5,285 research outputs found

    Decomposition and encoding of finite state machines for FPGA implementation

    Get PDF
    xii+187hlm.;24c

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    Compositional Synthesis of Control Barrier Certificates for Networks of Stochastic Systems against ω\omega-Regular Specifications

    Full text link
    This paper is concerned with a compositional scheme for the construction of control barrier certificates for interconnected discrete-time stochastic systems. The main objective is to synthesize switching control policies against ω\omega-regular properties that can be described by accepting languages of deterministic Streett automata (DSA) along with providing probabilistic guarantees for the satisfaction of such specifications. The proposed framework leverages the interconnection topology and a notion of so-called control sub-barrier certificates of subsystems, which are used to compositionally construct control barrier certificates of interconnected systems by imposing some dissipativity-type compositionality conditions. We propose a systematic approach to decompose high-level ω\omega-regular specifications into simpler tasks by utilizing the automata corresponding to the complement of specifications. In addition, we formulate an alternating direction method of multipliers (ADMM) optimization problem in order to obtain suitable control sub-barrier certificates of subsystems while satisfying compositionality conditions. We also provide a sum-of-squares (SOS) optimization problem for the computation of control sub-barrier certificates and local control policies of subsystems. Finally, we demonstrate the effectiveness of our proposed approaches by applying them to a physical case study
    • …
    corecore