A m2) and ¬(m1 `A m2)

satisfy also the properties:

¬(n1 `A n2) and ¬(m1 `A n2) and s1 · m2 · n2 · m1 · n1 · s2 ∈ σ.

Forward consistency. A strategy σ is called forward consistent (see Figure 2)
when every play s1 ∈ σ, every pair of Opponent moves m1, m2, and every pair of
Player moves n1, n2 satisfying the properties:

s1 · m1 · n1 ∈ σ and s1 · m2 · n2 ∈ σ and m1 6= m2

satisfy also the properties:

n1 6= n2 and s1 · m1 · n1 · m2 · n2 ∈ σ.

We use a diagrammatic proof to establish that, for any strategy σ of an asyn-
chronous game A:

Proposition 6 (diagrammatic characterization) The strategy σ is innocent iff it
is backward and forward consistent.

PROOF. (⇒) This direction is the easiest one. Suppose that the strategy σ is
innocent. We establish that the strategy σ is backward consistent. Suppose that
the sequence of moves s1 · m1 · n1 · m2 · n2 · s2 is a play of the strategy σ, in
which ¬(n1 `A m2) and ¬(m1 `A m2). From this follows that the sequence s1 ·m2

is a play because the sequence s1 · m1 · n1 · m2 is a play and ¬(n1 `A m2) and
¬(m1 `A m2). Now, the extraction step

s1 · m2
OP
 s1 · m1 · n1 · m2



implies that the Player views d s1 · m2 e and d s1 · m1 · n1 · m2 e coincide. We
apply here the hypothesis that the strategy σ is innocent, and deduce from s1 · m1 ·
n1 · m2 · n2 ∈ σ that s1 · m2 · n2 ∈ σ. In particular, the sequence s1 · m2 · n2

is a play, and ¬(n1 `A n2) and ¬(m1 `A n2). This establishes that the sequence
s1 ·m2 ·n2 ·m1 ·n1 · s2 is a play of the game. We apply Lemma 1 and deduce from
s1 · m1 · n1 · m2 · n2 · s2 ∈ σ and from

s1 · m1 · n1 · m2 · n2 · s2 ∼OP s1 · m2 · n2 · m1 · n1 · s2

that
s1 · m2 · n2 · m1 · n1 · s2 ∈ σ.

We conclude that the strategy σ is backward consistent. We establish now that the
innocent strategy σ is forward consistent. Suppose that s1 · m1 · n1 ∈ σ, that s1 ·
m2 · n2 ∈ σ, and that m1 6= m2. In that case, the sequence s · m1 · n1 · m2 is a
play, whose P -view coincides with the P -view of the play s · m2. We apply the
hypothesis that the strategy σ is innocent, and deduce from s1 · m2 · n2 ∈ σ that
s1 · m1 · n1 · m2 · n2 ∈ σ. We have just established that the innocent strategy σ is
backward consistent. From this and ¬(n1 `A m2) and ¬(m1 `A m2) follows that

s1 · m2 · n2 · m1 · n1 ∈ σ.

Moreover, the two moves n1 and n2 are necessarily different, since they appear in
the same play s1 · m1 · n1 · m2 · n2. We conclude that every innocent strategy is
backward and forward consistent.

(⇐) This direction is more difficult to establish. Suppose that the strategy σ is
backward and forward consistent. Suppose that s : ∗A � x is a play of the
strategy σ, and that m : x −→ y is an Opponent move defining a composite
play s · m : ∗A � y. Suppose moreover that n is a Player move. We claim that:

s · m · n ∈ σ ⇐⇒ d s · m e · n ∈ σ. (23)

In particular, we claim that each of the two alternating sequences of moves s ·m ·n
and d s ·m e ·n is a play when one of them is a play of the strategy σ. We prove this
claim as follows. The Player view d s · m e is of the form t · m : ∗A � y′ where
t : ∗A � x′ is a play of even-length, and m : x′ −→ y′ is the Opponent move m
starting this time from the position x′. By definition of the Player view d s · m e,
there exists two alternating paths of even-length

t1 = p1·p2 · · · p2k−1·p2k : x′ � x and t2 = p1·p2 · · · p2k−1·p2k : y′ � y

such that
t · t1 ∼OP s and t1 ∼ m · t2.

We illustrate the situation in Figure 3 (left) with a diagram for the case k = 2.
Backward consistency ensures that the strategy σ is closed under ∼OP -equivalence.
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Fig. 3. The situation when k = 2 (before and after applying the diagrammatic reasoning).

From this follows that the plays t and t · p1 · p2 · · ·p2j−1 · p2j are elements of the
strategy σ, for every index j ≤ k.

Now, suppose that the sequence s ·m ·n is a play of the strategy σ. In that case, we
apply the backward consistency hypothesis k times on the play

t · p1 · p2 · · ·p2k−1 · p2k · m · n ∈ σ

and deduce in this way that d s ·m e·n = t ·m ·n is a play of the strategy σ. Figure 3
(right) describes the situation after applying the backward consistency hypothesis
k = 2 times. This proves the direction (⇒) of our claim (23).

Now, suppose that the sequence d s ·m e · n is a play of the strategy σ. In that case,
we apply the forward consistency hypothesis k times on the play

t · p1 · p2 · · · p2k−1 · p2k ∈ σ

and the play
d s · m e · n = t · m · n

to deduce that the sequence t · p1 · p2 · · · p2k−1 · p2k ·m ·n is a play of the strategy σ.
From this, and the equivalence

s · m · n ∼OP t · p1 · p2 · · · p2k−1 · p2k · m · n

we deduce that the sequence s · m · n is a play of the strategy σ. Again, this last
step is justified by the fact that the strategy σ is closed under ∼OP -equivalence,
because it satisfies backward consistency. Figure 3 (right) describes the situation
after applying the forward consistency hypothesis k = 2 times. This proves our
claim (23).

After this preliminary result, we establish that the strategy σ is innocent. Suppose
that s · m · n and t are two plays of the strategy σ, that t · m is a play, and that
d s ·m e ∼OP d t ·m e. In order to establish that the strategy σ is innocent, we want
to prove that t · m · n ∈ σ. We proceed as follows. We deduce from s · m · n ∈ σ
and (23) that d s · m e · n ∈ σ. This and d s · m e · n ∼OP d t · m e · n implies



that d t ·m e ·n ∈ σ because the strategy σ is closed under ∼OP -equivalence. Now,
t · m · n ∈ σ follows from d t · m e · n ∈ σ and (23). We conclude that every
backward and forward consistent strategy is innocent.

5 Positional innocence

We establish the main result of the article in this section. This result states namely
that innocent strategies are positional (Theorem 8). We show more precisely that
innocent strategies are relational 2 , in the sense explained below (Proposition 10).
This raises an interesting question. Every relational strategy σ is characterized by
the set of positions σ• it encounters. So, when is a given set of positions X of the
form X = σ• for an innocent strategy σ?

In order to answer that question properly, we introduce the notion of pure inno-
cence. A purely innocent strategy is an innocent strategy which satisfies an ad-
ditional property, a variant of backward consistency, depicted in Figure 4. After
showing that innocence and pure innocence coincide in intuitionistic asynchronous
games (Lemma 11), we characterize the set X of positions of the form X = σ• for
a purely innocent strategy σ (Proposition 12). This characterization demonstrates
among other things that innocent (and purely innocent) strategies are concurrent
strategies in the sense of the concurrent game model of linear logic introduced by
Samson Abramsky and the author in [5] (Proposition 13).

Positional strategy. A strategy σ : A is called positional when for every two
plays s1, s2 : ∗A � x in the strategy σ, and every path t : x� y of G(A), one has:

( s1 ∼ s2 and s1 · t ∈ σ ) ⇒ s2 · t ∈ σ.

We establish below the key lemma to prove Theorem 8. Given two paths s and t,
we write s . t when there exists a path s′ such that s · s′ ∼ t. Similarly, we write
s .OP t when there exists a path s′ such that s · s′ ∼OP t.

We prove that

Lemma 7 For every innocent strategy σ of an asynchronous game A, and for every
two plays s and t of the strategy σ,

s . t ⇒ s .OP t.

PROOF. Consider a play s0 : ∗A � x of the innocent strategy σ, and two paths
s1 : x� y and s2 : x� z such that the two composite plays s0 · s1 : ∗A � y and

2 Relationality is called “pure positionality” in the extended abstract [32].



s0 · s2 : ∗A � z are elements of the strategy σ. Suppose moreover that s1 . s2.
We prove by induction on the length of the path s1 that s1 .OP s2. The assertion
is immediate when the path s1 is empty. Now, suppose that the path s1 factors
as s1 = m · n · t1 where m is an Opponent move and n is a Player move. The
path s2 decomposes as a sequence

s2 = m1 · n1 · · ·mk · nk (24)

consisting of Opponent moves mi and Player moves ni, for 1 ≤ i ≤ k. The Oppo-
nent move m appears in the play s2 because s1 . s2. From this follows

(1) that m = mj for some index 1 ≤ j ≤ k, and
(2) that the move m = mj is not justified by any Opponent move mi or Player

move ni for 1 ≤ i < j.

We apply then j−1 times our hypothesis that the strategy σ is backward consistent,
and construct in this way a path

t2 = m1 · n1 · · · m̂j · nj · · ·mk · nk (25)

satisfying
mj · nj · t2 ∼OP s2 and s0 · mj · nj · t2 ∈ σ.

The notation m̂j · nj used in (25) indicates that the two moves mj and nj are re-
moved from the sequence (24). The two plays s0 · m · n and s0 · mj · nj are el-
ements of the strategy σ because the strategy is closed under even-length prefix.
The equality n = nj follows immediately from the equality m = mj and from the
determinism of the strategy σ. The series

m · n · t1 = s1 . s2 ∼OP m · n · t2

implies that m · n · t1 . m · n · t2, which implies in turn that t1 . t2 by left-
simplification. Left-simplification is justified here by the fact that two paths are
homotopic modulo ∼ in the asynchronous graph G(A) if and only if they have the
same source and target. Now, we may apply our induction hypothesis to the play
t0 = s0 · m · n and to the paths t1 and t2 — because the length of the path t1 is
strictly less than the length path s1 = m · n · t1; and because the two plays t0 · t1
and t0 · t2 are elements of the strategy σ. We may thus deduce from t1 . t2 that
t1 .OP t2. The series

s1 = m · n · t1 .OP m · n · t2 = mj · nj · t2 ∼OP s2

implies then that s1 .OP s2. This concludes our proof by induction of the lemma.

Theorem 8 (positionality) Every innocent strategy σ is positional.



PROOF. Suppose that s1, s2 : ∗A � x denote two homotopic plays: s1 ∼ s2;
and that the two plays are elements of the innocent strategy σ. Suppose now that
t : x � y denotes a path which may be postcomposed to the plays s1 and s2 in
order to define composite plays s1 · t, s2 · t : ∗A � y. Suppose finally that the
play s1 · t is an element of the strategy σ. We deduce from s1 ∼ s2 that s1 . s2.
We then apply Lemma 7 and deduce that s1 .OP s2. This implies in turn that
s1 ∼OP s2 because the two plays s1 and s2 have the same length. From this follows
that s1 · t ∼OP s2 · t. We conclude from Lemma 1 and s1 · t ∈ σ that the play s2 · t
is an element of the strategy σ.

Relational strategy. To every strategy σ, we associate the set of positions σ•

played by the strategy in D(A), defined as:

σ• = {x ∈ D(A) | ∃s ∈ σ, s : ∗A � x}.

Conversely, to every set of positions X ⊂ D(A), we associate the set X ⊂ PA of
alternating plays of even-length

∗A = x0
m1−→ x1

m2−→ x2 −→ · · · −→ x2k−2
m2k−1

−→ x2k−1
m2k−→ x2k

in which

(1) every move m2i+1 is an Opponent move, and
(2) every move m2i+2 is a Player move, and
(3) every position x2j is an element of X ,

for 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ k.

It is immediate that every strategy σ is included in the set of alternating plays (σ•) .

A strategy σ is called relational when

σ = (σ•) . (26)

Intuitively, a strategy σ is relational when it may be described alternatively as the
underlying relation σ•. We prove that:

Lemma 9 Every relational strategy is positional.

PROOF. Consider a set X of positions, two plays s1 and s2 elements of X , and
a path t. Suppose that s1 ∼ s2, and that s1 · t defines a play which is an element
of X . Every even-length prefix ∗ � x of the play s2 · t is an even-length prefix of
the play s2, or has the same target x as an even-length prefix of the play s1 · t. From
this follows that this target position x is an element of X for every even-length
prefix of s2 · t. We conclude that the play s2 · t is an element of X . Now, suppose



that the strategy σ is relational. The property above instantiated at X = σ• implies
that the strategy σ = X is positional.

Obviously, every relational strategy σ may be recovered from its set of positions σ•

by using equation (26). This is not necessarily the case for a positional strategy.
Consider for instance the asynchronous game B ⊗ B with two initial Opponent
moves q1, q2 and four Player moves false1, true1, false2, true2 justified as expected:

q1 ` true1, q1 ` false1, q2 ` true2, q2 ` false2.

Consider the smallest strategy σ of B ⊗ B which contains the two plays:

q1 · true1 · q2 · false2 and q2 · false2.

The strategy σ is positional, but not relational, because the play

s = q2 · false2 · q1 · true1

is an element of (σ•) but not an element of the strategy σ. For that reason, we
strengthen Theorem 8 and establish the following statement:

Proposition 10 (relationality) Every innocent strategy σ is relational.

PROOF. Suppose that the strategy σ is innocent, and that s is a play of (σ•) . We
prove that s is a play of the strategy σ by induction on the length of s. The proof
is immediate when the play s is empty. Otherwise, by definition of (σ•) , the play
s : ∗A � x factors as s = t · m · n where t is a play of (σ•) , where m is an
Opponent move, and where n is a Player move. We know by induction hypothesis
that the play t ∈ (σ•) is an element of the strategy σ. Besides, the target position x
of the play s is an element of σ•. By definition of σ•, there exists a play u ∈ σ with
the position x as target. In particular, t ·m ·n ∼ u, and thus t . u. We deduce from
this and Lemma 7 that t .OP u. By definition, there exists an alternating path t′

such that t · t′ ∼OP u. This path t′ coincides necessarily with m ·n. This establishes
the equivalence t ·m · n ∼OP u. From this and Lemma 1, we obtain that t ·m · n is
a play of the strategy σ. This concludes our proof by induction that σ = (σ•) .

Pure innocence. An innocent strategy σ is called purely innocent (see Figure 4)
when every play s1 ∈ σ, every path s2, every pair m1, m2 of Opponent moves, and
every pair n1, n2 of Player moves satisfying the properties:

s1 · m1 · n1 · m2 · n2 · s2 ∈ σ and ¬(n1 `A m2) and ¬(n1 `A n2)

satisfy also the properties:

¬(m1 `A m2) and ¬(m1 `A n2) and s1 · m2 · n2 · m1 · n1 · s2 ∈ σ.
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Fig. 4. Reverse consistency

This additional condition is called reverse consistency because it coincides with the
backward consistency property (see Figure 1) in which the direction of all moves
has been reversed. We establish now that pure innocence coincides with innocence
in the particular case of intuitionistic games.

Lemma 11 In any intuitionistic asynchronous game, a strategy σ is purely inno-
cent iff it is innocent.

PROOF. The proof is nearly immediate, and works in any asynchronous game in
which no Opponent move justifies another Opponent move. It works in particular
in any intuitionistic game. Suppose that the strategy σ is innocent, and that we
are in the situation of Figure 4 (left) with a play s1 ∈ PA, a path s2, and moves
m1, n1, m2, n2 ∈ MA such that:

s1 · m1 · n1 · m2 · n2 · s2 ∈ σ and ¬(n1 `A m2) and ¬(n1 `A n2).

By hypothesis on the underlying asynchronous game, the Opponent move m1 does
not justify the Opponent move m2. We are thus in the situation of Figure 1 (left). We
may thus apply our hypothesis that the strategy σ satisfies backward consistency,
and deduce the properties:

¬(m1 `A n2) and s1 · m2 · n2 · m1 · n1 · s2 ∈ σ.

We conclude that the strategy σ is purely innocent.

We express below our positional characterization of pure innocence (Proposition 12).
One intriguing aspect of this characterization is that it is nearly self-dual: the second
and fourth clauses are exactly the first and third clauses after reversing the direction
and the polarity of the moves. Closure under intersection and union demonstrates
that purely innocent strategies are inherently concurrent. We come back to that
point in Proposition 13. Forward and backward confluence (together with mutual
attraction and the initial condition) ensure that every position x ∈ X induces an



alternating play of even-length s ∈ X with target the position x. The last clause is
called initial condition because it indicates on which position ∗A the strategy will
start interacting with its environment.

The notion of forward confluence appears in [19] where it is called conflict-freeness,
and (independently) in the author’s game-theoretic proof [31] of Thomas Ehrhard’s
collapse theorem — where the notion plays a fundamental role in the dynamic anal-
ysis of hypercoherence spaces. To some extent, forward confluence is the positional
counterpart of determinism in the usual definition of strategy formulated at the end
of Section 2. Remarkably, the dual notion of backward confluence offers here a
positional account of the fact that plays are closed under even-length prefix. This
reveals that this familiar condition on strategies (understood as sets of sequences)
is a hidden form of backward determinism.

Proposition 12 (positional characterization) A set of positions X ⊂ D(A) is of
the form X = σ• for a purely innocent strategy σ iff the set X satisfies the following
properties:

• X is closed under intersection: x, y ∈ X ⇒ x ∩ y ∈ X ,
• X is closed under union: x, y ∈ X ⇒ x ∪ y ∈ X ,
• forward confluence: if X 3 x

m
−→ y � w ∈ X and m is an Opponent move,

then there exists a unique Player move y
n

−→ z such that X 3 z � w ∈ X ,
• backward confluence: if X 3 w � y

n
−→ z ∈ X and n is a Player move, then

there exists a unique Opponent move x
m
−→ y such that X 3 w � x ∈ X ,

• mutual attraction: if X 3 x � y ∈ X then either x = y, or there exists an
Opponent move x

m
−→ x′ and a Player move y′ n

−→ y such that x′ � y′,
• initial condition: the root ∗A is an element of X .

PROOF. Suppose that σ is a purely innocent strategy. We establish that the set
of positions σ• satisfies the six clauses formulated in Proposition 12. We prove
first that σ• is closed under unions and intersections. The proof applies the familiar
diagrammatic techniques of rewriting theory, based on local diagram chasing and
residuals, see for instance [24,16,10,29]. Suppose that x ∈ σ• and y ∈ σ•. By
definition, there exists two plays s ∈ σ and t ∈ σ such that:

s : ∗A � x and t : ∗A � y.

The property of forward consistency enables us to apply a series of permutations of
OP-moves on s and t, in order to construct two “residual” paths

s/t : y � x ∪ y and t/s : x� x ∪ y

such that:
s · (t/s) ∼OP t · (s/t)

and
s · (t/s) ∈ σ and t · (s/t) ∈ σ.



This establishes that x ∪ y ∈ σ•. The proof that x ∩ y ∈ σ• works in a similar way.
The key observation in that respect is that the asynchronous transition system with
the elements of σ• as states, and the OP-moves as transitions, is not only confluent:
it is also stable in the sense of [36,20,28].

We establish now the forward confluence of σ•. Suppose that two positions x, w
are elements of σ•, and that

x
m
−→ y � w (27)

for some position y and Opponent move m. By definition of σ•, there exists a
play s ∈ σ whose target is the position x, and a play t ∈ σ whose target is the
positions w. It follows from (27) that s . t, and from Lemma 7 that s .OP t. Thus,
there exists a path

s′ = m1 · n1 · · ·mk · nk : x� w (28)

consisting of Opponent moves mi and Player moves ni, for 1 ≤ i ≤ k, such that
s · s′ ∼OP t. The Opponent move m is an element of the position w, but not an
element of the position x. This implies

(1) that m = mj for some index 1 ≤ j ≤ k, and
(2) that the move m = mj is not justified by any Opponent move mi or Player

move ni, for 1 ≤ i < j.

We apply j −1 times our hypothesis that the strategy σ is backward consistent, and
construct in this way a path

s′′ = m1 · n1 · · · m̂j · nj · · ·mk · nk

satisfying
mj · nj · s

′′ ∼OP s′ and s1 · mj · nj · s
′′ ∈ σ.

Just as in the proof of Lemma 7, the notation m̂j · nj indicates that the two moves
mj, nj are removed from the sequence (28).

We claim that the move n : y −→ z defined as n = nj is the unique Player
move from the position y whose target position z is an element of the set σ•, which
satisfies moreover

x
m
−→ y

n
−→ z � w. (29)

By definition, the position z is the target of the even-length play s1·mj ·nj = s1·m·n
which is prefix of the play s1 ·mj ·nj ·s

′′ ∈ σ. From this follows that s1 ·mj ·nj is a
play of the strategy σ, and thus, that its target z is an element of the set σ•. Besides,



the fact that z � w follows immediately from the definition of the move nj . We
have established that the Player move n : y −→ z has a position of σ• as target,
and satisfies (29). We prove now that there is a unique such Player move n from the
position y. Suppose that another Player move n′ : y −→ z′ has its target position z′

in the set σ•, and satisfying z′ � w. In that case, the position y coincides with the
intersection of the two positions z = y ] {n} and z ′ = y ] {n′}. Now, we have
just established that the set σ• is closed under intersection. The position y is thus an
element of the set σ•. This and y = x]{m} contradicts the fact that every position
of the set σ• contains as many Opponent moves as Player moves. This concludes
the proof that the set σ• satisfies forward confluence.

The backward confluence property of σ• is established in the same way, by duality.
Reverse consistency replaces backward consistency in the argument to obtain the
Opponent move m solution of the confluence problem. Closure under intersection is
replaced by closure under union in order to establish the uniqueness of that move m.

The two last assertions are immediate: mutual attraction follows from Lemma 7,
and the initial condition that σ• contains the starting position ∗A follows from the
fact that the strategy σ contains the empty play εA. This concludes the proof that the
set of positions σ• satisfies the six assertions of Proposition 12 when the strategy σ
is purely innocent.

We establish now the converse property that any set X of positions satisfying the
six clauses of Proposition 12 is of the form σ• for a relational strategy σ. Suppose
that we are given such a set X of positions. We define σ as the set of alternating
sequences

σ = X .

We recall that, by definition, the set σ contains the set of alternating plays of even-
length

∗A = x0
m1−→ x1

m2−→ x2 −→ · · · −→ x2k−2
m2k−1

−→ x2k−1
m2k−→ x2k

in which (1) every move m2i+1 is an Opponent move, (2) every move m2i+2 is a
Player move, and (3) every position x2j is an element of X , for 0 ≤ i ≤ k − 1 and
0 ≤ j ≤ k.

We show that for every position x ∈ X , there exists a play s ∈ σ whose target is
the position x. This is easily established by induction on the size of x. The property
is immediate when the position x is empty. Suppose now that the position x ∈ X
is not empty. There exists a path ∗A � x starting from the position ∗A. The initial
condition ensures that this position ∗A is an element of X . By mutual attraction,
there exists a Player move m : y −→ x. By backward confluence, there exists an
Opponent move n : z −→ y such that z ∈ X . By induction hypothesis applied to
the position z, there exists a play s : ∗A � z in the strategy σ. By definition of X ,
the play

s · m · n : ∗A � z
n

−→ y
m
−→ x



is also an element of σ = X . This concludes our proof by induction that every
position x ∈ X is the target of a play s ∈ σ.

Now, we show that the set of plays σ defines a strategy in the traditional sense, for-
mulated at the end of Section 2. To that purpose, we check that the four conditions
required on the set of plays σ are satisfied:

• the set σ contains the empty play because X contains the empty position,
• by definition of σ as X , every nonempty play s ∈ σ starts with an Opponent

move, and σ is closed under even-length prefix,
• suppose that s ·m ·n1 ∈ σ and s ·m ·n2 ∈ σ, where s : ∗A � x and m : x −→ y

and ni : y −→ zi for i ∈ {1, 2}. By definition of σ as X , the two positions
z1 = y ] {n1} and z2 = y ] {n2} are elements of X . Since the set X is closed
under intersection, the position z1 ∩ z2 is also element of X . Suppose that the
two moves n1 and n2 are different. In that case, y = z1 ∩ z2 is element of X , and
thus target of an alternating play t ∈ σ. As such, the position y contains as many
Opponent moves as Player moves. This contradicts the fact that y = x ] {m}
and that the position x contains as many Opponent moves as Player moves as the
target of the alternating play s ∈ σ. We conclude that n1 = n2 and thus, that σ is
deterministic.

We have just established that σ defines a strategy. There remains to show that the
strategy σ satisfies the three consistency properties of pure innocence (backward,
forward, and reverse). We start by establishing the backward consistency property.
Suppose that we are in the situation of Figure 1, with a play

s1 : ∗A � x

four moves
x

m1−→ y1
n1−→ y2

m2−→ y3
n2−→ w

satisfying
¬(n1 `A m2) and ¬(m1 `A m2)

and a path
s2 : w � w′

satisfying all together

s1 · m1 · n1 · m2 · n2 · s2 ∈ σ.

By forward confluence applied to the positions x ∈ X and w ∈ X , and to the
Opponent move

m2 : x −→ z1

there exists a Player move n : z1 −→ z2 such that z2 ∈ X and:

x
m2−→ z1

n
−→ z2 � w.



By forward confluence again, applied to the positions z2 ∈ X and w ∈ X , and to
the Opponent move:

m1 : z2 −→ z3

there exists a Player move n′ : z3 −→ z4 with z4 � w and thus z4 = w for
cardinality reasons. We conclude that the play

∗A

s1

� x
m2−→ z1

n
−→ z2

m1−→ z3
n′

−→ w
s2

� w′

is an element of the strategy σ. There remains to show that n = n2 and n′ = n1.
The only other possibility is that n = n1 and n′ = n2. We claim that this last
possibility would contradict the backward confluence of X . In that case, indeed,
the two positions y3 and z3 are equal, and thus define with the position x ∈ X and
the move n′ = n2 a typical backward confluence problem:

X 3 x� y3
n2−→ w ∈ σ

Now, the Opponent moves m1 and m2 provide two different solutions to this back-
ward confluence problem:

x� y2
m2−→ y3

n2−→ w ∈ σ and x� z2
m1−→ z3

n2−→ w ∈ σ

with the two positions y2 and z2 elements of the set X . This contradicts the hypoth-
esis that there exists a unique such solution. We conclude that n = n2 and n′ = n1,
and thus that the play

∗A

s1

� x
m2−→ z1

n2−→ z2
m1−→ z3

n1−→ w
s2

� w′

is an element of the strategy σ. This establishes that the strategy σ satisfies back-
ward consistency. Reverse consistency is established in exactly the same way, but
dually, by reversing the direction and the polarity of the moves. Forward consis-
tency is established by reduction to backward consistency, using the fact that the
set X is closed under unions. This concludes the proof of Proposition 12.

Proposition 13 Every innocent strategy σ : A defines a closure operator σ• on the
complete lattice D(A)> of positions.

PROOF. By convention, the closure operator σ• on the lattice D(A)> is denoted in
the same way as the set of positions σ• played by the strategy σ. By definition, the
closure operator σ• associates to every element x of the lattice the element

σ•(x) =
⋂

{z ∈ D(A) | z ∈ σ• and z ≥ x}. (30)

Note that σ•(x) = > precisely when there exists no position y ∈ σ• above the
element x in the sup-lattice D(A). Let us check here that (30) defines a closure
operator on the lattice D(A)>, although the exercise is pretty elementary. By clo-
sure operator on the lattice D(A)>, we mean a monotone, continuous, increasing



and idempotent endofunction of the lattice. Monotonicity means that, for every two
elements x, y of the lattice D(A)>,

x ≤ y ⇒ σ•(x) ≤ σ•(y).

This follows immediately from the fact that

{z ∈ D(A) | z ∈ σ• and z ≥ x} ⊇ {z ∈ D(A) | z ∈ σ• and z ≥ y}

when x ≤ y. By increasing, one means that the function σ• satisfies the inequality

x ≤ σ•(x) (31)

for every element x of the lattice. This inequality follows immediately from the
definition of the element σ•(x) as the greatest lower bound of a set of elements
greater than the element x. Now, idempotency means that

σ•(σ•(x)) = σ•(x)

for every element x of the lattice. This follows immediately from the equality:

{z ∈ D(A) | z ∈ σ• and z ≥ x} = {z ∈ D(A) | z ∈ σ• and z ≥ σ•(x)}.

Finally, continuity means that

σ•(
∨

i∈N

xi) =
∨

i∈N

σ•(xi) (32)

for every infinite increasing sequence (xi)i∈N of elements:

x0 ≤ x1 ≤ · · · ≤ xi−1 ≤ xi ≤ xi+1 ≤ · · · (33)

in the complete lattice D(A)>. At this point, we take advantage of a very par-
ticular property of that lattice: every increasing sequence of the form (33) in the
lattice D(A)> is either stationary — that is, there exists a natural number N ∈ N

such that:
∀i ∈ N, i ≥ N ⇒ xi = xi+1,

or converges to the element >:
∨

i∈N

xi = >. (34)

Equation (32) follows immediately when the sequence (33) is stationary; and it
follows from the equality

∨

i∈N

σ•(xi) = > (35)
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Names of Positions

∗ = ∅

q = {q}

V = {q, true}

F = {q, false}

Fig. 5. The innocent strategy σ and its four positions in the game B ⊗ B

when the sequence (33) converges to the element > — Equation (35) being itself
an immediate consequence of Equation (31) and Equation (34).

This series of properties explicates the true concurrency nature of innocence. Propo-
sition 13 bridges sequential arena games with concurrent games as they are formu-
lated by Samson Abramsky and the author in [5]. We illustrate this in Figure 5 with
the innocent strategy σ : B ⊗ B which answers “true” (Vrai in French) on the left
component, and “false” on the right component. The four positions of σ• are indi-
cated on the graph: ∗⊗∗, V ⊗∗, ∗⊗F , and V ⊗F . Note that the innocent strategy σ
understood as the closure operator or concurrent strategy σ• plays directly the po-
sition V ⊗ F ∈ σ• from the position q ⊗ q, and thus answers simultaneously the
two questions q1 and q2 asked by Opponent concurrently.

Despite the illustration, the reader may still find the idea of positionality difficult
to grasp. If this is the case, we hope that the proposition below will clarify the
situation. It is quite straightforward to define a notion of innocent counter-strategy τ
interacting against the strategy σ. The counter-strategy τ may withdraw at any stage
of the interaction. Every withdrawal of τ is expressed by an even-length play s :
∗A � x in the strategy τ , whose target position x ∈ τ • is of even cardinality.
Our next result states that the static evaluation (by intersection) of σ• against τ •

coincides with the dynamic evaluation (by interaction) of σ against τ .

Proposition 14 For every position x ∈ D(A):

σ• ∩ τ • = {x} ⇐⇒ σ ∩ τ = {s} and s : ∗A � x.

It is nearly routine to construct from this a category G with asynchronous games as
objects, and innocent strategies as morphisms. The only difficulty is to interpret the
exponentials. This is done following the principles of [30]: every game is equip-
ped with a left and right group action, and the exponential !A is interpreted as an
infinite tensor product !A =

⊗

k∈N A. The resulting category G defines a model of



intuitionistic linear logic without additives. The usual category of arena games and
innocent strategies embeds fully and faithfully (as a cartesian closed category) in
the Kleisli category associated to the category G and to its comonad. The interested
reader will find the detailed construction in [30].

6 The non uniform λ-calculus

We introduce in this section a non-uniform variant of the λ-calculus. This λ-calculus
is called non-uniform because the argument of a function λx.P is not a λ-term Q,
but a vector

−→
Q of λ-terms Qi where i ∈ N is an index for each occurrence x(i)

(or function call) of the variable x in the λ-term P . The calculus is affine in nature:
two occurrences of x(i) never occur in the same term. However, the simply-typed
λ-calculus may be encoded in this affine calculus, using the group-theoretic ideas
developed in our first article on asynchronous games [30].

Definition of the calculus. The non-uniform λ-terms P and vectors of arguments
−→
Q are defined by mutual induction:

P ::= x(i) located variable

| P
−→
Q application

| λx.P abstraction

−→
Q ::= (Qi)i∈N vector of non-uniform λ-terms indexed by an integer i ∈ N

where a located variable x(i) consists of a variable x in the usual sense, and an
integer i ∈ N. We require that every located variable x(i) appears at most once
in a term. Note that a non-uniform λ-term is generally infinite. The β-reduction is
defined as

(λx.P )
−→
Q −→β P [x(i) := Qi]

where P [x(i) := Qi] denotes the non-uniform λ-term obtained by replacing each
located variable x(i) in P by the non-uniform λ-term Qi. The non-uniform λ-terms
are typed by the simple types of the λ-calculus, built on the base type α:

x(i) : A ` x(i) : A
Γ ` P : A ⇒ B (∆i ` Qi : A)i∈N

Γ, ∆0, ∆1, ∆2, · · · ` P
−→
Q : B

Γ, x(i0) : A, x(i1) : A, x(i2) : A, · · · ` P : B

Γ ` λx.P : A ⇒ B

Here, a context Γ, ∆, ... may contain an infinite number of located variables, since
the ⇒-elimination rule involves a family of derivation trees (∆i ` Qi : A)i∈N. On



the other hand, the ⇒-introduction rule may migrate an infinite number of located
variables x(i) from the context to the λ-term.

Non-uniform η-long Böhm trees. The non-uniform η-long Böhm trees of simple
type A = A1 ⇒ · · ·Am ⇒ α are of three kinds:

(1) λx1...λxm. ( y(i)
−→
Q1 · · ·

−→
Qn ) where

• every variable xj is of type Aj for 1 ≤ j ≤ m,
• the located variable y(i) is of type B = B1 ⇒ · · ·Bn ⇒ α for some type B,
• every non uniform η-long Böhm tree (Qk)i is of type Bk, for 1 ≤ k ≤ n and

i ∈ N.
(2) or ΩB where ΩB is a fixed constant of type B,
(3) or λx1...λxm. f where f is a fixed constant of type α, and every variable xj

is of type Aj, for 1 ≤ j ≤ m.

Trace semantics. Every non-uniform η-long Böhm tree of simple type

A = A1 ⇒ · · ·Am ⇒ α

is interpreted by our game model as an innocent strategy in the asynchronous game
interpreting A. This game semantics may be formulated as a trace semantics on
non-uniform η-long Böhm trees, in the following way.

The Opponent transitions (or moves) are generated by the rule

ΩA −→ λx1 · · ·λxm. f

where A = A1 ⇒ · · ·Am ⇒ α and the variable xj is of type Aj for every index
1 ≤ j ≤ m.

The Player transitions are generated by the rule

f −→ x(i)
−→
Ω A1

· · ·
−→
Ω Am

where x(i) is a located variable of type A = A1 ⇒ · · ·Am ⇒ α, and
−→
Ω Aj

is the
vector which associates to every index i ∈ N the constant ΩAj

, for every 1 ≤ j ≤
m.

Every move from an η-long Böhm tree is then labelled by a subtree of the type A,
once translated in linear logic as an infinite formula, using the equation

A ⇒ B = !A( B



and the definition of the exponential modality as an infinite tensor:

!A =
⊗

i∈N

A.

Uniformity and bi-invariance. The usual (uniform) η-long Böhm trees of the λ-
calculus are extracted from their non-uniform counterpart using the bi-invariance
principle introduced in [30]. As recalled in the introduction, every game is equipped
with a left and a right group action on moves. A strategy σ is called bi-invariant
when, for every play s ∈ σ and every right action h ∈ H , there exists a left
action g ∈ G such that (g � s) � h ∈ σ. This characterizes the strategies which
are “blind to thread indexing”, and thus the strategies which behave as if they were
defined directly in an arena game. The concept of bi-invariance remains formal and
enigmatic in [30]. Here, quite fortunately, the non-uniform λ-calculus provides a
syntactical explanation for the concept of bi-invariance, which clarifies its meaning
and significance. We discuss that now.

Every intuitionistic type A defines a left and right group action (5) on the asyn-
chronous game [A] interpreting it in the asynchronous game model. These two
group actions may be understood syntactically as acting on the non-uniform η-long
Böhm trees P of type A, as follows: the effect of a right group action h ∈ H is to
permute the indices inside the vectors of arguments

−→
Q in P , while the effect of a

left group action g ∈ G is to permute the indices of the located variables x(i) in P .

By analogy with [30], a non-uniform η-long Böhm tree P is called bi-invariant
when for every permutation h ∈ H , there is a permutation g ∈ G such that

(g � P ) � h = P.

It is not difficult to see that an η-long Böhm tree in the usual λ-calculus is just a
bi-invariant η-long Böhm tree in the non-uniform λ-calculus, modulo left group
action (that is, permutation of the indices of the located variables.)

For instance, let Pj denote the non-uniform η-long Böhm tree

Pj = λx.λy.(x(j)−→y )

of type A = (α ⇒ α) ⇒ (α ⇒ α) where −→y associates to every index i ∈ N

the located variable y(i). Obviously, Pj is bi-invariant, and represents the uniform
η-long Böhm tree λx.λy.x y of same type A. Note that Pj is equivalent to any Pk

modulo left group action. The trace (or game) semantics of Pj is given by:

ΩA
m
−→ λx.λy.f

n
−→ λx.λy.( x(j)

−→
Ω α )

mk−→ λx.λy. ( x(j)
−→
Qk )

nk−→ · · ·

Here, the move m by Opponent (labelled by the type A) asks for the value of the
head variable of Pj, and the move n by Player (labelled by the type (α ⇒ α)j)



answers x(j); then, the move mk by Opponent (labelled by αk in (α ⇒ α)j) asks
for the value of the head variable of the k-th argument of x(j), inducing the vector
of arguments

−→
Qk =











(Qk)k = f

(Qk)i = Ωα when i 6= k

finally the move nk by Player (labelled by αk) answers y(k), etc...

This example illustrates the fact that the trace (or game) semantics of a non-uniform
η-long Böhm tree is the syntactic exploration or parsing of that tree by the Oppo-
nent. At any point of the interaction, the Player view d s e of the play s describes
the current branch of the non-uniform η-long Böhm tree.

7 Additional structures

For clarity’s sake, we deliver the simplest possible definition of asynchronous game
in Section 2. We review below three natural extensions of the definition.

Compatibility. Every asynchronous game may be equipped with an incompat-
ibility relation # between moves, in order to model the additives of intuitionis-
tic linear logic. The relation # indicates when two moves cannot appear in the
same position, and thus cannot appear in the same play. The coherence axiom
(m1#m2 ≤ m3 ⇒ m1#m3) is required on every triple of moves m1, m2, m3,
just as in event structures [40].

Internal vs. external positions. We may go further, and assign to every posi-
tion x of the asynchronous game an integer κ(x) ∈ Z called its payoff. By conven-
tion, a position x is called external when the payoff κ(x) is null, and internal oth-
erwise. It is then possible to construct a game model of propositional linear logic,
by identifying two strategies playing the same external positions. Remarkably, the
resulting model incorporates the well-bracketed and the non well-bracketed vari-
ants of the original innocent arena game model. We give a detailed account of this
construction in [33].

Independence. There is a well-established tradition in trace semantics of describ-
ing the interference mechanisms between concurrent threads by an independence
relation I between events [26]. Similarly, every asynchronous game may be equip-
ped with an independence relation between moves, in order to analyze interference



in imperative programming languages. Consider the game model of Idealized Al-
gol formulated by Samson Abramsky and Guy McCusker in [3]. Suppose that an
independence relation indicates that the moves read and write(n) interfere in
the interpretation of the variable type var, for every natural number n. In that case,
the interference between read and write(n) induces obstructions (“holes”) to
the homotopy relation ∼ on the game var, as indicated below:

7

??������
∼

ok

__??????

read

??������
∼

__??????

??������
∼

write(3)
__??????

ok

__??????

??������

__?????? 7

??������

write(3)

__?????? read

??������

Interestingly, the asynchronous definition of innocence adapts smoothly, and re-
mains compositional in the presence of interfering moves (that is, it defines a cate-
gory). Strategies are not positional anymore, but homotopic: they play according to
the homotopy class of the current play. We believe that a geometric account of states
and side effects will emerge naturally from this observation. Typically, the “state”
of the system would be defined as the homotopy class of the current play; and the
analysis of interference between any two such “states” would be resolved topologi-
cally. It is encouraging to see that similar intuitions have been already advocated by
Uday Reddy in his work on object-based semantics of imperative languages [38].

8 Conclusion

The theory of asynchronous games is designed to bridge the gap between main-
stream game semantics and concurrency theory. The preliminary results of this the-
ory (exposed in this article) are extremely encouraging. We establish indeed that
the cardinal notion of sequential game semantics — innocence — follows from el-
ementary principles of concurrency theory, formulated in asynchronous transition
systems. We introduce on the way a non-uniform λ-calculus, whose game seman-
tics coincides with a trace semantics performing the syntactic exploration or parsing
of λ-terms. This provides a concurrency-friendly picture of the λ-calculus, and firm
foundations for a diagrammatic investigation of its syntax and semantics.
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[4] S. Abramsky and G. McCusker. Game semantics. In U. Berger and H. S. eds, editors,
Computational logic. Springer Verlag, 1999.

[5] S. Abramsky and P.-A. Melliès. Concurrent games and full completeness. In
Proceedings of the Fourteenth Annual Symposium on Logic in Computer Science, LiCS
1999, pages 431–442, Trento, July 1999. IEEE Computer Society Press.

[6] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

[7] P. Baillot. Approches dynamiques en sémantique de la logique linéaire: jeux et
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