

Decomposition and encoding of finite state machines for
FPGA implementation
Citation for published version (APA):
Slusarczyk, A. S. (2004). Decomposition and encoding of finite state machines for FPGA implementation. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR582591

DOI:
10.6100/IR582591

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR582591
https://doi.org/10.6100/IR582591
https://research.tue.nl/en/publications/b572d4ad-946e-40e7-8d24-78e1504ffdde

Decomposition and Encoding of Finite State Machines for

FPGA Implementation

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven,

op gezag van de Rector Magnificus, prof.dr. R.A. van Santen,
voor een commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen op
woensdag 15 december 2004 om 14.00 uur

door
���������
	������������	������
��	������ ���
	��"!�#�$��

geboren te Warschau, Polen

Dit proefschrift is goedgekeurd door de promotoren:

prof.ir. M.P.J. Stevens
en
prof.dr.ir. R.H.J.M. Otten

Copromotor:
dr.ir. L. Jóźwiak

Druk: Universiteitsdrukkerij Eindhoven

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Slusarczyk, Aleksander S.

Decomposition and encoding of finite state machines for FPGA implementation /
by Aleksander Stanislaw Slusarczyk. – Eindhoven : Technische Universiteit Eindhoven,
2004.
Proefschrift. – ISBN 90-386-1663-5
NUR 959
Trefw.: sequentiele machines / decompositiemethoden / programmeerbare logische
schakelingen / logische schakelingen ; automatentheorie / logische schakelingen ; CAD.
Subject headings: state assignment / finite state machines / field programmable gate
arrays / sequential circuits / electronic design automation.

Summary

One of the most important steps in the synthesis of digital systems is the state encod-
ing of Finite State Machines (FSMs). This step performs translation of the symbolic
functional description of the system’s architecture module into its binary representation.
Therefore, it has profound influence on all quality aspects of the final binary logic imple-
mentation. Unfortunately, despite many research efforts, the problem of effective state
encoding has not been so far satisfactorily solved for most implementation technologies.

This is in particular the case for the modern programmable implementation plat-
forms, such as Field Programmable Gate Arrays (FPGAs), reconfigurable systems-on-
chip (SoC) platforms and embedded FPGAs. These platforms possess unique character-
istics, such as the availability of universal function blocks only limited by their number
of inputs and outputs and the critical importance of interconnections, that have not been
adequately addressed by the existing state encoding methods.

This thesis proposes and discusses a new approach to the problem of state encoding
of FSMs targeting FPGA implementation and new method and electronic design au-
tomation tool that implements this approach. The proposed approach is based on FSM
decomposition. Decomposition is a natural method of handling complex problems. It
consists in splitting a complex problem into smaller, interrelated sub-problems and solv-
ing the network of sub-problems. Applied to FSMs, decomposition consists in realizing
the behavior of a complex FSM as a network of smaller, collaborating FSMs.

To form sound theoretical base for the research on decomposition and encoding, this
thesis presents extension of the existing General Decomposition Theorem to the case of
multi-state realization of incompletely specified FSMs. This theorem covers as special
cases all other known decomposition structures, such as serial and parallel decomposi-
tion, and the decomposition of discrete functions and relations. The theorem explicitly
treats state and input information flows within the decomposed machine or function and
thus supports the novel, information-driven approach to decomposition.

In this thesis, the problem of state encoding is also considered as a special case of gen-
eral decomposition. This way, the extended decomposition theorem forms the basis for
the formulation of flexible conditions for valid state encoding that enable implicit min-
imizations of the machine in the process of encoding and, in consequence, its efficient
implementation. Based on the encoding validity conditions, a generic, implementation-
platform-independent state assignment method is proposed.

This generic method is further augmented with the heuristics targeting efficient
FPGA implementation. The heuristics exploit the information modeling apparatus of
set systems used in formulation of the General Decomposition Theorem and analysis
apparatus of information relationships and measures to perform analysis and optimiza-

iii

iv

tion of the information flows within the encoded machine during the encoding process.
The heuristics were implemented in the software tool SECODE, which is discussed in
detail.

The effectiveness of the decompositional, information-based approach to state encod-
ing is analyzed by testing the developed encoding method and tool on a set of standard
benchmarks and a number of generated FSMs exhibiting characteristics typical to the
circuits encountered in various industrial applications. The presented experimental re-
sults indicate that the new approach proposed and researched in this thesis compares
favorably with the existing state encoding methods.

Samenvatting

Een van de meest belangrijke stappen in de synthese van digitale systemen is toes-
tandcodering van Finite State Machines (FSM’s). Deze stap realiseert de vertaling van
de symbolische functionele beschrijving van de systeemarchitectuurmodule naar de bi-
naire realisatie daarvan. Daarom heeft het een diepgaande invloed op alle kwaliteit-
saspecten van de definitieve implementatie van binaire logica. Helaas is ondanks vele
onderzoekspogingen het probleem van de effectieve toestandcodering voor de meeste
implementatie-technologieën tot nu toe nog niet naar tevredenheid opgelost.

Dit is met name het geval voor de moderne programmeerbare implementatie plat-
forms, zoals Field Programmable Gate Arrays (FPGA’s), aangepaste systems-on-chip
(SoC) platforms en ingebedde FPGA’s. Deze platforms bezitten unieke eigenschappen
zoals de beschikbaarheid van universele functieblokken die slechts beperkt zijn door het
aantal ingangen en uitgangen en het kritische belang van onderlinge verbindingen die
door de bestaande toestandcoderingsmethodes nog niet goed genoeg geadresseerd zijn.

Dit proefschrift introduceert en behandelt een nieuwe aanpak van het probleem van
toestandscodering van FSM’s zich richtend op FPGA implementatie evenals een nieuwe
methode en tool voor elektronische design automatizering die deze aanpak implementeren.
De voorgestelde benadering is gebaseerd op FSM decompositie. Decompositie is een
natuurlijke methode om met complexe problemen om te gaan. Het is gebaseerd op het
delen van een complex probleem in kleinere, met elkaar in verband staande subproble-
men en het oplossen van het netwerk van subproblemen. Toegepast op FSM’s is decom-
positie gebaseerd op het realiseren van het gedrag van een complex FSM als een netwerk
van kleinere samenwerkende FSM’s.

Om een grondige theoretische basis voor het onderzoek naar decompositie en coder-
ing te leggen, introduceert dit proefschrift een uitbreiding van het bestaande General De-
compositie Theorema voor wat betreft demulti-toestandrealisatie van incompleet gespeci-
ficeerde FSM’s. Dit theorema dekt als bijzondere gevallen alle andere bekende decom-
positiestructuren zoals seriële en parallelle decompositie en decompositie van discrete
functies en relaties. Dit theorema behandelt toestands- en ingangsinformatiestromen
binnen de gedesintegreerde machine of functie en ondersteunt op dezemanier de nieuwe
informatiegedreven aanpak voor decompositie.

In dit proefschrift wordt het probleem van toestandcodering ook als een bijzonder
geval van algemene decompositie beschouwd. Op deze manier vormt het uitgebreide
decompositie theorema de basis voor de formulering van flexibele condities voor geldige
toestandcodering die geïmpliceerde minimalizaties van de machine in het proces van
codering en, als gevolg daarvan, de efficiënte implementatie daarvan mogelijk maken.
Gebaseerd op de coderingsvaliditeitsvoorwaarden wordt een generieke implementatie-

v

vi

platform-onafhankelijke toestandstoewijzingmethode voorgesteld.
Deze generieke methode wordt verder uitgewerkt door het ontwikkelen van de heuris-

tische beslissingsmechanismen die zich richten op de efficiënte FPGA-implementatie.
Deze heuristische beslissingsmechanismen maken gebruik van informatiemodellerings-
gereedschap van set systemen dat in de formulering van het General Decomposition
Theorema gebruikt wordt en tevens van analysegereedschap van informatierelaties en
maten om analyse en optimalisering van de informatiestromen binnen de gecodeerde
machine gedurende het coderingsproces ten uitvoer te brengen. De heuristische besliss-
ingsmechanismen werden in de software tool SECODE geïmplementeerd; deze wordt in
detail besproken.

De doeltreffendheid van de decompositionele, informatiegebaseerde aanpak van toe-
standcodering wordt geanalyseerd door het testen van de ontwikkelde coderingsmethode
en coderingstool op een verzameling standaard benchmarks en een aantal gegenereerde
FSM’s die eigenschappen vertonen die typisch zijn voor de schakelingen waarmee men
in diverse industriële toepassingen geconfronteerd werd. De nieuwe, in dit proefschrift
voorgestelde en onderzochte aanpak levert betere resultaten op dan de reeds bestaande
toestandcoderingsmethodes.

Acknowledgments

I would like to thank everyone who contributed to the work presented in this thesis.
I would like to thank prof. Mario Stevens, who sadly is no longer amongst us, for

giving me the opportunity to carry out this research. I will remember the years in his
CND group as an extremely stimulating and interesting period of my life. I also wish to
thank prof. Ralph Otten for his assistance in the later stages of my work in ICS group
and on this thesis.

My warmest thanks go to the co-promotor of this thesis, dr. Lech Jóźwiak, for his
continuous support and for sharing his insight and enthusiasm during our countless
discussions.

A special thanks is also directed to my fellow researchers – Artur Chojnacki, Szy-
mon Biegański and Dominik Gaw % owski – for the time we spent together at work and at
leisure. I would also like to thank all members of CND and ES group, and especially the
“coffee room club”, for all the exchanges of views we had on all topics imaginable.

Rian van Gaalen and Marja de Mol-Regels deserve especially warm thank you for all
the support they provide to the whole ICS group and especially to new foreign members,
often struggling in the new environment.

Najserdeczniejsze podziȩkowania kierujȩ do Rodziców i do Uli. Jesteście dla mnie nie-
wyczerpanym źród % em ciep % a, radości i si % y.

vii

viii

Contents

1 Introduction 1
1.1 Digital Systems . 1
1.2 Implementation technologies . 2

1.2.1 ASICs . 2
1.2.2 Programmable logic . 4
1.2.3 Summary . 8

1.3 FPGA design flow . 10
1.3.1 State assignment . 12

1.4 General decomposition . 16
1.5 Research aims and thesis overview . 18

1.5.1 Motivation . 18
1.5.2 Research overview . 20
1.5.3 Thesis overview . 21
1.5.4 Thesis outline . 22

2 Preliminaries 25
2.1 Boolean functions . 25
2.2 Finite State Machines . 26
2.3 Covers . 30

2.3.1 Dichotomies . 32
2.4 Information analysis . 34

2.4.1 Information model . 34
2.4.2 Information relationships and measures 41

3 General Decomposition Theorem 45
3.1 Decomposition of completely specified FSM 46

3.1.1 General Decomposition Theorem 46
3.1.2 Example . 50

3.2 Decomposition of incompletely specified FSM 60
3.2.1 Extensions of GDT . 60
3.2.2 General Decomposition Theorem 66

3.3 Proof of the General Decomposition Theorem 66
3.3.1 Forward proof . 66
3.3.2 Reverse proof . 74

3.4 General decomposition example . 76
3.4.1 Output and state behavior realization 76

ix

x CONTENTS

3.4.2 Output behavior realization . 82
3.4.3 Construction of the decomposition structure 83

3.5 Conclusions . 87

4 General Decomposition in circuit synthesis 89
4.1 Sequential synthesis . 89

4.1.1 State-encoding-induced decomposition 89
4.1.2 Mechanics of state assignment . 99

4.2 Combinational synthesis . 105
4.3 Conclusions . 108

5 Effective and efficient state assignment for LUT-FPGAs 111
5.1 Introduction . 111
5.2 State assignment heuristics . 112

5.2.1 Heuristic outline . 112
5.2.2 Information flows example . 113
5.2.3 Additional issues . 115

5.3 The method . 116
5.3.1 Outline . 116
5.3.2 Initial encoding . 122
5.3.3 Input supports calculation . 122
5.3.4 Dichotomy clustering . 124
5.3.5 Code construction . 130

5.4 Structures and algorithms . 132
5.4.1 Twin Graph . 132
5.4.2 Clustering . 138
5.4.3 Code improvement with simulated annealing 139

5.5 Special encodings . 142
5.5.1 One-hot encoding . 143

5.6 Conclusions . 144

6 Experiments 147
6.1 Comparison of one-hot and min-length encodings 147
6.2 SECODE . 149

6.2.1 Standard benchmarks . 149
6.2.2 Interconnections . 153
6.2.3 Layout results . 155
6.2.4 Comparison of synthesis chains 157

6.3 Generated benchmarks . 159
6.3.1 BENGEN benchmark generator . 160
6.3.2 Experimental results for generated benchmarks 161

7 Conclusions and future work 165

A Encoding results for generated FSMs 177

List of definitions

2.1 Completely specified Boolean function . 25
2.2 Incompletely specified Boolean function . 25
2.3 Completely specified finite state machine (FSM) – Mealy type 26
2.4 Completely specified finite state machine (FSM) – Moore type 26
2.5 Incompletely specified sequential machine . 28
2.6 Single-state output behavior realization of completely specified FSM 28
2.7 Single-state output and state realization of completely specified FSM 29
2.8 Output behavior realization of incompletely specified FSM 29
2.9 Output and state realization of incompletely specified FSM 29
2.10 Realization structure . 30
2.11 Cover . 30
2.12 Unique-block cover . 30
2.13 Set system . 31
2.14 Partition . 31
2.15 Partition product . 31
2.16 Unique-block cover product . 31
2.17 Cover sum . 31
2.18 Cover relation ≤ . 31
2.19 Zero-cover . 32
2.20 One-cover . 32
2.21 Induced cover . 32
2.22 Unordered dichotomy . 32
2.23 Ordered dichotomy . 32
2.24 Unordered dichotomy compatibility . 33
2.25 Ordered dichotomy compatibility . 33
2.26 Dichotomy merging operator ∗ . 33
2.27 Dichotomy covering relation ⊆ . 33
2.28 Elementary information . 35
2.29 Information set . 36
2.30 Elementary abstraction . 36
2.31 Abstraction set . 36
2.32 Occurance multiplicity of elementary information 42
3.1 Block transition function . 47
3.2 Block output function . 47
3.3 S × I − S partition pair . 47
3.4 S × I − O partition pair . 47

xi

xii CONTENTS

3.5 General composition of sequential machines 48
3.6 General full-decomposition . 48

3.7 Operator
⋃

. 60

3.8 Operator
⋂

. 60
3.9 Cover transition function . 61
3.10 Synchronized set of S × I − S cover pairs . 62
3.11 Block output function . 62
3.12 Cover output function . 62
3.13 S × I − O cover pair . 62
3.14 Cover specialization . 63
3.15 Multi-state realization . 63
3.16 Labeled cover transition function . 64
3.17 Labeled cover output function . 65
3.18 Sl × I − Sl cover pair . 65
3.19 Sl × I − O cover pair . 65
3.20 Sl − S cover pair . 65
4.1 Support pair set . 97
5.1 Matching . 133
5.2 Twin graph . 133

Chapter 1

Introduction

1.1 Digital Systems

The past several decades have witnessed explosive growth of integrated circuit technology
and its applications in our everyday life. Faithful to the famous prediction of Moore’s
law, the capacity of integrated circuits (or chips) doubles every 18 months, delivering
the devices that currently fit tens of millions of transistors on a few square centimeters of
silicon and capable of performing billions of operations per second. The rapid technology
revolution and enthusiastic acceptance of these devices have resulted in a significant price
decrease that made it feasible to introduce digital systems into virtually every aspect of
life.

The most prominent example of this trend has been the personal computer (PC),
which evolved from an experimental, expensive curiosity to an ubiquitous and affordable
work tool indispensable in a growing number of professions, as well as an entertainment
and information source present in most of today’s homes. But this best known example
is just a tip of an iceberg of billions of chips produced every year and installed in modern
devices, machines and facilities. The integrated circuits in production and measurement
equipment help in work, making it easier and increasing our productivity. Consumer
electronics devices such as television sets, video recorders and digital audio and video
players have leveraged the advances in integrated circuit technology to deliver higher
quality video and sound at ever decreasing price. Chips help to drive cars, fly planes,
connect telephone calls and save lives in medical equipment. The latest trends embodied
in terms such as “ambient intelligence” or “ubiquitous computing” predict expansion of
computer chips even further, to equip with “intelligence” domestic appliances, lighting,
even furniture and clothes.

All these developments have led consumers to expect advanced functionality features
in new consumer devices and prompted the device vendors to deliver ever more sophis-
ticated products. Also in the market of professional applications, the demands on the
functionality and, often more importantly, cost, efficiency and power consumption of
integrated circuits are growing. To remain competitive, companies must develop and en-
hance products with unprecedented constraints on cost, functionality, power consump-
tion and, crucially, time-to-market.

To satisfy the demand, semiconductor industry has responded with a number of tech-

1

2 1. INTRODUCTION

nology options to implement the digital circuits embedded in the newest products. These
options represent different cost, performance and flexibility characteristics and enable a
designer to make a choice of the most suitable technology and make different trade-offs
based on the particular application.

Unfortunately, the explosive development of technology has not been matched by an
equal progress in the field of designer productivity and software tools supporting the
design of digital systems. The insufficient support offered by the Electronic Design Au-
tomation (EDA) tools is responsible for increased design times and suboptimal circuit
realizations. This phenomenon known as “design gap” makes it more and more diffi-
cult for designers to take full advantage of the opportunities created by the technology.
This is the reason for the continuous interest that EDA field has been receiving from the
research community. The work presented in this thesis is also a result of this interest.

The subject of this thesis is circuit synthesis of finite state machines (FSMs) — one
of the basic forms of description for digital system behavior. An FSM describes behavior
of the system in terms of distinct states that the system can be in and transitions between
the states that are triggered by particular input signals. The combination of the current
state of the FSM and the input signals determine the output produced by the FSM and
its next state.

The particular problem addressed by this thesis is state machine encoding, i.e. trans-
lation from symbolic, conceptual form to binary functions implementing the behavior
described by the FSM. When encoding the machine, we are particularly targeting the
implementation of the resulting logic in Field Programmable Gate Array (FPGA).

In this chapter we will present a short introduction to the available implementation
options for sequential machines and, particularly, digital controllers, the design method-
ology used to implement the machines and look closer at the problem of state assign-
ment.

1.2 Implementation technologies

Modern microelectronics industry offers to a digital system designer a number of imple-
mentation options for the system. Currently the most prominent of these options are:

• Standard general purpose processors, such as microprocessors, microcontrollers,
DSPs, multimedia processors, etc. (software solution).

• Application specific integrated circuits — ASICs (hardware or hardware/software
solution).

• Field programmable logic (hardware or hardware/software solution).

Since the subject of this thesis is related to FSM’s hardware implementation, we will
focus on the two hardware options — ASICs and programmable logic.

1.2.1 ASICs

Due to the complexity and the cost of the chip production technology, application specific
integrated circuits are usually not manufactured directly by the system designer, but by
a specialized silicon foundry — a firm that receives from the designer the design of the

1.2. IMPLEMENTATION TECHNOLOGIES 3

chip and manufactures the required volume of chips based on this design. Depending
on the level of detail the design requires, several options are available. They range from
full custom design, where designer specifies all features of single transistors on the chip;
through standard cell approach, where a number of functional cells is used in the design;
to gate array, where only connections between prefabricated functional blocks can be
determined.

The full custom option involves design of the integrated circuit at the lowest level
of single transistors, or even particular features of a single transistor. On silicon tran-
sistors are manufactured in multiple layers, each layer corresponding to a part of the
transistor (e.g. well, source and drain, gate, contacts) and a number of layers where inter-
connections are realized. Full custom design requires separate definition of each layer,
which usually involves drawing rectangles corresponding to particular elements of the
transistor. Hence the popular term “polygon pushing” used to describe the process. This
approach allows designer to determine position and size of the transistor and therefore
gives ultimate control over speed, area and power dissipation of the circuit. The price for
the level of control achieved in full custom designs is the huge effort required to design
any but the simplest circuits. Moreover, this effort is usually required for each sepa-
rate design, as the results of the previous designs cannot be readily reused. The large
non-recurring engineering (NRE) costs induced by this labour-intensive process make
this approach only practical for the most performance-, density- or power-constrained
devices, or for very high volume parts. It can also be applied for large regular structures
such as memories, where the design of a single cell is multiplied millions of times and
thus any saving gained by hand-crafting the cell offers significant reduction of the whole
structure.

To avoid the effort associated with designing each separate transistor by hand, the
standard cell approach has been introduced. In this methodology, the circuit is con-
structed from a number of pre-designed standard cells. The cell library, usually delivered
by the silicon foundry and optimized for the foundry’s process, includes basic logic build-
ing blocks, such as logic gates, flip-flops, registers, and often more complex functions,
such asmultiplexers, ALUs, multipliers andmemories. The library often includes several
implementations of a particular function, each implementation optimized for a different
parameter, such as area, delay, power, drive strength, etc. While the regular shape of the
cells gives rise to regular, possibly suboptimal layout and wiring, the highly optimized
implementation of particular cells may make up for that effect and often the circuits of
quality close to full custom design are produced. This is achieved at a fraction of the
design costs, as much of the work of mapping the design to cells, placement and routing
are automated and may only require some designer intervention for particularly difficult
or critical elements.

While standard cell approach significantly reduces the design cost of a digital sys-
tem, it does not address another crucial cost ingredient — the fabrication. As mentioned
before, transistors are realized in silicon in layers. Each layer is created in a photolithog-
raphy process by exposing the silicon covered with photoresist to ultraviolet light via a
mask. The exposed regions of the photoresist change their chemical properties and can
be washed away with a developer solution, leaving the unexposed regions untouched.
Since there are multiple layers, multiple masks are necessary to fabricate a working chip.
Unfortunately, masks are high-precision, expensive devices, with the cost for a complete
set of masks reaching $1 million and more. The chilling cost effect is compounded by

4 1. INTRODUCTION

the fact that the masks in general cannot be corrected or modified. Therefore, if a flaw
is detected in the design after the masks have been fabricated, the mask set needs to be
replaced. To avoid this very costly operation, extensive tests, verification and simulations
need to be performed in the design stage, increasing the development time and costs
even further.

The problem of high mask costs motivated the development of Mask Programmable
Gate Arrays (MPGA). In this technology, a chip containing an array of unconnected gates
is prefabricated by the foundry. The customer’s design is mapped onto the gate fabric and
the interconnection structure necessary to realize the desired functionality is determined.
In this process chip-specific masks are only necessary for the contact and interconnec-
tion layers, thereby reducing the unique mask set to 2-5 masks. Naturally, there is very
little room for optimizations in this methodology. Also, for some designs significant
amount of prefabricated logic may never be used. Still, this option is attractive for less
demanding applications. Except for the reduced mask cost, the chip cost is reduced and
the reliability is improved due to the fact that the foundry produces large numbers of
identical prefabricated wafers which can be used by multiple customers.

Recently, the MPGA idea has been revitalized by the so called structured ASIC ap-
proach. It is similar to the original MPGA idea as it also offers prefabricated logic with
the programming taking place at the interconnect level. However, structured ASICs con-
tain more coarse-grain logic. The prefabricated logic includes complex programmable
functions, flip-flops, memories, etc.

1.2.2 Programmable logic

The reduced mask cost offered by the MPGA or structured ASIC methodology still does
not solve most of the fundamental problems of the fixed logic implementations related to
design and fabrication cost, flexibility, time-to-market etc. Still, any flaws in the original
design are severely penalized if discovered in the manufacturing stages. This is also the
case for other updates to the design, involving additional features or modified functional-
ity due to changing requirements, standards, etc. Also, the typical turn around time of a
foundry is measured in weeks, which hurts the increasingly important time-to-market. At
the same time, foundries will set a minimum limit on the number of parts produced. In
the times of fierce competition, when not all products turn out to be immediate success,
this may leave the vendor with a large and expensive stock of unsold chips. Moreover, the
design tools and expertise required to design an ASIC are expensive resources in general
unavailable to small enterprises.

An answer to these problems is offered by programmable logic. As the name im-
plies, logic functions of the devices in this methodology can be programmed rather than
prefabricated. Moreover, the whole programming process takes place at the designer’s
site, or even in the actual working system where the chip is used, rather than in the
foundry. After the circuit has been synthesized and an appropriate programming file
generated, the programming of the chip can be performed on-site and takes just sec-
onds. This way, the production turn around time is dramatically reduced. Many of the
programmable devices offer re-programmability as well, what eliminates problems with
bugfixes and functionality updates to the chip. If a different logic behavior is required, a
new programming file can be downloaded to a chip and the new functionality is available
in seconds. Nowadays, these updates can be performed remotely in a working system,

1.2. IMPLEMENTATION TECHNOLOGIES 5

via Internet, wireless communication links or other connection. Another important fac-
tor in the success of programmable logic is the availability and relative ease of use of
the corresponding software design tools. There are many software tools available in the
market that help design programmable circuits even by the designers with minimum
experience. Moreover, these tools are very cheap when compared to any ASIC-flow tools.
In fact, some device vendors offer free design packages with their products.

The price paid for low NRE costs, flexibility and short time-to-market is a lower logic
density, lower speed and higher power dissipation of programmable logic as compared
to ASICs. The simple and cheap push-of-a-button design tools do not produce the cir-
cuits approaching the quality or performance of the designs hand-crafted by the expert
designer. Also, a single programmable chip is more expensive than a single ASIC in a
long production series. While this is unacceptable for high-end manufacturers offering
high volume products, for smaller vendors planning production of several hundred or
thousand units the performance may be just enough and a small number of relatively
expensive programmable devices may still cost less than NRE cost associated with ASIC
production.

The two dominant programmable logic technologies are Complex Programmable
Logic Devices (CPLDs) and Field Programmable Gate Arrays (FPGAs).

CPLD

The popular CPLDs evolved as an extension of simple Programmable Logic Array (PLA).
These arrays are optimized for realization of logic as a two-level Boolean sum-of-products
expression. PLA device (see Fig. 1.1) is composed of the programmable AND-plane,
where input signals available in direct and negated polarity are combined to form product

AABBNN

N

B

A

polarity

o
u
tp
u
ts

in
p
u
ts

output polarity gates

OR-plane

AND-plane

expander term

Figure 1.1. PLA structure

6 1. INTRODUCTION

terms, and programmable OR-plane which performs logical-or of the product terms from
AND-plane. Often, a set of output XOR-gates is available for programmable output sig-
nal polarity. The prevalent programming technology for PLA is Electrically Erasable Pro-
grammable Read-Only Memory (EEPROM). In this technology floating gate transistors
are used to program connections. A transistor can be permanently switched-off by ap-
plying appropriate voltage, thus breaking the connection. This process is fully reversible
by applying the reverse voltage, making the circuit re-programmable. While PLA-based
devices consist of AND-plane and OR-plane, in Programmable Array Logic (PAL, see
Fig. 1.2) devices, the OR-plane is replaced by fixed OR-gates, with programmable input
and output interconnections. The CPLD devices typically include a number of PLA-like
or PAL-like structures called macrocells, together with programmable interconnections
between the cells.

This type of architecture is represented by the popular MAX devices from Altera Cor-

AABBNN

in
p
u
ts

N

B

A

AND-plane

Figure 1.2. PAL structure

16 macrocells

LAB

I/
O
co
n
tr
o
l

16 macrocells

LAB

I/
O
co
n
tr
o
l

16 macrocells

LAB

I/
O
co
n
tr
o
l

16 macrocells

LAB

I/
O
co
n
tr
o
l

P
ro
g
ra
m
m
ab
le
In
te
rc
o
n
n
ec
tA

rr
ay

Figure 1.3. Altera MAX CPLD

1.2. IMPLEMENTATION TECHNOLOGIES 7

poration. In the MAX 7000 devices (depicted in Fig. 1.3), the macrocells are organized
in the Logic Array Blocks (LABs), 16 macrocells per LAB. The LABs are interconnected
by means of Programmable Interconnect Array (PIA) that provides full connectivity be-
tween LABs. Each macrocell within a LAB contains a PAL element capable of realizing
sum of 5 product terms of 36 external signals and 16 so-called shared expander signals.
The external signals can come from the PIA or the I/O control blocks that interface with
the device’s pins. Shared expanders can be used to feed output of one macrocell within
a LAB to an input of another macrocell, allowing for realization of complex logic expres-
sions. Additionally, a macrocell output signal may registered in the configurable flip-flop
available in the macrocell. The devices of 7000 family include 2 to 32 LABs.

CPLD devices offer relatively small logic density and capacity, with the largest devices
having logic capacity equivalent to 10,000 gates. However, the simplicity of structure
results in very fast circuits and predictable timing characteristics, making CPLD suitable
for synthesis of timing-critical control applications. Naturally, the small capacity is also
reflected in the low price of the devices, which makes CPLDs attractive for tight-budget
applications.

FPGA

A more prominent place in the programmable logic market is taken by the Field Pro-
grammable Logic Array (FPGA) technology. In these devices, a large number of config-
urable logic blocks capable of realizing complex functions of a small number of inputs is
connected by means of programmable interconnection fabric. The typical FPGA archi-
tecture is represented by the devices from Virtex family manufactured by Xilinx. A Virtex
device comprises of logic blocks laid out in regular matrix, interconnection resources
routed between the matrix rows and columns and I/O blocks at the perimeter of the chip.
All these elements are programmable to allow realization of complex logical functions

I/O

CLB

multiplierBlockRAM

DCM

(a)

LUT /
SRL /

RAM

FF

CARRY/
ARIT /
SOP

(b) Slice (half)

Figure 1.4. Virtex II FPGA

8 1. INTRODUCTION

with flexible interconnections and communication with the outside world using multi-
tude of I/O standards. The programming of the device is achieved by filling Static RAM
(SRAM) memory cells controlling the behavior of different resources.

The primary logic resource of Virtex FPGA is a slice. It includes two 4-input func-
tion generators which can be configured to be used as a 4-input Look Up Table (LUT),
16-bit shift register, or 16-bit RAM element. A half of a slice is schematically depicted
in Fig. 1.4(b). In the LUT configuration, the function generator can be programmed to
realize any logical function of 4 inputs, by storing output value for each of the 16 in-
put combinations. Groups of four slices form Configurable Logic Blocks (CLBs). Slices
within CLB have fast local interconnections and can be combined by means of dedi-
cated multiplexers to realize any function of up to eight inputs, with some functions of a
larger number of inputs also possible. In addition to LUTs, a slice contains two config-
urable flip-flops and a number of dedicated logic gates: XOR gates for implementation
of adders, AND gates for simplified multiplier designer and OR gates for realization of
large sum-of-product expressions. The fast local interconnections between the slices in
a CLB include two carry chains with associated multiplexors used to implement addition
and subtraction, or to cascade LUTs to implement wide logic functions.

In addition to CLBs for implementation of random logic, Virtex FPGAs contain a
number of other dedicated, programmable resources. These include:

• Block SelectRAM — 18 Kbit memories with configurable word and address widths
and dual-port capabilities

• embedded 18-bit multipliers

• Digital Clock Management circuitry for programmable clock signal division and
multiplication, delay compensation and phase shifting

• (Virtex II Pro family) up to four general-purpose PowerPC processor cores inte-
grated within the FPGA fabric

Top-of-the-range Virtex II Pro FPGA currently contains over 14,000 CLBs with logic ca-
pacity of about 8 million logic gates, 10 Mbits of Block RAM, 556 multipliers, and 4
PowerPC processor cores.

The hierarchical programmable interconnection structure connects logic elements
together. In particular, in addition to fast inter-slice connections, each CLBs has direct
connections to all its immediate neighbors and a limited number of connections to every
second, third and sixth block away from the CLB in all four directions. For long-range
communications, a number of global signals routed along the entire width and height of
the chip is available. Other global communication resources include eight dedicated low-
skew clock networks and three-state buses. For off-chip communications I/O blocks are
available that are configurable for multiple voltage and impedance standards. Dedicated
high-speed transceivers allow inter-chip serial communication at 3.125 Gbps.

1.2.3 Summary

In this section, we outlined characteristics of two basic hardware implementation strate-
gies for digital systems: with fixed and programmable logic.

1.2. IMPLEMENTATION TECHNOLOGIES 9

The fixed logic methodology, due to its inherently high design and manufacturing
costs is especially suitable for high-performance, high-volume products. Still, the high
logic density and performance levels of ASICs continue to make it the dominant tech-
nology for digital systems implementation in parallel to standard general purpose pro-
grammable processors.

However, in the recent years this picture has begun to change. Programmable logic
solutions, in particular FPGAs, have reached maturity and begin to challenge ASICs. Lat-
est families of FPGA devices reach performance and logic density levels that is sufficient
for many applications. Elimination of manufacturing costs and dramatical reduction of
turn-around times make FPGAs particularly attractive for short-series, high-end indus-
trial applications. In the markets such as telecommunication, networking, broadcasting,
or medical instrumentation, several thousands of dollars paid for an advanced FPGA
device is more than justified by the saved design and manufacturing time and the oppor-
tunity for product updates throughout its lifetime.

Interestingly, important market segment for FPGAs is created by the ASIC design-
ers. Programmable logic has become a standard way of emulating and testing of ASIC
designs before manufacturing. Instead of performing the time-consuming software sim-
ulation of an ASIC, it can be implemented in FPGA and tested in circuit, and at speed,
increasing simulation speed and reliability.

In addition to time and cost constraints, other economical and technical factors are
playing in favor of FPGA adoption. FPGAs are mass-produced, highly reliable devices
manufactured in the cutting edge processes, otherwise unavailable to most designs. The
ability to buy and program in-house arbitrary number of FPGA devices frees designers
from close ties with the foundries, allowing flexible stock control and protecting their
intellectual property.

Except for the above mentioned reasons, which essentially promote FPGAs as short-
series replacement for ASICs, programmable logic with its in-system, even on-the-fly
re-programmability introduces a new design paradigm, unavailable for ASIC implemen-
tations. FPGA-based hardware has a potential to change its programming and, in result,
behavior adopting this way to new operating conditions. Experiments in evolutionary
hardware [20], where a part of FPGA is programmed to re-program other part in reaction
to changing conditions, are showing just one of the possible development directions.

During the last decade the reconfigurable systems evolved from a cost-effective re-
placement of ASICs to the mainstream implementation option of application specific
(embedded) systems in parallel to programmable general purpose processors and ASICs.
Also, emerging FPGA-based system-on-chip structures are ideally suited for implementa-
tion of modern system-on-chip designs. Devices such as Virtex II Pro include in one chip
general purpose processors for control and non-critical computations, programmable
logic for hardware acceleration of timing- and power-critical tasks, reasonably large mem-
ories for storage, multipliers for arithmetical and DSP applications, and high speed
transceivers for communication. These characteristics allow implementation of the en-
tire system on just one chip, increasing its speed and reliability, decreasing power dis-
sipation and eliminating costs and inefficiencies associated with multi-chip or general
purpose processor implementation.

All of the above reasons indicate large potential and quickly growing importance of
the FPGA technology and motivate intensive research in the areas associated with FPGA-
based system design. In particular, much of the research effort is invested to deliver high-

10 1. INTRODUCTION

quality, easy to use design tools capable of producing efficient FPGA implementation.

1.3 FPGA design flow

In the previous section, we pointed out that the availability of cheap and easy to use de-
sign tools is one of the key factors to FPGA success. These tools enable description of the
system in a high level language or in a graphical form and automatically perform synthe-
sis of the circuit with the described behavior. The typical synthesis flow is presented in
Fig. 1.5.

The input to a typical FPGA synthesis tool is a specification of the system using one of
hardware (or system) description languages. The most popular method of description is by
means of a Hardware Description Language (HDL), such as Verilog [26] or VHDL [27]. In
these languages the system can be described by a mixed behavioral and structural model,
with algorithmic description of operation sequences, control decisions, I/O operations
etc.

Another form of behavior specification is a finite state machine (FSM), which describes
system in terms of states that the system can be in, transitions between the states trig-
gered by received input signals and the output values produced by the system based on
current state and input values. An FSM can be described in a tabular form by a state
transition table (STT), in a graphical form by a state transition graph (STG), or by an
appropriate HDL construct.

A lower-level system specification can also be provided by means of Register Transfer
Level (RTL) description. In RTL, designer specifies the system in terms of registers and
operations on data flowing between the registers. These operations can be specified as
abstract data operations, such as addition or multiplication, or the actual networks of
gates realizing the data transformation. The RTL description can be provided in HDL or
in graphical form as a circuit diagram.

Less popular specification options include formal description languages represented by
generalizations of FSMs, such as statecharts [21], Estelle [28], SDL [18] or Promela [24].
For these languages, separate tools may be provided that generate equivalent HDL or
netlist descriptions. The generated circuit description is then synthesized in the regular
flow.

The system specification expressed in one of the abovementioned forms is processed
by an appropriate compiler and converted to a network of combinational logic blocks and
finite state machines realizing the required behavior. To implement the FSM behavior,
the structure depicted in Fig. 1.6 is used. The current state of the machine is stored in
the register. Based on the current state and the inputs, the combinational logic block
computes output values and the next state of the machine, which is fed back to the reg-
ister. However, the states of an FSM are present in the original design as symbolic state
names. To be able to store the state in a binary register, binary vector (code) correspond-
ing to each of the machine’s states needs to be determined. This task is performed by
state assignment (or state encoding).

After state assignment, the entire system is described by an RTL-level netlist of reg-
isters and Boolean functions. (The functions that can be realized using dedicated logic
resources, such as multipliers or carry chains, are usually directly instantiated in the
original system description or in the RTL netlist by the design compiler and are not the

1.3. FPGA DESIGN FLOW 11

circuit diagramstate diagram

module X(a, b, o);
input a;

...

HDL

Device floorplan

Technology primitives

Device programming file

Optimized RTL netlist

RTL Netlist

body Xb for X;
state st0,st1;

trans

Finite State Machines + Combinational Logic

compilation

101100011001000100101111010

bitstream generation

state assignment

mapping

logic synthesis

place & route

Estelle, SDL, etc

Figure 1.5. FPGA synthesis flow

12 1. INTRODUCTION

combinational

logic

inputs outputs

present state next state

re
g
is
te
r

Figure 1.6. FSM implementation structure

subject of further optimization.) In the next step, logic synthesis processes the Boolean
functions to find their effective and efficient realization. Usually, logic synthesis will
only perform partial optimizations of the functions that are expected to result in efficient
implementation. The task of actual realization of the functions is in this approach de-
ferred to the technology mapping phase, where the simplified functions are realized by
logic blocks available in the target implementation platform (so called technology primi-
tives). In particular, in LUT-based FPGA, such as Virtex, the logic functions are mapped
to 4-input LUTs, multiplexors and gates available in a slice.

The result of technology mapping is a network of technology primitives. These prim-
itives are then assigned to particular slices within the target FPGA device and the in-
terconnection structure between the slices is determined. These processes are referred
to as placement and routing. They ultimately determine how particular logic resources
and interconnections within device need to be configured and result in so-called bitfile
or programming file that contains complete information necessary to program the target
device.

1.3.1 State assignment

The main subject of this thesis is the state assignment of finite state machines. Our
interest in the subject stems from the fact that the influence of state assignment on the
circuit realization goes far beyond simple association of state names and binary codes.

As depicted in Fig. 1.6, bits of the binary vector representing current state are used
both as inputs and outputs of the combinational logic component. Consequently, they
have crucial influence on the form of binary functions necessary to compute outputs and
next states. As a result, the complexity of the combinational component for different
encodings can differ dramatically. This is the reason why the topic has attracted attention
of researchers for the past forty years.

However, even though much effort has been invested, the problem of the optimal
state assignment is still far from being solved. The main reason is the complex depen-
dency between the choice of the state codes and the resulting Boolean functions. More-
over, even after the encoding is chosen and the combinational component is determined,
the main attributes of its circuit realization, such as area, speed, or power consumption
cannot be readily obtained. As illustrated by Fig. 1.5, the encoded machine is further
subjected to the combinational logic synthesis, technology mapping and placement and
routing, each of these steps applying complex heuristics to find optimum implementa-
tion. The state assignment method has no direct or easy way of predicting the result of

1.3. FPGA DESIGN FLOW 13

these operation and therefore the task of determining codes resulting in effective and
efficient implementation is extremely difficult.

The problem is further complicated by the feedback loop introduced by the state reg-
ister. The fact that state-code-bits are both inputs and outputs of the combinational com-
ponent implies that the consequences of choosing a particular state assignment need to
be considered both from the input and output point of view. The requirements resulting
from these two types of analysis may turn out to be conflicting and require intelligent
resolving.

Finally, the desired form of the combinational component strongly depends on the
target technology, as it is the implementation technology that ultimately determines
which functions can be efficiently realized. This fact limits applicability of the state as-
signment methods developed for previous technologies to the new ones.

Related research

The first attempts at algorithms of state assignment for computer program implemen-
tation date back to 1960s, when the implementation technology were diodes, transistors
and simple gates. Following the methods of human designers, formulated by Humphrey
[25] as the “rules for state code adjacency”, the algorithms proposed in [3][2][15] are based
on grouping together 1’s in the Karnaugh tables of the resulting binary output and next-
state functions, and in result on maximizing the size and minimizing the number of
product terms in the sum-of-product expressions describing the combinational part of
the FSM realization.

Even though the technology changed, the observations formulated by Humphrey be-
came foundation for the next generations of algorithms.

This was also the case with the family of algorithms based on symbolic minimization.
This novel idea implemented by de Micheli in KISS [13] in 1985 consists in performing
the logic minimization phase before the state encoding. The minimized functions could
be realized in PLA technology at the cost (in terms of circuit area) determined prior to en-
coding, assuming that the constructed code will satisfy all encoding constraints resulting
from the symbolic minimization phase. The state encoding problem is in this way re-
duced to satisfaction of the so called face or input constraints expressing certain relations
between the codes of some groups of states.

The method implemented in KISS has however several shortcomings. First of all,
in the symbolic minimization phase the binary next-state functions are assumed to have
disjoint on-sets. Thus, the next-state function minimization is not taken into account.
This aspect is especially apparent for counter FSMs, where minimized symbolic cover for
2p-state counter has 2p product terms, while the optimum is O(p2). Moreover, the FSM’s
feedback is not properly taken into account. Also the constraint satisfaction algorithm is
just a simple-minded, greedy search.

The idea corresponding to symbolic minimization (minimization of generalized im-
plicants) was even earlier pursued in [6]. However, the computational complexity of the
presented (admittedly, much more sophisticated) method made it impractical for FSMs
larger that 8 states.

In 1988, Jóźwiak published the method of maximal adjacencies, MAXAD, targeting
two-level logic implementations [30][31][33]. Although the method uses the “state code
adjacency” concept, it differs considerably from the previous methods based on this idea.

14 1. INTRODUCTION

Jóźwiak considers many sorts of adjacencies, performs a sophisticated adjacency analysis
and uses the results of the analysis in a sophisticated code construction performed in
the framework of an effective and efficient double-beam search algorithm. This resulted
in a state assignment tool that efficiently produced much better results than any other
method published at that time. Compared to KISS, the machines encoded by MAXAD

have realizations with on average 13% smaller PLA area and 28% smaller feedback area.

Some of the shortcomings of KISS are addressed in its successor— NOVA [74]. NOVA

takes more efficient and flexible approach to constraints satisfaction, representing it as
a graph embedding problem and solving in several, heuristic strategies producing supe-
rior results and offering quality/runtime trade-offs. Also the output encoding problem
is considered here, however in a marginal manner, subordinate to the KISS-like input
encoding. The best strategy of NOVA – iohybrid – produced results of comparable quality
to the results of the maximal adjacency method.

The output encoding problem is addressed in two dichotomy-basedmethods, DUET [11]
and DISA [61]. They represent constraints as dichotomies, thereby introducing uniform
representation of encoding and constraints. The problem of the encoding constraint
satisfaction is transformed in this way to the problem of the compatible dichotomies
merging. The resulting merged dichotomies define unambiguously certain encoding,
which satisfies all the constraints represented by the component dichotomies.

All of the above symbolic minimization-based methods assume two-level PLA imple-
mentation of the functions resulting from the state encoding. This assumption drives
the symbolic minimization, which aims at generation of minimum-cardinality symbolic
cover – a reasonably good approximation of the optimal FSM realization, especially for
input-dominated FSMs. They differ from each other in the level of detail in constraint
consideration and in constraint satisfaction method.

Unfortunately, no approximation as good as term number for two-level implemen-
tation has been discovered for any sort of multi-level logic (except for multiplexor net-
works). The possibility of realizing multiple trade-offs and, in particular, the characteris-
tics of the new multi-level implementation platforms greatly complicate construction of
good cost functions, which hinders quality estimation of the constructed code. For these
reasons, symbolic minimization is difficult to realize in the multi-level domain (one of
the few attempts was taken in MIS-MV [55]). Instead, most encoding methods for the
multi-level implementations settle for crude predictions of the operations of subsequent
logic synthesis steps, and attempt to create such an encoding, which produces output
functions “easy” for a certain multi-level combinational logic minimizer targeting a par-
ticular implementation technology.

One of the earliest multi-level state assignment methods, MUSTANG [14], falls into
this category. Designed to work with MIS logic synthesis system, it attempts to maximize
the number and size of the common (sub-)cubes in expressions describing the output
functions. These common (sub-)cubes will make it easier for MIS to realize its objective
of minimizing the number of literals. The common cube maximization is realized in
the process of adjacent code assignment to some selected pairs of states. The selection
of the pairs, interestingly, is guided by rules similar to those of Humphrey. Two other
well knowmethods, JEDI [57] and MUSE [16], closely follow the concepts implemented in
MUSTANG, with additional improvements introduced by elements of simulated anneal-
ing and consideration of Boolean (as opposed to algebraic) operations in common-cube
extraction. Since codes produced by MAXAD also result from cumulation of adjacencies,

1.3. FPGA DESIGN FLOW 15

it belongs to the same class of methods and produces comparable results for multi-level
circuits.

A different approach is taken in MIS-MV [55]. It follows in the footsteps of KISS and
applies symbolic minimization to the multi-level realizations. MIS-MV is actually not
a state encoding method, but a multi-level logic minimizer able to handle multivalued
variables. It is therefore able to minimize the combinational component of FSM before
the actual state encoding, when the state variable is still in its symbolic, multivalued
form. Symbolically minimized function is then encoded with a simple algorithm based
on simulated annealing, guided by the number of literals as its cost function.

Some of the interesting alternative approaches to state encoding include genetic algo-
rithms [1][10]. These methods, however, suffer from the fact that basic genetic algorithms
are known to poorly handle the problems with complicated and time consuming quality
function [46]. It is apparent in the run-times of the tools, which exceed in some, even
small, cases those of the classical algorithms by a factor of 100. An interesting direction
relevant to some implementation technologies pointed in [10] is, however, the simultane-
ous encoding and selection of the types of flip-flops used to store state variables (D or J/K
type). In some cases, the choice of J/K flip-flops (which are known to require less compli-
cated excitation functions) reduced the combinational component of the FSM realization
by as much as 80%.

The challenges introduced by the multi-level implementations were further deepened
with the advent of FPGA devices. The characteristics of FPGAs invalidate estimations of
the implementation cost of the Boolean functions by the number of terms or literals. Till
now, little has been done in the field of sequential synthesis targeting FPGA implementa-
tions. Notable exceptions are the programs LAX [69] – a BDD-based tool for multiplexor-
based FPGA architectures and MINISUP [56] – a tool for reducing input support of the
binary functions implemented in LUT-FPGAs.

A totally different view at the state encoding problem is presented in the algebraic
structure theory of sequential machines due to Hartmanis and Stearns [22]. The theory
utilizes the concepts of partitions and set systems to model the FSM’s information struc-
ture, and trace dependencies between the information about the FSM’s states, inputs and
outputs. Observation of these dependencies gives some hints related to the direction, in
which the encoding of the states should follow to reduce the dependecies of the next-state
and output functions from the state and input variables. This approach seems to be espe-
cially interesting in the case of LUT-FPGAs, where reducing dependencies satisfies two
important goals of reducing the functions’ input supports and interconnections.

However, the hints of Hartmanis and Stearns were limited to only some special im-
plementation structures of sequential machines (parallel and serial decomposition), re-
quired extensive computations (computation of SP-partitions and partition pairs) and
were not formulated into any method or algorithm. Moreover, although Hartmanis and
Stearns understood that partitions and set systems model information, they did not dis-
cover any method of expressing what particular information is modeled, and therefore
they were unable to characterize and measure the modeled information and the relation-
ships between the modeled information stream.

Therefore, Jóźwiak formulated the theory and methodology of general decomposi-
tion [35] that give the most general known generator of correct sequential and combina-
tional circuit structures, and explained how to use the generator for the (near-)optimal
circuit construction. To enable effective and efficient circuit construction, Jóźwiak pro-

16 1. INTRODUCTION

posed the notion of elementary information [36] that enables precise characterization of
information as modeled, for instance, by set systems and partitions, and using this no-
tion formulated the theory of information relationships and relationship measures [36].
The apparatus of information relationships and relationship measures enables analysis
and measurement of the modeled information and relationships between information
streams in a given discrete function, relation or sequential machine, as well as in the
circuit under construction. The information delivered by the apparatus of information
relationships and measures can be used to control the circuit generator of general de-
composition in order to construct only the most promising circuit structures and arrive
at some (near-)optimal circuits. In this way, information relationships and measures
make operational the theory of partitions and set systems of Hartmanis and Stearns and
its extensions. In particular, it enables construction of effective and efficient decomposi-
tion and encoding algorithms based on this theory and its extensions.

Some applications of the algebraic structure theory (without its extensions) to FSM
decomposition or encoding were also considered by some other authors (see a.o. [4, 63,
72, 76]).

1.4 General decomposition

Our approach to state assignment is based on a special case of general decomposition
of finite state machines. Decomposition is a natural method of handling complex prob-
lems. It consists in splitting a complex problem into smaller, interrelated subproblems
and solving each of the subproblems separately. General decomposition of finite state
machines is a theory developed by Jóźwiak that deals with realization of the behavior of
large FSMs by networks of interconnected, smaller FSMs operating in parallel (so called
partial machines). In [35] Jóźwiak published theorem fundamental to this theory that
established conditions for valid decomposition of completely specified, deterministic fi-
nite state machines. The theorem describes decomposition by partitions – mathematical
constructs with well-defined operations. This enables efficient manipulation of the de-
composition structures in the domain of partitions, while preserving the behavior of the
decomposed finite state machine.

The theorem considers general decomposition structure presented in Fig. 1.7, where
the partial machines are fed input information processed by some primary input decoder,
their interconnections are realized by means of connection modules and their output is
combined by the output encoder block to produce the output of the network. The entire
network, when considered from the point of view of primary inputs and outputs behaves
identically as the FSM being realized.

The general decomposition theory of completely specified FSMs was later extended
by Jóźwiak and the author of this dissertation to the case of incompletely specified FSMs
and their multi-state realizations [48]. This extension accounts for incompletely specified
output function (output don’t-cares) as well as for the incompletely specified state tran-
sition function (non-determinism) for both original machine and the partial machines.
Multi-state realization (see also Definition 3.15) allows the modeling of decomposition
networks having multiple states corresponding to a single state of the original machine.
This way, the extended theory covers all finite state machines and a much wider range of
their decompositions that include not only identical, but also compatible behavior realiza-

1.4. GENERAL DECOMPOSITION 17

realized machine

o
u
tp
u
t
en

co
d
er

p
ri
m
ar
y
in
p
u
ts

in
p
u
t
d
ec
o
d
er

p
ri
m
ar
y
o
u
tp
u
ts

connectionmodules
partial machines

Figure 1.7. General decomposition

tions. The extended theory is presented and used in this thesis.

In a separate work [36], Jóźwiak showed correspondence between the partitions used
to describe the decomposition structure and information flowing within the structure.
That work introduces the apparatus of Information Relationships and Measures (IRM)
that enables analysis of information in a system and in particular:

• analysis of the information flows (where and how particular information is pro-
duced, and where and how it is consumed)

• analysis of the relationships (similarity, difference) between various information
channels

• quantitative analysis of the information flows and their relationships (quantity, im-
portance of information)

General decomposition theorem and IRM together form the basis for construction of
effective and efficient decomposition methods and tools, with decomposition theory pro-
viding engine for creating correct-by-construction realization structures and IRM provid-
ing measures to guide the construction process towards the most efficient realizations.

One particular special case of general decomposition is functional decomposition.
It deals with state machines having a single state and trivial state behavior, i.e. with
combinational functions. In this approach, a large combinational function is realized by
a network of smaller subfunctions. Functional decomposition has been successfully used
among others for logic synthesis for FPGA platforms [41].

However, the applications of general decomposition are not limited to circuit synthe-
sis. It can be used in analysis and decomposition of any discrete, binary, multi-value or
symbolic system in many fields of modern engineering and science. Known applications

18 1. INTRODUCTION

include pattern analysis, knowledge discovery, machine learning, neural network train-
ing, decision systems, databases, encryption, compression, encoding etc. The particular
suitability of decomposition-based methods to all these fields stems from the fact that, as
the name suggests, general decomposition does not make any prior assumptions about
the form of the network or the partial machines (or functions). Therefore, it allows the
discovery of any “natural” structure that best realizes the required behavior. This is in
contrast to many current methods popular in particular in logic synthesis. Most of these
methods are devoted to some very special cases of possible implementation structures in-
volving someminimal functionally complete systems of logic gates (e.g. AND+OR+NOT,
NAND, AND+EXOR, etc.). This is particularly unsuitable for implementation technolo-
gies such as FPGAs, where the constraints on the network do not involve the kind of the
logic functions (LUT in FPGA is capable of realizing any function of a limited number of
inputs), but rather their structural characteristics, such as number of inputs and outputs
(LUT is a 4-input, 1-output universal gate), or number and length of interconnections.

In this thesis, we present extension of the General Decomposition Theorem to the
case of incompletely specified, non-deterministic finite state machines with multi-state
behavior realization. This extends the field of realization structures covered by GDT to
include all valid implementations, not only strictly equivalent to the original specification,
but all compatible with the original description. The extension allows to handle not only
simple machines and functions, but also incompletely specified, multi-valued machines
and relations, widening even further applicability of the theory to other fields of science
and engineering.

In particular, we formulate the state assignment problem as a special case of general
decomposition. Based on this formulation, we use set systems to describe state assign-
ment of an FSM and, based on General Decomposition Theorem, we derive conditions
for the encoding to be valid. These conditions give rise to a general state assignment
method that is capable of not only identifying valid encodings, but also performing im-
plicit machine simplification (e.g. implicit minimization of the number of states) in the
encoding process, using freedom and redundancy present in specification. However,
while the general method describes mechanics of the encoding construction process,
it does not prescribe the decisions necessary to steer the construction process towards
efficient implementation. These decisions require heuristics reflecting the particular en-
coding objectives. We implemented such heuristics for the case of FSM targeting im-
plementation in FPGA. These heuristics basically consist in confronting the information
streams in a particular FSM with the constraints imposed by the FPGA technology and
the optimization objectives. The analysis of the information streams and their relation-
ships is facilitated by the apparatus of information relationships and measures. The
software tool implementing these heuristics and experimental results obtained with this
tool are also discussed in this thesis.

1.5 Research aims and thesis overview

1.5.1 Motivation

Programmable logic fills the flexibility, performance, power dissipation, and develop-
ment and fabrication cost gap between the application specific integrated circuits and
standard (general purpose) programmable micro-processors. During the last decade it

1.5. RESEARCH AIMS AND THESIS OVERVIEW 19

became the mainstream implementation technology for custom computation and em-
bedded system products in such fields as telecommunication, networking, image pro-
cessing, video processing, multimedia, DSP, cryptography, embedded control etc. To
efficiently develop, implement and use the systems based on programmable logic, ade-
quate computer-aided support tools are necessary. Since most such systems are imple-
mented using the look-up table (LUT) FPGAs, the circuit synthesis tools targeting this
technology are of primary importance for their effective and efficient implementation.

However, the new set of characteristics and constraints imposed by themodern FPGA
technology is not properly addressed by the available synthesis tools. These characteris-
tics include the availability of multi-level networks of arbitrary functions limited by their
dimensions (maximum number of inputs and outputs) rather than specific functions
limited by their form (number of terms or literals), and the growing influence of in-
terconnections on all important circuit characteristics (speed, area, power dissipation,
etc.). To address these issues, a new family of synthesis methods based on the gen-
eral or functional decomposition has been recently proposed. The decompositional ap-
proach, and in particular the general decomposition approach proposed by Jóźwiak [35],
has the potential of directly building such complex multi-level networks of functions with
constrained number of inputs and/or outputs, and directly controlling the number and
length of interconnections. The combinational synthesis methods based on the general
decomposition significantly outperform other methods used in academic and commer-
cial tools, demonstrating the effectiveness of this approach [41]. While the problems of
combinational synthesis for reconfigurable platforms have received significant attention
of researchers, there is very little done in the field of sequential synthesis targeting FPGA
implementation.

Meanwhile, the sequential synthesis has a profound impact on the final implemen-
tation cost. In sequential synthesis, the symbolic description of the FSM functionality
is translated to a set of Boolean functions implementing this functionality. The form
of these functions determines all crucial characteristics of the system’s implementation,
such as area, delay and power dissipation. The importance of sequential synthesis is
paired with great difficulty of the problems involved. Decomposition and encoding of
FSMs are both well-known to be NP-hard problems, which makes the search for the
high-quality solutions only feasible through heuristic methods. These heuristic methods
are hindered by the complex evaluation criteria for particular solutions. The complex-
ity stems from the fact that the actual implementation cost of a given solution is not
known until the combinational synthesis and technology mapping were performed on
the particular Boolean network produced for the given solution. Significance of the FSM
decomposition and assignment problems and the lack of answers to them, especially in
relation to the FPGA technology, motivated us to perform the research in the field of
sequential synthesis of FSMs targeting FPGA implementation.

Recently, Jóźwiak proposed a new information-driven approach to circuit synthesis
and formulated two theories that support this approach:

• theory of general decomposition of discrete functions and sequential machines [35],
and

• theory of information relationships and information relationship measures [36, 37].

This way, a new theoretical and methodological framework has been established for anal-
ysis and synthesis of sequential and combinational logic networks. The framework con-

20 1. INTRODUCTION

sists of the information-driven approach to circuit synthesis, theory of general decom-
position, and the information modeling and analysis apparatus based on information
relationships and measures. The framework was successfully applied by Jóźwiak and his
collaborators to a variety of problems, including combinational synthesis [38, 41, 43, 44,
51, 52, 64, 65].

Encouraged by the success of the decompositional combinational synthesis methods
and the level of control provided by general decomposition over the vital characteristics
of the synthesized system, we decided to pursue the information-driven decompositional
approach to sequential synthesis.

1.5.2 Research overview

The main aims of this research can be sub-divided into:

1. analysis aims, including the aims related to:

• research field and problem analysis, and

• research result analysis, including experimental research

2. synthesis aims, including:

• theoretical

• methodological, and

• application-oriented

The main theoretical aim was to further analyze and adequately supplement the the-
ory related to the subject field, to obtain a more complete theoretical base for this and
further research in FSM decomposition and encoding.

This aim has been successfully realized. The main result is related to the theory
of general decomposition of sequential machines. The central point of this theory is a
constructive theorem on the existence of a general decomposition. This theorem provides
a generator of correct by construction circuit structures. Originally it was formulated by
Jóźwiak for the case of deterministic (completely specified) sequential machines with
single-state behavior realization [35]. At the start of this research, Jóźwiak proposed the
outline of the extended version of the theorem to account for the sequential machines
with incompletely specified output function and transition function (nondeterministic)
and their multi-state realizations and outlined the proof of the extended theorem. The
final version of the extended general decomposition theorem and its complete proof have
been constructed together by the author and Jóźwiak as a part of the research reported in
this thesis.

The main methodological aim, being the central aim of this research, was to develop
an effective and efficient FSM state assignment method for the decompositional state
assignment, based on the information-driven approach to circuit synthesis, theory of
general decomposition, and theory of information relationships and measures. The as-
sociated primary application-oriented aim was the implementation of the method in the
form of an EDA software tool and their testing.

These aims have been fully realized. Based on the outline of the FSM state assign-
ment method proposed by Jóźwiak, I developed and implemented in a prototype software

1.5. RESEARCH AIMS AND THESIS OVERVIEW 21

tool a complete effective and efficient FSM state assignment method, including its par-
ticular data structures and algorithms.

The primary analytical aim of the research was to analyze the characteristics of the
modern FPGA devices and how these characteristics are addressed by the available state
assignment methods. The methods used in commercial FPGA synthesis tools were of
particular interest.

To this end, I reviewed the available FPGA product families and their features. I also
analyzed the results of state assignment with various academic tools and the methods
used in commercial synthesis software. In particular, the applicability of one-hot encod-
ing prevalent in commercial tools was a subject of investigation. While I found one-hot
encoding in most cases inadequate for FPGA implementation, some of the cases where
it does produce efficient realizations led to the development of a method reported in this
thesis that automatically identifies good candidate FSMs for one-hot encoding.

Another analytical aim was to support the development of the information-driven
decompositional state assignment method with experimental research and analysis of its
results. Within this scope, we were particularly interested in interactions between our
state assignment method and the combinational synthesis methods that were used to
synthesize the encoded FSMs.

This aim was realized by evaluating the synthesis results of a large number of FSMs
encoded with the proposed state assignment method. I analyzed the synthesis results
both after combinational synthesis of the encoded machines and after placement and
routing of the synthesized circuit in the actual FPGA device. To further support this aim,
we developed together with L. Jóźwiak and D. Gawlowski sequential benchmark genera-
tor BENGEN [42] that enabled efficient generation of various sorts of well-characterized
FSM benchmarks and this way facilitated the analysis of effectiveness and robustness of
the proposed method on a wide spectrum of FSMs. The results of this analysis were used
to improve the effectiveness of the state assignment method, and to finally characterize
and evaluate the method.

1.5.3 Thesis overview

In the remainder of this thesis we will discuss the results of the research. We will present
the extensions we introduced to the existing general decomposition theory of completely
specified FSMs to account for non-determinism, incompletely specified output functions
and multi-state behavior realization. The extensions are introduced in the new formu-
lation of General Decomposition Theorem, which we present along with the proof. The
extended General Decomposition Theorem constitutes the most general known genera-
tor of correct decompositional circuit structures. It covers all other specific decomposi-
tion structures, such as parallel or serial decomposition, as well as the decomposition of
discrete functions and relations, as special cases [35]. The theorem explicitly treats infor-
mation flows within the decomposed machine or function and thus supports the novel,
information-driven approach to decomposition.

We will then show the correspondence between the state assignment and decom-
position, and how we used this correspondence to derive the conditions for valid state
assignment from the General Decomposition Theorem. These conditions are more gen-
eral and flexible than conditions used in other state assignment methods, and thus allow
the encoding method to search in a larger solution space. They form the basis of a gen-

22 1. INTRODUCTION

eral, implementation-platform-independent encoding method that constructs encoding
by merging the variables of the specific initial encoding. Thanks to the flexible formula-
tion of the validity conditions, the method enables implicit optimizations of the encoded
machine during the encoding process in a manner unexplored by other methods.

Further, we will analyze the FPGA characteristics that influence the implementation
efficiency of sequential circuits and, based on this analysis, we will propose novel heuris-
tics for state assignment. These heuristics exploit the information modeling apparatus
used in formulation of the General Decomposition Theorem and analysis apparatus of
information relationships and measures to perform analysis and optimization of the in-
formation flows within the encoded machine during the encoding. We implemented
these heuristics in the software tool SECODE, which we will discuss in some detail.

Finally, we will present and discuss the results of the experimental research we per-
formed using the newly developed state assignment tool and some of the other popular
state assignment methods. We will show that the FSM implementations resulting from
the encoding process performed with SECODE are smaller and faster than those resulting
from other encodings.

In the presented research, we considered the important and difficult problems of
decomposition and state assignment of FSMs for the emerging, FPGA-based reconfig-
urable system implementation platforms. We extended the underlying theory and ap-
plied it to develop the novel state assignment method, which outperforms the currently
used methods. The experimental research of the developed theory, method and prototype
software tool demonstrates the effectiveness of the information-driven approach to circuit
synthesis, and shows that they form a solid base for further theoretical and experimental
research in this field.

1.5.4 Thesis outline

The presentation of the research is organized in the following manner.

In Chapter 2, we introduce the necessary theoretical background related to Boolean
functions, finite state machines and information modeling and analysis. Based on this
background, we will present in Chapter 3 the theory of general decomposition. To better
introduce the complex notions of decomposition, we will first present and illustrate with
an example the General Decomposition Theorem proven in [35] for the case of completely
specified FSMs. Then, we will discuss modifications to the theorem necessary to account
for incompletely specified output and next-state functions and multi-state behavior real-
ization. Finally, we will prove and illustrate with another example the extended General
Decomposition Theorem for incompletely specified FSMs with multi-state behavior real-
ization.

In Chapter 4, we will show the correspondence between state assignment and de-
composition of an FSM. This correspondence will allow us to derive from the General
Decomposition Theorem the conditions for a valid state assignment that form the basis
of a general, implementation-platform-independent encoding method. While the gen-
eral encoding method presented in Chapter 4 provides mechanics of constructing a valid
state assignment, it does not introduce any implementation-platform-dependent knowl-
edge necessary to construct an encoding that will result in efficient implementation of
the FSM on the target platform. In Chapter 5, we will present heuristics guiding the
general state assignment method towards encodings that result in efficient FPGA imple-

1.5. RESEARCH AIMS AND THESIS OVERVIEW 23

mentation of the FSM, and the software tool SECODE implementing these heuristics.
The results of the experiments with SECODE will be discussed in Chapter 6. We will

conclude with the summary of the research results and recommendations for future work
in Chapter 7.

24 1. INTRODUCTION

Chapter 2

Preliminaries

Digital circuits can be classified, with respect to their behavior, into two main classes:
combinational and sequential. In combinational circuits, the output of the circuit de-
pends only on the current value of the inputs. The functionality of a combinational cir-
cuit can be described by Boolean functions of its outputs. In the sequential circuits, the
output depends not only on the current inputs but also on the history of execution, rep-
resented by the current state of the circuit. The current state is stored in some memory
elements and influences the output of the circuit as well as the next state. The function-
ality of a sequential circuit can be described by a Finite State Machine (FSM).

Both Boolean functions and Finite State Machines can be modeled as information
processing systems that require some input information, possibly use some internal state
information (FSMs) and from combination of these two sources produce the output in-
formation. The analysis of the information and information flows in FSMs is the basis
of the state assignment method presented in this thesis. To model the information, we
use constructs called covers and to analyze the relationships and characteristics of the
information modeled by covers, we use information relationships and measures.

In this chapter we will introduce basic notions related to Boolean functions, Finite
State Machines and information modeling and analysis with covers and information re-
lationships and measures.

2.1 Boolean functions

Definition 2.1 (Completely specified Boolean function). Completely specified Boolean func-
tion of n variables is a mapping Bn → B, where B = {0, 1}.

Definition 2.2 (Incompletely specified Boolean function). Incompletely specified Boolean
function of n variables is a mapping Bn → B∗, where B∗ = {0, 1,−} and “−” stands for
“don’t care” and indicates any of the values 0 or 1.

Boolean variables will be denoted in the following by lowercase letters (e.g. a). A negated
Boolean variable is denoted by a and represents completely specified (c.s.) Boolean func-
tion ¬a. A literal is a variable or its negation (a or a). A cube is a set of literals that
represents c.s. Boolean function being the product of the literals (e.g. cube {a, b, c} rep-
resents function a ∧ b ∧ ¬c, also denoted abc). A sum-of-products (SOP) expression is

25

26 2. PRELIMINARIES

a set of cubes representing c.s. function corresponding to the disjunction of the cubes’
functions (e.g. {{a, b, c}, {d}} is a SOP corresponding to function a ∧ b ∧ ¬c ∨ ¬d, or
abc+d). A truth table is a table listing values of a Boolean function for some input combi-
nations. For the input combinations not explicitly listed in the truth table, the don’t-care
(“−”) value is assumed.

The above notions can be extended to discrete multiple-valued (symbolic) functions
and relations. This is partially done in Chapter 3, when considering the general decom-
position of FSMs, as discrete functions are a special case of FSMs.

2.2 Finite State Machines

Definition 2.3 (Completely specified finite state machine (FSM) – Mealy type).
Completely specified Mealy-type finite state machine M is an algebraic system defined by:
M = {I, S, O, δ, λ}

Where:
I – a finite set of inputs
S – a finite non-empty set of internal states
O – a finite set of outputs
δ – the next-state function δ : S × I → S
λ – the output function λ : S × I → O

Definition 2.4 (Completely specified finite state machine (FSM) – Moore type).
Completely specified Moore-type finite state machine M is an algebraic system defined by:
M = {I, S, O, δ, λ}

Where:
I – a finite set of inputs
S – a finite non-empty set of internal states
O – a finite set of outputs
δ – the next-state function δ : S × I → S
λ – the output function λ : S → O

The two types of Finite State Machines differ in the method of producing output. In
the Moore FSM, output is produced “in the state”, i.e. the output depends exclusively
on the current state of the machine. A Mealy FSM, on the other hand, produces outputs
“on the transition”, i.e. the output depends not only on the current state, but also on
the current input and is produced concurrently with computation of the next state. The
schematic structures of both types of FSMs are presented in Fig.2.1.

For any Moore machine there exists a Mealy machine with equivalent output behav-
ior and vice versa, which makes both types equally expressive in terms of functionality.
Also, when abstracting from the above described difference in the output timing and the
related physical implementation consequences, Moore machine can be considered as a
special case of Mealy machine. Therefore, theory and methods developed for Mealy ma-
chines will be also applicable toMoore machines (in some cases after small modifications
related to the difference in output computation timing). For this reason in the following
we will focus on the Mealy-type machines, and by FSM we will mean Mealy-type FSM,
unless explicitly stated otherwise.

2.2. FINITE STATE MACHINES 27

One of the forms of the specification of a finite state machine is a State Transi-
tion Table (STT). The table consists of rows (transitions), each transition in the form
(x, s, δ(s, x), λ(s, x)), i.e. it consists of the input value, current state of the machine, the
next state of the machine for this input/current state combination and the output of the
machine for this input/current state combination. This specification can be easily trans-
formed into corresponding State Transition Graph (STG) representation. In STG, nodes
represent states of the machine and directed edges represent transitions. A transition
edge connects a state with its next state and is labeled with the input combination that
triggers this transition and the output value produced by the FSM in these input/current
state conditions.

Ex. 2.2.1. Consider for example the State Transition Table in Fig. 2.2(a). It describes a (Mealy)
Finite State Machine with one binary input, three states a, b and c, and two binary outputs.
The first row of the STT specifies that when the FSM is in state a and the input is 0, the machine
moves to state c and produces output 00. The corresponding STG is shown in Fig. 2.2(b). The
first transition is reflected by the edge from state a to c labeled with input combination 0 and
the produced output value 00.

st
at
e

δ

λ

current state next state

outputs

clock

inputs

(a) Mealy

st
at
e

δ

λ

current state next state

outputs

clock

inputs

(b) Moore

Figure 2.1. Finite State Machine types

in ps ns out
0 a c 00
1 a a 01
0 b c 11
1 b b 01
0 c a 10
1 c b 10

(a) State Transition Table

b

1 / 01

a

1 / 01

c

0 / 00

0 / 110 / 10

1 / 10

(b) State Transition Graph

Figure 2.2. Completely specified sequential machine

28 2. PRELIMINARIES

Definition 2.5 (Incompletely specified sequential machine). Incompletely specified sequen-
tial machine M is an algebraic system defined by: M = {I, S, O, δ, λ}

Where:
I – a finite set of inputs
S – a finite non-empty set of internal states
O – a finite set of outputs
δ – the next-state function δ : S × I → 2S

λ – the output function λ : S × I → 2O

In incompletely specified sequential machines next-state and output functions incorpo-
rate generalized don’t-cares – for each input/state combination they return a subset (a
choice) of values from state (output) alphabet. “Traditional” don’t-cares (“–”) are a spe-
cial case of the generalized don’t-cares, because “–” represents a whole set of states (for
next-state don’t-care) or output values (for output don’t-care). Thus, Def. 2.5 covers the
traditional definition of an incompletely specified sequential machine as its special case.
This definition covers also nondeterministic FSMs, which are defined as FSMs having
transition function that for a given input and current state combination may return mul-
tiple next states.

in ps ns out
0 a b, c 00, 11
1 a a 01
0 b a, c 11
1 b b 01
0 c a 10, 01
1 c b 10, 01, 11

Figure 2.3. Incompletely specified sequential machine

Ex. 2.2.2. Consider the STT in Fig 2.3. Transition 1 specifies a move from state a under input
of 0 to either b or c, producing output 00 or 11.

When performing any operations or modifications of an FSM, it is usually necessary
to ascertain that the behavior of the modified FSM does not change. For this purpose
a concept of behavior realization is introduced that indicates that the modified FSM still
has the same behavior as the original machine. There exist two notions of behavior
realization for FSMs: output behavior realization and state behavior realization.

Output behavior realization means that for any sequence of inputs values, the se-
quences of output values are identical. The following definition states that property for-
mally and relaxes the requirement for identical or isomorphic sequences to allow for
equivalent sequences, which introduces mapping functions between the input/output al-
phabets of the original machine and its equivalent realization.

Since a single state of the realization machine M′ is used here to represent a certain
state of the specification machine M, such realizations are called single-state realizations.

Definition 2.6 (Single-state output behavior realization of completely specified FSM).
Completely specified machine M′(I ′, S′, O′, δ′, λ′) is an output behavior realization of c.s.

2.2. FINITE STATE MACHINES 29

machine M(I, S, O, δ, λ) if and only if functions: Ψ : I → I ′, Φ : S → S′, Θ : O′ → O
exist, such that

∀s ∈ S ∀x ∈ I δ′
(

Φ(s), Ψ(x)
)

= Φ
(

δ(s, x)
)

∧ Θ
(

λ′
(

Φ(s), Ψ(x)
)

)

= λ(s, x)

For many applications, only output behavior of the FSM is relevant, and the inter-
nal state behavior is never apparent to, or used by, the environment. However, in some
cases the current state of the machine may be used outside it. Then, the concept of the
state behavior realization is necessary that requires that the current state of the modi-
fied machine unambiguously identifies the state of the original machine (possibly, after
renaming).

Definition 2.7 (Single-state output and state realization of completely specified FSM).
Completely specified machine M′(I ′, S′, O′, δ′, λ′) is an output and state behavior realization
of c.s. machine M(I, S, O, δ, λ) if and only if functions: Ψ : I → I ′, Φ′ : S′ → S, Θ : O′ →
O exist, such that

∀s′ ∈ S′ ∀x ∈ I Φ′
(

δ′
(

s′, Ψ(x)
)

)

= δ
(

Φ′(s′), x
)

∧Θ
(

λ′
(

s′, Ψ(x)
)

)

= λ(Φ′(s′), x)

For the case of incompletely specified FSMs, the above requirements for behavior
realization can be further relaxed to allow for the realization machine to use some of the
implementation freedom allowed for by the original FSM’s don’t-cares. In particular, in
given state/input conditions the next state and output of the realization machine does not
have to be exactly equivalent to the next state and output of the specification machine. It
is sufficient if they are compatible, i.e. belong to a subset of the next-states and output
of the specification machine. Also, a single state of a specification machine M can be
in general represented by multiple states of a corresponding implementation machine.
As a result of the above considerations, the conditions of the behavior realization can be
relaxed to check for compatibility (i.e. inclusion) of next-states and outputs instead of
equivalence (i.e. equality).

Definition 2.8 (Output behavior realization of incompletely specified FSM). Incompletely
specified machine Mr(Ir , Sr, Or, δr, λr) is an output behavior realization of i.s. machine
M(I, S, O, δ, λ) if and only if functions: Ψ : I → Ir, Φ : 2S → 2Sr , Θ : 2Or → 2O exist,
such that

∀s ∈ S ∀x ∈ I δr

(

Φ(s), Ψ(x)
)

⊆ Φ
(

δ(s, x)
)

∧ Θ
(

λr

(

Φ(s), Ψ(x)
)

)

⊆ λ(s, x)

If Mr is an output behavior realization of M then, for all possible input sequences, the
output sequences produced by imitation Mr after renaming them are subsets of the
output sequences of M.

Definition 2.9 (Output and state realization of incompletely specified FSM). Incompletely
specified machineMr(Ir , Sr, Or, δr, λr) is an output and state behavior realization of i.s. ma-
chine M(I, S, O, δ, λ) if and only if functions: Ψ : I → Ir, Φr : 2Sr → 2S , Θ : 2Or → 2O

exist, such that

∀sr ∈ Sr ∀x ∈ I Φr

(

δr

(

sr, Ψ(x)
)

)

⊆ δ
(

Φr(sr), x
)

∧Θ
(

λr

(

sr, Ψ(x)
)

)

⊆ λ(Φr(sr), x)

30 2. PRELIMINARIES

Given a specification machine M and a machine M′ realizing its output and/or state
behavior, themachine compatible with the original can be built by adding input / output /
state mapping functions to the realization machine. Such structure is referred to as
realization structure of M.

Definition 2.10 (Realization structure). The sequential machine composed as a structure con-
sisting of Ψ, M′ and Θ (and Φ′ for state behavior realization) is referred to as the realization
structure for M defined by M′ and denoted as str(M′)

Schematic representation of the realization structure for output and state and output
behavior realization is presented in Fig. 2.4.

M
′ ΘΨ

Φ

OI I′ O′

2S′

S

(a) Output realization

M
′ ΘΨ

Φ′

OI I′ O′

2S′

S

(b) Output and state realization

Figure 2.4. FSM behavior realization structures

2.3 Covers

The concepts of covers, set systems and partitions are central to the information analysis
apparatus used extensively in this thesis. They are used as representation of informa-
tion in the modeled circuits. These concepts were used under various names by various
researchers, e.g. in [7, 8, 23]. Below, we present the nomenclature introduced in [48].

Definition 2.11 (Cover). Cover φS on S is defined as

φS =
{

Bi|Bi ⊆ S ∧
⋃

i

Bi = S
}

Cover is any set of subsets of S covering S.

Ex. 2.3.1. For set S = {1 . . . 5} φ1
S = {1; 12; 23; 45; 45} is a cover, but φ2

S = {1; 12; 45; 45}
is not.

Definition 2.12 (Unique-block cover). Unique-block cover φS on S is defined as

φS =
{

Bi|Bi ⊆ S ∧
⋃

i

Bi = S ∧ i 6= j ⇒ Bi 6= Bj

}

Unique-block cover is a cover with no identical blocks.

Ex. 2.3.2. φ1
S from Example 2.3.1 is not a unique-block cover, but φ3

S = {1; 12; 23; 45} is.

2.3. COVERS 31

Definition 2.13 (Set system). Set system φS on S is defined as

φS =
{

Bi|Bi ⊆ S ∧
⋃

i

Bi = S ∧ i 6= j ⇒ Bi * Bj

}

Set system is a unique-block cover with no blocks entirely included in others.

Ex. 2.3.3. φ3
S from Example 2.3.2 is not a set system, but φ4

S = {12; 23; 45} is.

Definition 2.14 (Partition). Partition πS on S is defined as

πS =
{

Bi|Bi ⊆ S ∧
⋃

i

Bi = S ∧ i 6= j ⇒ Bi ∩ Bj = ∅
}

Partition is a set system with non-overlapping blocks.

Ex. 2.3.4. φ4
S from Example 2.3.3 is not a partition, but φ5

S = {12; 3; 45} is.

For a given s ∈ S the set of blocks of cover containing s is denoted as [s]φ. Similarly,
[S]φ for S ⊆ S is the set of blocks containing all of the elements s ∈ S ([S]φ =
⋂

s∈S [s]φ).

Definition 2.15 (Partition product). A product of partitions π1
S and π2

S is a partition πS such
that:

πS = {Bi | ∃B1 ∈ π1
S∃B2 ∈ π2

S : Bi = B1 ∩ B2 ∧ i 6= j ⇒ Bi ∩ Bj = ∅}

Ex. 2.3.5. {1, 2; 3, 4, 5} · {1, 5; 2; 3, 4} = {1; 2; 3, 4; 5}

Definition 2.16 (Unique-block cover product). A product of unique-block covers φ1
S and φ2

S

is a unique-block cover φS such that:

φS = {Bi | ∃B1 ∈ φ1
S∃B2 ∈ φ2

S : Bi = B1 ∩ B2 ∧ i 6= j ⇒ Bi 6= Bj}

Ex. 2.3.6. {1, 2; 1, 2, 3; 4, 5} · {1, 3; 2, 3, 4, 5} = {1; 2; 1, 3; 2, 3; 4, 5}

Covers are multiplied by intersecting their blocks and removing blocks included in
other blocks (for set systems) or identical blocks (for unique-block covers).

Definition 2.17 (Cover sum). A sum of covers φ1
S and φ2

S is a partition πS such that [s]πS =
[t]πS if and only if a sequence s0 = s, s1, . . . , sn = t, si ∈ S exists where either [si]φ

1
S ∩

[si+1]φ
1
S 6= ∅ or [si]φ

2
S ∩ [si+1]φ

2
S 6= ∅.

Ex. 2.3.7. {1, 2; 2, 3; 4; 5} + {1; 2; 3; 4, 5} = {1, 2, 3; 4, 5}

A sum of covers is formed by merging blocks that have any element in common.

Definition 2.18 (Cover relation ≤). φ1 ≤ φ2 ⇐⇒ ∀B1 ∈ φ1∃B2 ∈ φ2 : B1 ⊆ B2

Ex. 2.3.8. {1, 2, 3; 1, 3; 4; 5} ≤ {1, 2, 3; 1, 2; 4, 5} but for φ1 = {1, 2, 3; 1, 3; 4; 5} and φ2 =
{1, 2; 3; 4, 5} neither φ1 ≤ φ2 nor φ2 ≤ φ1

32 2. PRELIMINARIES

Definition 2.19 (Zero-cover). A zero-cover is a partition πS(0) such that

πS(0) = {Bi | |Bi| = 1 ∧
⋃

i

Bi = S}

A zero-cover puts each element of S in a separate block.

Definition 2.20 (One-cover). A one-cover is a partition πS(1) = {S}.

A one-cover is a cover with all elements in one block.
Note that for any φS on any S the following equalities hold:

φS + φS(0) = φS

φS + φS(1) = φS(1)

φS ∗ φS(0) = φS(0)

φS ∗ φS(1) = φS

Definition 2.21 (Induced cover). φA×B = indA
A×B(φA) = {X × B|X ∈ φA}

φA×B is a cover on A × B induced by φA if it keeps all pairs of A × B involving the
elements of A placed in the same block of φA in one block.

Ex. 2.3.9. For A = {a, b, c, d}, B = {0, 1} and φA = {a, b; b; c, d}, indA
A×B(φA) =

{(a, 0)(a, 1)(b, 0)(b, 1); (b, 0)(b, 1); (c, 0)(c, 1)(d, 0)(d, 1)}

2.3.1 Dichotomies

For the special case of two-block set system, a useful shorthand notation can be intro-
duced in the form of dichotomy.

Definition 2.22 (Unordered dichotomy). An unordered dichotomy on S is a set of two dis-
joint subsets of S.

Note that the union of blocks of a dichotomy does not necessarily cover S, what is
required for a cover. However, a dichotomy can be transformed into a valid set system
in a straightforward manner by placing the missing symbols in both blocks. Thus, a
dichotomy can be treated as a compact notation of a two-block set system. As we will show
in the following, two-block set systems play major role in modeling binary information
and the introduction of dichotomies and their associated operations simplifies analysis
and manipulation of the information without any loss of generality.

In some applications, such as state assignment, it is necessary to establish an ordering
of the dichotomy’s blocks, and associate a number (0 or 1) with each of the blocks.

Definition 2.23 (Ordered dichotomy). An ordered dichotomy on S is an ordered pair of two
disjoint subsets of S. The first subset is referred to as left- or zero-block, while the second is a
right- or one-block.

In the following, we will mostly deal with unordered dichotomies and refer to them
in short as dichotomies. For the compactness of notation and where appropriate, we
will denote an unordered dichotomy d = {P ; Q} as P/Q and an ordered dichotomy
e = (P, Q) as P//Q.

2.3. COVERS 33

Ex. 2.3.10. Consider set S = {1, . . . , 5} and a set system φS = {1, 2, 3; 3, 4, 5} on S. An
unordered dichotomy corresponding to φS can be created by removing the repeated symbols (3)
from both blocks. The resulting dichotomy is d = {{1, 2}; {4, 5}} = 12/45. The dichotomy d
has two ordered versions: e = ({1, 2}, {4, 5}) = 12//45 and f = ({4, 5}, {1, 2}) = 45//12.

Definition 2.24 (Unordered dichotomy compatibility). Two unordered dichotomies d1 =
{P1; Q1} and d2 = {P2, Q2} are compatible (denoted as d1 ∼ d2) iff P1 ∩ Q2 = ∅ ∧
Q1 ∩ P2 = ∅ (direct compatibility, denoted ∼+) or P1 ∩ P2 = ∅ ∧ Q1 ∩ Q2 = ∅ (inverse
compatibility, denoted∼−)

Definition 2.25 (Ordered dichotomy compatibility). Two ordered dichotomies d1 = (P1, Q1)
and d2 = (P2, Q2) are compatible (denoted as d1 ∼ d2) iff P1 ∩ Q2 = ∅ ∧ Q1 ∩ P2 = ∅

Note that while unordered dichotomies can be compatible either in direct or inverse
form, ordered dichotomies can only be compatible in direct form.

For two compatible ordered or unordered dichotomies we define the operation of
merging with as result a dichotomy with the blocks being the union of the corresponding
blocks of the component dichotomies.

Definition 2.26 (Dichotomy merging operator ∗).

d1 = {P1; Q1} ∧ d2 = {P2; Q2} ∧ d1 ∼+ d2 ⇒ d1 ∗+ d2 = {P1 ∪ P2; Q1 ∪ Q2}

(direct merging of unordered dichotomies)

d1 = {P1; Q1} ∧ d2 = {P2; Q2} ∧ d1 ∼− d2 ⇒ d1 ∗− d2 = {P1 ∪ Q2; Q1 ∪ P2}

(inverse merging of unordered dichotomies)

d1 = (P1; Q1) ∧ d2 = (P2; Q2) ∧ d1 ∼ d2 ⇒ d1 ∗ d2 = (P1 ∪ P2, Q1 ∪ Q2)

(merging of ordered dichotomies)

The covering relation indicates the fact that the blocks of one dichotomy are subsets
of the blocks of the other dichotomy

Definition 2.27 (Dichotomy covering relation ⊆).

For d1 = {P1; Q1}, d2 = {P2; Q2}
(

d1 ⊆ d2 ⇐⇒ P1 ⊆ P2 ∧ Q1 ⊆ Q2 ∨

∨ P1 ⊆ Q2 ∧ Q1 ⊆ P2

)

For d1 = (P1, Q1), d2 = (P2, Q2)
(

d1 ⊆ d2 ⇐⇒ P1 ⊆ P2 ∧ Q1 ⊆ Q2

)

Ex. 2.3.11. Consider S = {1 . . . 6} and unordered dichotomies d1 = 12/45, d2 = 3/4, d3 =
3/6. d1 and d2 are directly compatible, so they can be directly merged and form d12 = d1 ∗+

d2 = 123/45. d1 and d2 are not inversely compatible, since the second block of d1 and the
second block of d2 share an element (4). d1 and d3 are both directly and inversely compatible,
so they can be merged and form d13 = d1 ∗+ d3 = 123/456 or d31 = d1 ∗− d3 = 126/345.
Also, ordered dichotomies e1 = 12//45 and e2 = 3//6 are compatible and can be merged to
form e12 = e1 ∗ e2 = 123//456.

34 2. PRELIMINARIES

2.4 Information analysis

In the recent years, a number of promising approaches to problems in diverse fields have
been proposed that are based on the analysis and manipulation of information. These
approaches use set systems (also named blankets or rough sets by some authors) to model
information in applications in many fields of modern engineering and science, includ-
ing logic and architecture synthesis for VLSI systems [32, 34–37, 39–41, 47, 49, 50, 66, 67]
pattern analysis, knowledge discovery, machine learning, neural network training, deci-
sion systems, data bases, encryption, compaction, encoding etc. [9, 19, 58–60, 68, 70, 73].

The work in information modeling with partitions and set systems was initiated by
Hartmanis and Stearns who used partitions and set systems for the analysis of algebraic
structure of finite state machines [23], and applied the analysis results to reason about
special decompositions (i.e. parallel and serial) and state assignment of FSMs. Although
the work of Hartmanis and many authors following him was based on intuitive under-
standing that set systems model some information present in the considered system, it
lacked a precise apparatus for expressing what information is actually modeled and for
analysis of the modeled information streams and their relationships. This problem was
alleviated with the introduction of Information Relationships and Measures (IRM) by
Jóźwiak [36].

The IRM framework introduces a concept of elementary information item or atom. Us-
ing this concept, it is possible to analyze any information flowing or used within the
modeled system as a collection of atomic information items from a certain set of elemen-
tary information items. The representation of information as a set enables the application
of the set-theoretical operators and methods to reason about relations and attributes of
different information flows. In particular, IRM apparatus facilitates the following aspects
of system analysis:

• analysis of the information flows — where and how a particular information is
produced, and where and how it is consumed,

• analysis of the relationships (similarity, difference) between various information
flows,

• introduction of the quantitative flavor (quantity, importance, weight) to characterize
the analyzed information flows and their relationships.

The IRM apparatus forms the basis for much of the work presented in this thesis. In
the remainder of this section we will therefore introduce basic notions of the information
modeling and analysis. We illustrate these notions with the examples from the domain
of this thesis, i.e. the synthesis of digital circuits. Note, however, that the apparatus is
very general and can be used for analysis of any systems involving discrete functions,
relations or finite state machines.

2.4.1 Information model

Elementary information

As discussed in the introduction, the behavior and structure of digital circuits are com-
monly specified using high-level (hardware) description languages. Despite different

2.4. INFORMATION ANALYSIS 35

form and syntax, various high-level language specifications of digital circuits and their
compiled versions represent some networks of discrete functions, relations or sequential
machines. Discrete functions, relations and sequential machines define some mappings
between elements of some finite discrete sets (e.g. inputs, states, outputs). Let us use the
term symbol to designate an element of such a set.

For instance, in the case of a finite state machine, the current conditions of the ma-
chine are determined by the values of the primary inputs and the present state of the
machine. Therefore, we can interpret an FSM as an information processing system that
combines partial information about the conditions delivered by its primary inputs with
the information delivered by the current state variable to obtain the full information about
the conditions. Then, FSM uses that combined information to determine the next state
and the primary output. In this interpretation, introduced by Jóźwiak in [35], FSM pro-
cesses information about “condition-symbols”, where each symbol is associated with a
separate input/current-state condition. Consider, for example, the FSM in Fig. 2.5. It has
two binary primary inputs, three states and a single binary primary output. In the figure,
we associated with each of the seven input/current-state combinations a symbol from a
set S = {0 . . .6}.

To model the information about the symbols delivered by different sources (primary
inputs and current state), we use the definition of information formulated in the Infor-
mation Relationships and Measures apparatus. In the IRM interpretation, information
about symbols pertains to the ability to distinguish certain symbols from other symbols.
From this formulation follows the definition of an elementary information item as a sim-
plest possible distinction between two particular symbols.

Definition 2.28 (Elementary information). An elementary information describes the ability
to distinguish a certain single symbol si from another single symbol sj (si, sj ∈ S and si 6= sj).

Consider, for instance, information about symbols from S delivered by the first pri-
mary input x1 of the FSM in Fig. 2.5. The fact that the variable has different values for
the conditions 0 and 1 means that the variable is able to distinguish condition 0 from
1 and, therefore, the information delivered by this variable will contain the elementary
distinction 0|1. This fact means that, knowing that the current condition is either 0 or 1,
the variable x1 is capable of indicating which of the two it is. Note that this is different
from saying that the variable is capable of indicating whether the current condition is 0.
This would require distinguishing condition 0 from all other conditions, not just 1, and
would be described by a set of elementary information items {0|1; 0|2; 0|3; 0|4; 0|5; 0|6}.

S x1x2 p n y1

0 0− s0 s1 0
1 1− s0 s2 1
2 00 s1 s0 0
3 1− s1 s2 1
4 −1 s1 s2 1
5 −0 s2 s1 0
6 −1 s2 s2 1

Figure 2.5. Example finite state machine

36 2. PRELIMINARIES

Analyzing the values of x1 for the remaining conditions (symbols of S), we conclude
that the two values of x1 allow to distinguish between the following symbols: 0|1, 0|3,
1|2 and 2|3. Since the value of x1 for condition 4 is don’t-care, which indicates 0 and
1, the variable is incapable of distinguishing 4 from any other condition. The set of
atomic distinctions realized by variable x1 is called an information set of x1 (denoted
IS(x1) = {0|1, 0|3, 1|2, 2|3}) and it models the entire information about the symbols
delivered by this variable.

Definition 2.29 (Information set). A given (partial) discrete information about a set of sym-
bols S can be represented by an information set IS defined on S × S as follows: IS =
{{si, sj}|si is distinguished from sj by the given information }.

In an analogous way, the concept of abstraction was introduced in [36] that expresses
the inability of the given information to distinguish between symbols. The elementary
item of abstraction is defined as follows.

Definition 2.30 (Elementary abstraction). An elementary abstraction describes the inability
to distinguish a certain single symbol si from another single symbol sj (si, sj ∈ S and si 6= sj).

The total abstraction associated with the given information stream can be described
by an abstraction set.

Definition 2.31 (Abstraction set). An abstraction on a set of symbols S corresponding to a
given (partial) information can be represented by an abstraction set AS defined on S × S as
follows: AS = {{si, sj}|si is not distinguished from sj by the given information }.

Note that for a given information stream, the information and abstraction sets are
complementary and their union is S × S. Therefore, information set unambiguously
identifies the abstraction set and vice versa.

Set systems

Another alternative of expressing abstraction and, by extension, the corresponding in-
formation is to identify blocks of symbols that are not distinguished by the modeled
information. In our example, the variable x1 through its two values 0 and 1 induces two
compatibility classes on the symbols: B0 = {0, 2, 4, 5, 6} and B1 = {1, 3, 4, 5, 6}. x1 has
value 0(1) for each symbol in class B0(B1) (don’t-care “−” means: 0 and 1). Thus, vari-
able x1 is not able to distinguish between symbols 0, 2, 4, 5 and 6, because they belong
to the same compatibility class. The set of compatibility classes associated with all values
of a variable forms a set system that models the information delivered by the variable. In
this case, the set system is φS(x1) = {0, 2, 4, 5, 6; 1, 3, 4, 5, 6}.

There exist operations of conversion between a set system representing given infor-
mation and the corresponding information set, and vice versa. Since the sets of distin-
guishable symbols and non-distinguishable symbols are complementary, to convert a set
system to an information set, it is sufficient to list all pairs of symbols that are not placed
together in any block of the set system. Conversely, to find a set system corresponding
to an information set, one needs to start with a single block containing all symbols and,
for all distinctions in IS, split all blocks containing both symbols of the considered dis-
tinction into two copies, each of the copies with one of the symbols removed. In this
process, some of the blocks may become a subsets of other blocks, and they need to

2.4. INFORMATION ANALYSIS 37

be removed. For instance, if we list all 21 pairs of 7 symbols in S, we can verify that
only the four pairs of symbols present in IS(x1) are not placed together in any of the
two blocks of φS(x1). To perform the reverse mapping, we start with a set system con-
taining single block φ1

S = {0, 1, 2, 3, 4, 5, 6}. Then, we take the first distinction from
IS(x1), 0|1 and split the single block of φ1

S into two copies — one of the without 0,

the other without 1. Thus, the set system becomes φ2
S = {0, 2, 3, 4, 5, 6; 1, 2, 3, 4, 5, 6}.

Further, we split the first block containing both symbols of the next distinction, 0|3,
and obtain φ3

S = {0, 2, 4, 5, 6; 2, 3, 4, 5, 6; 1, 2, 3, 4, 5, 6}. Since the second block of φ3
S

is entirely included in the third block, it is removed and the set system becomes φ3
S =

{0, 2, 4, 5, 6; 1, 2, 3, 4, 5, 6} For the distinction 1|2, the second block is split into 1, 3, 4, 5, 6
and 2, 3, 4, 5, 6 resulting in φ4

S = {0, 2, 4, 5, 6; 2, 3, 4, 5, 6; 1, 3, 4, 5, 6}. Finally, the dis-

tinction 2|3 splits the second block into 2, 4, 5, 6, which is covered by the first block, and
3, 4, 5, 6, which is covered by the third block, and thus the set system φS = {0, 2, 4, 5, 6;
1, 3, 4, 5, 6} corresponding to IS(x1) is constructed.

While the procedure described above generates a unique set system for any infor-
mation set, in general there are multiple set system representations for the same infor-
mation set. Consider, for instance two set systems on S = {1 . . .5}: φ1

S = {123, 45}

and φ2
S = {12, 23, 13, 45}. For both set systems, the corresponding information set is

IS = {1|4, 1|5, 2|4, 2|5, 3|4, 3|5}. The issue of multiple set system representation was
discussed in depth in [75]. It was shown there that for any information set there exists
a canonical set system representation that is unique. The blocks of canonical set system
have to be the maximal compatibility classes of symbols. In the above example, φ1

S is the
canonical representation of IS, while φ2

S is not, because the three first blocks of φ2
S can

be merged to a larger compatibility class 123. Note, however, that the conversion proce-
dure described above will always create a canonical set system, as it only separates the
symbols that cannot be in the same block, and therefore it implicitly preserves maximal
compatibility classes of symbols.

At this point we note the two special set systems, zero-cover and one-cover (see
Def. 2.19 and 2.20). We recall that zero-cover is in fact a partition with all symbols in
separate blocks. Its corresponding information set contains therefore all distinctions of
its symbols, and in this way models full information about the symbols. This situation
corresponds to the modeled variable having separate value for each of the symbols. On
the other end of the spectrum is one-cover, which contains all symbols in one block and,
therefore, corresponds to an empty information set. It represents the variable with don’t-
cares (or the same, single value) for all symbols and therefore, it does not deliver any
information. Note that the initial cover in the construction of a cover corresponding to
a given information set is a one-cover, so there are no distinctions represented. In the
following construction steps, the covers represent information sets with one additional
distinction, until all required distinctions are represented.

The above notions, illustrated with the examples of binary variables, also hold for the
multi-valued variables. In any case, each value of a variable defines a single block of a
set system representing the information associated with this variable. In this block, all
symbols associated with this value of the variable are placed. For instance, the present-
state variable p of the FSM in Fig. 2.5, induced through its three values three blocks of
symbols: 0, 1 (for value s0), 2, 3, 4(s1) and 5, 6(s2). Thus, the set system associated with
p is φS(p) = {0, 1; 2, 3, 4; 5, 6}. As illustrated above, the information set corresponding
to φS(p) can be determined by listing all symbol pairs not placed together in a block

38 2. PRELIMINARIES

of φS(p). This results in IS(p) = {0|2, 0|3, 0|4, 0|5, 0|6, 1|2, 1|3, 1|4, 1|5, 1|6, 2|5, 2|6,
3|5, 3|6, 4|5, 4|6}.

While the distinctions relating to the input variables are interpreted as information
delivered by the variables, the distinctions relating to the output variables can be inter-
preted as the information required to compute the given output. Take, for instance, the
output y1 of the FSM in Fig. 2.5. Its set system is φy1

= {0, 2, 5; 1, 3, 4, 6}, and the infor-
mation set is IS(φy1

) = {0|1, 0|3, 0|4, 0|6, 1|2, 1|5, 2|3, 2|4, 2|6, 3|5, 4|5, 5|6}. Clearly, to
be able to decide whether the output is 0 or 1, the FSM needs to know whether the cur-
rent condition corresponds to one of the symbols {0, 2, 5} or {1, 3, 4, 6}. This requires
the information items contained in IS(φy1

). On the other hand, the output variable
can be viewed as an input to the “user” of the FSM, and thus considered to deliver its
information to the environment.

To summarize, the corresponding set systems and information sets for all (primary
and state) inputs and outputs of the finite state machine shown in Fig. 2.5 are as follows:

φx1
= {0, 2, 4, 5, 6; 1, 3, 4, 5, 6}, φx2

= {0, 1, 2, 3, 5; 0, 1, 3, 4, 6},

φp = {0, 1; 2, 3, 4; 5, 6}, φn = {2; 0, 5; 1, 3, 4, 6}, φy1
= {0, 2, 5; 1, 3, 4, 6},

IS(φx1
) = {0|1, 0|3, 1|2, 2|3}, IS(φx2

) = {2|4, 2|6, 4|5, 5|6},

IS(φp) = {0|2, 0|3, 0|4, 0|5, 0|6, 1|2, 1|3, 1|4, 1|5, 1|6, 2|5, 2|6, 3|5, 3|6, 4|5, 4|6},

IS(φn) = {0|1, 0|2, 0|3, 0|4, 0|6, 1|2, 1|5, 2|3, 2|4, 2|5, 2|6, 3|5, 4|5, 5|6},

IS(φy1
) = {0|1, 0|3, 0|4, 0|6, 1|2, 1|5, 2|3, 2|4, 2|6, 3|5, 4|5, 5|6}

Information-related set system operations

From the point of view of information manipulation, there are two important set sys-
tem operations: multiplication of set systems (Def. 2.16) and smaller-or-equal relation
(Def. 2.18).

The multiplication of set systems corresponds in the information set domain to the
sum of information modeled by the set systems. In this way, it is a very useful opera-
tion that allows combining information delivered by multiple information streams. For
instance, the total information delivered by the two set systems φ1

S = {12, 234} and

φ2
S = {134, 23} is described by the product set system φS = φ1

S · φ2
S = {1; 23; 34}. This

is reflected by the fact that IS(φS) = IS(φ1
S) ∪ IS(φ2

S). An important result proven
in [75] shows that multiplication preserves canonicity of set systems. Therefore, informa-
tion streams can be combined with the multiplication operation preserving unambiguity
of information representation.

The smaller-or-equal relationship between two set systems implies that the information
set corresponding to the smaller set system is a superset of the information set of the
larger set system. In other words, the smaller set system provides more information.
This is a direct consequence of the fact that a smaller set system has smaller blocks, and
therefore provides less abstraction and more information. Consider, for instance, two
set systems on S = {1 . . . 4}: φ1

S = {12, 34} and φ2
S = {1, 2, 34} with information sets

IS(φ1
S) = {1|3, 1|4, 2|3, 2|4} and IS(φ2

S) = {1|2, 1|3, 1|4, 2|3, 2|4}Clearly, φ2
S ≤ φ1

S and

2.4. INFORMATION ANALYSIS 39

IS(φ2
S) ⊇ IS(φ1

S). This is because the two blocks 1 and 2 of φ2
S that are included in the

block 12 of φ1
S allow to distinguish symbol 1 from 2 that are indistinguishable by φ1

S .

Note that smaller-or-equal relationship implies information set inclusion, but is not
equivalent to it. I.e. it is a sufficient but not necessary condition. This is caused by the
canonicity issues of the set system representation that were discussed in the previous
section. In particular, it may happen that two non-canonical set systems φ1

S and φ2
S have

identical information sets, while neither φ1
S ≤ φ2

S nor φ2
S ≤ φ1

S . This is, for instance, the

case for the following two set systems: φ1
S = {123, 45, 56, 46} and φ2

S = {12, 23, 13, 456}.
However, as shown in [75], if the set systems are canonical, the smaller-or-equal relation-
ship is both sufficient and necessary condition for the information set inclusion.

The concept of information set inclusion, and therefore of the smaller-or-equal set
system relation, is crucial to the analysis of information flows. In particular, given two
set systems φi

S and φo
S , if the information set of φi

S is a superset of the information set of
φo

S , it is possible to build a relation (or function) that has as input the information stream
φi

S and produces output information stream φo
S . If both set systems are canonical, this

requirement is equivalent to φi
S ≤ φo

S .
Let us illustrate the usage of multiplication and ≤ operator to the analysis of infor-

mation flows in a Boolean function network. Consider, for instance, the incompletely
specified Boolean function in Fig. 2.6(a). It has three inputs: a, b and c and output f .
In the figure, all the possible input combinations of the function were associated with
symbols from set S = {0 . . .7}. The information about input combination required to
compute the output f is given by set system φ(f) = {02367; 1345}. At the same time,
each of the inputs delivers a partial information about input combination given by the fol-
lowing set systems: φ(a) = {0123; 4567}, φ(b) = {0145; 2367} and φ(c) = {0246; 1357}.
The realization network for the function f is presented in Fig. 2.6(b). The network is
partially built with two sub-functions f1 and f2 already built and the third sub-function
f3 being constructed. The analysis of information flows will allow us to analyze how the
input information was filtered by f1 and f2; if the filtered information is sufficient to
construct the missing sub-function; and what function has to be realized by f3.

The input information available to f1 is a combination of information delivered
by inputs a and b. It is expressed by the input set system φin(f1) = φ(a) · φ(b) =
{01(00); 23(01); 45(10); 67(11)}. The values in parenthesis indicate what combination
of the variables a and b is associated with a particular block of the input set system. The

abc f S
000 0 0
001 1 1
010 0 2
011 − 3
100 1 4
101 1 5
110 0 6
111 0 7

(a)Example function

00 0
01 0
10 0
11 1

00 0
01 1
10 1
11 1

f1

f2

? f

φout(f2)c

a

b φout(f1)

f3

(b) Realization network

Figure 2.6. Example of information flow analysis

40 2. PRELIMINARIES

function f1 assigns one output value (0) to its input combinations 00, 01 and 10. For the
output set systems of function f1, φout(f1), it means that the function abstracts from
any distinction between these three situations, and therefore in the output set system the
three blocks of the input set system will be merged together. The fourth block of φin(f1)
is assigned a separate value 1 by f1, and therefore will be preserved in the output set
system. Thus, the output set system becomes φout(f1) = {012345(0); 67(1)}, with the
output value associated with each block given in parenthesis.

In an analogous manner, the input information of f2 is φin(f2) = φ(a) · φ(c) =
{02(00); 13(01); 46(10); 57(11)}. The function f2 abstracts from input combinations
01, 10 and 11 and therefore the output set system of f2 is φout(f2) = {02(0); 134567(1)}.

We can see that in both cases the input set systems are smaller than the output set
systems. It is a natural consequence of the fact that a function can only abstract from the
input information, i.e. assign same value to different input combinations, and therefore
the output set system is always a result of some merging of the blocks of the input set
system.

The input of f3 is formed by two information streams: first from f1, described by
φout(f1), and second from f2, described by φout(f2). The input information of f3 is
therefore φin(f3) = φout(f1) ·φout(f2) = {02(00); 1345(01); 67(11)}. To check whether
it is possible to build a function that will produce output f using this input information,
we just need to check the condition φin(f3) ≤ φ(f). In this case, we can see that the con-
dition is fulfilled. By merging the first and third block of φin(f3), a two-block set system
φ′(f) = {0267; 1345} is built that is smaller than φ(f), and therefore represents output
of function f with some don’t-cares filled. In this case, for input condition 3, which was
a don’t-care condition in f the value 1 was assigned, making f ′ a completely specified
realization of the incompletely specified function f . At the same time, the merging of
blocks of φin(f3) defines the function of the block f3. Since the blocks corresponding
to input combinations 00 and 11 were merged together to form the output set systems
φ′(f), the function f3 will have the same output value 0 for these two input combina-
tions. The second block of the input set system associated with input combination 01was
not modified in the output set system, and therefore the value of f3 for input 01 is 1. We
can see that the input combination 10 does not appear at all in the input set system, what
indicates that this is a don’t-care condition of f3, which can be used for minimization of
f3.

Dichotomies

As discussed in Section 2.3.1, dichotomies can be used as a short-hand notation for two-
block set systems and therefore can be used to model information delivered by binary
variables. Since a dichotomy is exactly equivalent to the corresponding canonical set
system, we can unambiguously associate the set system’s information set with the di-
chotomy.

Consider, for instance, the set system φ = {123; 2345}. The corresponding di-
chotomy d is created by removing repeating symbols from both blocks. Thus, d = 1/45.
The information set of d is equal to the information set of φ and is IS = {1|4, 1|5}. In
the case of dichotomies the information set can be derived even more easily by simply
enumerating all pairs that the symbols in the left block can form with the symbols in the
right block.

2.4. INFORMATION ANALYSIS 41

Since binary variables are prevalent in today’s implementations of digital systems, the
dichotomies as the information modeling tool for these variables are very useful. In par-
ticular, in this thesis we will show how dichotomies can be used to represent information
about states of a finite state machine delivered by binary encoding variables.

2.4.2 Information relationships and measures

Representation of information as an information set means that information relation-
ships between variables or set systems representing various information streams can
be analyzed by considering relationships between their corresponding information sets.
For instance, a question about common information delivered by two variables can be
answered by identifying the elementary distinctions present in the information sets of
both variables. The fact that information is composed of discrete atoms makes it also
possible to measure the amount of information as the number of atoms, or to associate
importance, or weight, to a particular information item.

In [36][37], an appropriate analysis apparatus is proposed that exploits these charac-
teristics: the theory of information relationships and measures. In particular, a number
of relationships between information streams is defined in [36][37] :

• common information CI (i.e. information that is present in both φ1 and φ2):
CI(φ1, φ2) = IS(φ1) ∩ IS(φ2)

• total (combined) information TI (i.e. information that is present in either φ1 or φ2):
TI(φ1, φ2) = IS(φ1) ∪ IS(φ2)

• missing information MI (i.e. information that is present in φ1 but missing in φ2):
MI(φ1, φ2) = IS(φ1) \ IS(φ2)

• extra information EI (i.e. information that is missing in φ1 but present in φ2):
EI(φ1, φ2) = IS(φ2) \ IS(φ1)

• different information DI
DI(φ1, φ2) = MI(φ1, φ2) ∪ EI(φ1, φ2)

Also for abstraction, a number of relationships is defined in [36] that describes common,
total, missing, extra and different abstraction.

Consider, for instance, the set systems on p. 38 modeling information flows in the
FSM in Fig. 2.5. The information delivered by the present state variable p is described by
the set system φp = {0, 1; 2, 3, 4; 5, 6} with the corresponding information set IS(φp) =
{0|2, 0|3, 0|4, 0|5, 0|6, 1|2, 1|3, 1|4, 1|5, 1|6, 2|5, 2|6, 3|5, 3|6, 4|5, 4|6}. The information re-
quired to calculate the next state variable n is modeled by the set system φn = {2; 0, 5;
1, 3, 4, 6} and the information set IS(φn) = {0|1, 0|2, 0|3, 0|4, 0|6, 1|2, 1|5, 2|3, 2|4, 2|5,
2|6, 3|5, 4|5, 5|6}. The common information CI(φn, φp), i.e. the information used by n
and delivered by p is determined by IS(φn)∩IS(φp) = {0|2, 0|3, 0|4, 0|6, 1|2, 1|5, 2|5, 2|6,
3|5, 4|5}. The information used by n but missing in p is described by MI(φn, φp) =
IS(φn) \ IS(φp) = {0|1, 2|3, 2|4, 5|6}. The extra information present on p but not used
by n is EI(φn, φp) = IS(φp) \ IS(φn) = {0|5, 1|3, 1|4, 3|6, 4|6}.

The strength of information or abstraction relationships can be measured in the sim-
plest manner by measuring the amount of common, total, etc. information (or abstrac-
tion), expressed as the number of information (or abstraction) items. This way, the fol-
lowing measures can be defined:

42 2. PRELIMINARIES

• information similarity ISIM(φ1, φ2) = |CI(φ1, φ2)|

• information difference IDIS(φ1, φ2) = |DI(φ1, φ2)|

• information decrease (loss) IDEC(φ1, φ2) = |MI(φ1, φ2)|

• information increase (growth) IINC(φ1, φ2) = |EI(φ1, φ2)|

• total information quantity TIQ(φ1, φ2) = |TI(φ1, φ2)|

For example, the information similarity of the above mentioned variables p and n can
be measured as |CI(φn, φp)| = 10, the information loss: |MI(φn, φp)| = 4 and the
information growth: |EI(φn, φp)| = 5.

In [36][37] some normalized and weighted measures are also defined, by associating
an appropriate importance weight w(si|sj) with each elementary information. The im-
portance of information may be, for instance, related to its availability, i.e. the number
of variables at which this information is present. Let o be a certain output variable, X be
a set of some input variables of o and ISS(X) be the set of information sets of variables
from X .

Definition 2.32 (Occurance multiplicity of elementary information). Occurrence multiplic-
ity m of an elementary information si|sj from IS(o) in ISS(X) is defined as follows:

m(si|sj)
∣

∣

∣

IS(o)
ISS(X) =

∑

x∈X

occ(si|sj)
∣

∣

∣

IS(o)
IS(x)

where:

occ(si|sj)
∣

∣

∣

IS(o)
IS(x) =

{

1 : if(si|sj) ∈ IS(o) ∩ IS(x)
0 : otherwise

If m(si|sj)
∣

∣

∣

IS(o)
ISS(X) = 1, si|sj required by o is provided by only a single variable from

X , then si|sj is called a unique information with respect to X . Unique information is of
primary importance. For instance, in the example FSM in Fig. 2.5, the distinction 2|4 is
necessary to compute the next-state variable n (2|4 ∈ IS(n)). We can see that this item
of information is only delivered by a single input variable x2 (2|4 ∈ IS(x2)). Therefore,

m(2|4)
∣

∣

∣

IS(n)
ISS(x1,x2,p) = 1

and 2|4 is an item of unique information.
The introduction of weights gives rise to the weighted information relationships mea-

sures, such as weighted information similarity measure:

WISIM(φ1, φ2) =
∑

si|sj∈CI(φ1,φ2)

w(si|sj)

These measures reflect not only how much information is common, or different in the
two information streams, but also how important the information is.

2.4. INFORMATION ANALYSIS 43

Analysis of information and information relationships enabled by IRM apparatus is
of primary importance for analysis and synthesis of digital information systems. In par-
ticular, knowing the required and delivered information, amount and importance of in-
formation, relationships between the information in different information streams, the
strength of these relationships, and combining this knowledge with the synthesis objec-
tives and constraints, one can effectively and efficiently make design decisions, i.e. de-
termine the structure of the required system in order to satisfy the given constraints and
optimize the given objectives. In this thesis we will demonstrate how IRM can be used to
analyze information flows in the encoded finite state machine and how the result of this
analysis can be used to guide the encoding process towards efficient implementation of
the machine.

44 2. PRELIMINARIES

Chapter 3

General Decomposition Theorem

The term compositionmeans the act or state of arrangement of parts into a proper relation
in order to form a whole (an aggregate). The term decomposition means the act or state
of disintegration or breakdown of a whole into a system of constituent parts (elements
or simpler aggregates). These two notions are very general and can be used in a lot of
various contexts. In particular, decomposition is one of the basic analysis and synthesis
concepts of complex systems. It consists in breaking down a complex system into a
network of less complex and relatively independent collaborating sub-systems that are
easier to analyze, comprehend, synthesize or implement, in such a way, that the original
system’s behavior is preserved.

In this chapter we will discuss the decomposition of finite state machines. Since a
discrete relation (function) can be considered as a special case of an FSM with single
state and trivial state-transition function, the results presented in this chapter also extend
to the decomposition of discrete functions and relations. In the context of sequential
machine analysis and synthesis, decomposition consists in representation of a given se-
quential machine as a composition of a number of collaborating partial machines that
together realize behavior of the given machine. As discussed in Section 1.4, the behavior
of the decomposed machine is realized by a network of partial machines with some inter-
connections between them, input encoder that distributes and encodes primary inputs of
the original FSM to the partial machines and the output decoder that decodes the outputs
of the partial machines to produce the primary output of the original FSM.

The central point of this chapter is a constructive theorem on the existence of general
decomposition of an incompletely specified FSM. This theorem describes the decomposi-
tion in terms of covers on the input, output and state alphabets of the decomposed FSM.
These covers model partial information about input, output and state of the decomposed
machine that is available to the partial machines in the decomposition network. The
theorem describes conditions under which the covers describe a valid decomposition.
If these conditions are met, it is possible to derive from the covers state transition ta-
bles of the partial machines as well as the rules to connect them and the input encoder
and output decoder functions. Thus, the theorem defines a generator of correct circuit
structures. For a given function or sequential machine, correct circuits that realize the
function/machine can be constructed by repetitive use of the generator or its special
cases.

45

46 3. GENERAL DECOMPOSITION THEOREM

The theorem presented in this chapter is an extension of the General Decomposition
Theorem for completely specified FSMs published by Jóźwiak in [35]. The extended the-
orem was formulated and proven by the author together with Jóźwiak and was originally
published and discussed in [48]. The extension allows modeling of FSMs with incom-
pletely specified output and next-state functions (i.e. non-determinism) and multi-state
behavior realization (i.e. multiple states of the realization network corresponding to a sin-
gle state of the realized machine). In this way it is the most general theorem describing
decompositions of any finite state machine and, as a special case, of any discrete func-
tion or relation. To introduce the complex notions involved in formulation of the general
case, we will start with the completely specified case and illustrate it with an example.
Building on that, we will show what modifications to the formulation of the theorem are
necessary to account for incompletely specified output and next-state functions and the
multi-state behavior realization. This will lead us to the final formulation of the General
Decomposition Theorem. Finally, we will present the proof of the extended theorem and
an example to illustrate its working.

3.1 Decomposition of completely specified FSM

3.1.1 General Decomposition Theorem

In the view of the General Decomposition Theorem, the realization network is a system
of information-processing sub-systems (partial machines). Each of these sub-systems re-
quires some input information and produces some output information. The conditions
stated in the General Decomposition Theorem in their essence require that the produced
output information can be legally derived from the input and/or state information. These
conditions are expressed in terms of partitions, set systems or covers modeling the in-
put, state and output information streams of the realized machine and of the partial ma-
chines. In the case of completely specified FSMs, it is possible to use partitions instead
of more general set systems or covers to model this information, as in the completely
specified machine the distinctions between symbols are “crisp”, i.e. the compatibility
between the symbols that is introduced by don’t-cares in specification is replaced with a
strictly defined equivalence. Later, we will see that introduction of the output and state
don’t-cares requires using covers rather than partitions for information modeling.

For the input and output information streams described by the partitions on the same
sets of symbols, the fact that the output information can be legally derived from the input
is described by the ≤ operator. As discussed in Section 2.4, the ≤ operator indicates that
the smaller partition has smaller blocks than the larger partition, and therefore delivers
more information. Hence, it is always possible to construct a function that, based on the
input information, will unambiguously produce the output information. Therefore, the
requirement of non-increasing output information can be expressed as πin

X ≤ πout
X .

The situation is more complicated when the information about one set symbols is
used to compute information about another set of symbols. Then, the ≤ operator is not
defined and a way to map between the sets of symbols is necessary. In the case of FSM,
the total input information to a machine is an information about the current state and the
primary input. Therefore, the input information can be described by a partition on the
Cartesian product of the state and input alphabets— S×I . The output information is the
information about the next state (modeled by a partition on S) and information about the

3.1. DECOMPOSITION OF COMPLETELY SPECIFIED FSM 47

primary output (modeled by a partition on O). To be able to determine whether the given
input information about S×I is sufficient to compute the given output information about
S or O, the concept of partition pair is introduced. A given partition πS×I on S× I forms
a pair with a given partition πS on S or πO on O if the input/state combinations placed in
one block on πS×I are mapped by δ and λ, respectively, to the a single block of πS and πO .
Therefore, the existence of partition pair means that knowing the input/state conditions
with the precision to a block of πS×I makes it possible to calculate the next state or
output information of a machine with the precision to a block of πS or πO , respectively.
In other words, it is possible to build a function that will map the blocks of πS×I to the
blocks of πS or πO , and thus the output information can be legally derived from the input
information.

Definition 3.1 (Block transition function).

δ : 2S×I → 2S and δ(D) = {s′ | δ(s, x) = s′ ∧ (s, x) ∈ D ∧ D ⊆ S × I}

Definition 3.2 (Block output function).

λ : 2S×I → 2O and λ(D) = {o | λ(s, x) = o ∧ (s, x) ∈ D ∧ D ⊆ S × I}

Definition 3.3 (S × I − S partition pair). (πS×I , πS) is a S × I − S partition pair iff

∀D ∈ πS×I∃B ∈ πS : δ(D) ⊆ B

Definition 3.4 (S × I − O partition pair). (πS×I , πO) is a S × I − O partition pair iff

∀D ∈ πS×I∃C ∈ πO : λ(D) ⊆ C

Ex. 3.1.1. Consider the state transition table in Figure 3.1. For D1 = {(a, 0)(b, 0)}, δ(D1) =
{δ(a, 0), δ(b, 0)} = {c} and λ(D1) = {λ(a, 0), λ(b, 0)} = {00, 11}.
For D2 = {(a, 1)(b, 1)(c, 0)(c, 1)}, δ(D2) = {a, b} and λ(D2) = {01, 10}. Therefore,
πS×I = {D1, D2} forms a S × I − S pair with πS = {a, b; c} and S × I − O pair with
πO = {00, 11; 01, 10}.

in ps ns out
0 a c 00
1 a a 01
0 b c 11
1 b b 01
0 c a 10
1 c b 10

Figure 3.1. Completely specified sequential machine

General decomposition consists of representation of a given sequential machine as a
composition of a number of collaborating partial machines that together realize behavior
of the given machine. The concept of general composition describes the system of partial
machines together with their interconnections.

48 3. GENERAL DECOMPOSITION THEOREM

Definition 3.5 (General composition of sequential machines). A general composition of n
sequential machines Mi, GC = ({Mi}, {Coni}) consists of the following objects:

1.
{

Mi = (I∗i , Si, Oi, δi, λi), I∗i = Ii × I ′i , 1 ≤ i ≤ n
}

, a set of sequential machines
referred to as component (partial) machines.

2.
{

Coni : ×Oj → I ′i , 1 ≤ i, j ≤ n
}

, a set of surjective functions referred to as connecting
rules of the component machines

M2

M1I1

I2

O1

O2

I′
1 Con2

Con1I′
2

I O

Figure 3.2. General composition of two component machines

Definition 3.6 (General full-decomposition). The machine str
(

({Mi}, {Coni})
)

is a gen-
eral full-decomposition of the machine M if and only if a general composition of Mi realizes
M

Let πi
I , πi

S and πi
S×I be partitions on M = (I, S, O, δ, λ) on I , S and S × I , re-

spectively. Let πij
S×I be a partition on S × I such that πi

S×I ≤ πij
S×I and π′

S×I
j =

∏

i=1...n πij
S×I . Let πS×I =

∏

i=1...n πi
S×I . Let πI

S×I
i
and πS

S×I
i
be partitions induced on

S × I by πi
I and πi

S , respectively. πI
S×I =

∏

i=1...n πI
S×I

i
and πS

S×I =
∏

i=1...n πS
S×I

i
.

Theorem 3.1 (General Decomposition Theorem for completely specified FSMs [35]). A se-
quential machine M = (I, S, O, δ, λ) has a general full decomposition with the output behav-
ior realization with n component machines if and only if n trinities of partitions (πi

I , π
i
S , πi

S×I)
exist, such that:

1. (πS
S×I

i
· πI

S×I
i
· π′

S×I
i, πi

S) is an S × I − S partition pair

2. πS
S×I

i
· πI

S×I
i
· π′

S×I
i ≤ πi

S×I

3. πS
S×I · πI

S×I ≤ π′
S×I

i

4. (πS×I , πO(0)) is an S × I − O partition pair

Additionally, if

5.
∏

i πi
S = πS(0)

is satisfied, then the state behavior will be realized too.

3.1. DECOMPOSITION OF COMPLETELY SPECIFIED FSM 49

A corresponding scheme of a general decomposition of M into n partial machines
Mi is presented in Figure 3.3. It involves n partial machines M1 through Mn. The state,
input and output alphabets of each of the machines are defined by their correspond-
ing partitions πi

S , π
i
I × π′

S×I
i, and πi

S×I , respectively. Each partial machine Mi using its
own state information (πi

S), its primary input information (πi
I) and information imported

from some other machines (π′
S×I

i), after combining all this information computes its
own next-state (πi

S) and output (πi
S×I) information, being a partial state and output in-

formation of the original specification machine M. The connections between machines
are realized by the connection blocks Coni. Each block Coni delivers to its correspond-
ing partial machine Mi the imported information extracted from the combined output
information of some other partial machines and represented by the partition π′

S×I
i. The

input information of each partial machine Mi (π
i
I) is extracted from the primary input

of the original specification machine M and appropriately encoded by the input encoder
block Ψ. The output decoder block Θ combines the output information of the partial
machines (product of πi

S×I) and translates it to the output of the specification machine
M.

In this context, the conditions of the General Decomposition Theorem can be inter-
preted as follows. The condition (1) demands that for any partial state machine, its next
state has to be unambiguously defined using only partial state/input information avail-
able to the machine. The condition (2) requires that this information is also sufficient
to compute the output of the partial machine. To guarantee that the imported informa-
tion can be produced in some partial machine, condition (3) demands that any imported

S1
= π1

S

O1
= π1

S×I

I1
= π1

I × π′

S×I
1

S2
= π2

S

O2
= π2

S×I

I2
= π2

I × π′

S×I
2

Con2

Ψ

pi0

pi1

pi2

pin

Con1

Θ

po0

po1

po2

pom

Sn
= πn

S

On
= πn

S×I

In
= πn

I × π′

S×I
n

Conn

M2

M1

π1

I

π2

I

π′

S×I
1

π′

S×I
2

π1

S×I

π2

S×I

πn
I

π′

S×I
nMn

πn
S×I

Figure 3.3. Scheme of a general decomposition of M into n partial machinesMi

50 3. GENERAL DECOMPOSITION THEOREM

PI1 PI2 PS NS PO1 PO2

00 s1 s1 00
01 s1 s4 11
10 s1 s4 11
11 s1 s3 11
00 s2 s1 11
01 s2 s4 01
10 s2 s4 01
11 s2 s3 11
00 s3 s2 00
01 s3 s4 11
10 s3 s4 11
11 s3 s3 11
00 s4 s1 00
01 s4 s4 01
10 s4 s4 01
11 s4 s3 11
00 s5 s5 00
01 s5 s4 11
10 s5 s4 11
11 s5 s3 11
00 s6 s5 11
01 s6 s4 01
10 s6 s4 01
11 s6 s3 11

Figure 3.4. STT of the specification machine M

information has to be less than the whole state/input information available in the net-
work. It eliminates the possibility of combinational loops and the usage of information
not present in the realization network. The realization of the correct output function
is guaranteed by the condition (4) that demands that the combined output of the par-
tial machines has to provide sufficient information to compute the primary output of
the realized machine. Finally, condition (5) requires that, for state behavior realization,
the combined current state of the partial machines unambiguously identifies the current
state of the realized machine.

For more detailed explanation and example of the general decomposition structure
see the following example.

3.1.2 Example

Let us consider a completely specified machine M = (I, S, O, δ, λ) given in Fig. 3.4. M
has input alphabet I = {00, 01, 10, 11}, state alphabet S = {s1, s2, s3, s4, s5, s6} and
output alphabet O = {00, 01, 10, 11}.

To explain Theorem 3.1 and its use for the construction of decompositional realiza-
tion structures of sequential machines, let us consider the decomposition of machine M
defined by two trinities of partitions: (π1

I , π1
S , π1

S×I) and (π2
I , π2

S , π2
S×I), where:

3.1. DECOMPOSITION OF COMPLETELY SPECIFIED FSM 51

π1
I = {00; 01, 10, 11} = {i1, i2}

π1
S = {s1, s2; s3, s4; s5, s6} = {a, b, c}

π1
S×I = {(s1, 00)(s2, 00)(s5, 00)(s6, 00); (s3, 00)(s4, 00);

(s1, 01)(s1, 10)(s1, 11)(s2, 01)(s2, 10)(s2, 11)(s3, 01)(s3, 10)(s3, 11) . . .

. . . (s4, 01)(s4, 10)(s4, 11)(s5, 01)(s5, 10)(s5, 11)(s6, 01)(s6, 10)(s6, 11)} =

= {o1, o2, o3}

π2
I = {00, 11; 01, 10} = {j1, j2}

π2
S = {s1, s3, s5; s2, s4, s6} = {x, y}

π2
S×I = {(s1, 00)(s1, 01)(s1, 10)(s1, 11)(s2, 11)(s3, 00)(s3, 01)(s3, 10)(s3, 11) . . .

. . . (s4, 00)(s4, 11)(s5, 00)(s5, 01)(s5, 10)(s5, 11)(s6, 11);

(s2, 00)(s2, 01)(s2, 10)(s4, 01)(s4, 10)(s6, 00)(s6, 01)(s6, 10)}

= {p1, p2}.

First, we will show that the two trinities (π1
I , π1

S , π1
S×I) and (π2

I , π2
S , π2

S×I) satisfy the
conditions of Theorem 3.1 and therefore they define a decomposition of M with two par-
tial machines M1 and M2, each based on a corresponding trinity. We will also demon-
strate how to construct the decompositional realization structure (see Fig. 3.3) for M
based on these two trinities. The structure is constructed in four steps. Firstly, we build
the input encoder block Ψ, which transforms information delivered by primary inputs
into a form suitable for partial machines. Secondly, state transition tables (STT) of partial
machines Mi are constructed. Then, the network of connections between the partial ma-
chines is determined (Coni functions). Finally, we construct the output decoder block Θ,
which transforms the output information of the partial machines into the primary output
of the specification machine.

Machine M computes its next state and output from information about its present
state S and input I . Thus, it computes two functions δ : S × I → S and λ : S × I →
O. For its computations M uses complete information about the S × I space. Partial
machines, on the other hand, use a partial information on the points in S × I space to
compute their own next state and output. The abovementioned partition describe this
partial information.

As discussed in Section 2.4, a partition models information stream that delivers in-
formation allowing to distinguish symbols placed in different blocks of the partition. The
partition describing information delivered by a given variable can be derived by putting
in one block all the symbols for which the value of the variable is the same. Thus, the
partition has as many blocks as there are values of the variable. Applying this method
in reverse, given a partition modeling given information stream, one can construct a
variable delivering the information modeled by the partition by creating a variable with
as many values as there are blocks in the partition and associating a single value of the
variable with all the symbols placed in a single block of the partition. For example, the
partial information about states modeled by π1

S can be delivered by a three-valued vari-
able, which assumes first value (e.g. a) for states s1 and s2, second value (b) for states s3

and s4 and the third value (c) for states s5 and s6.
Exploring the correspondence between partitions and variables, the input, state and

52 3. GENERAL DECOMPOSITION THEOREM

output variables of a partial machine Mi can be constructed using partitions πi
I , π

i
S and

πi
S×I , correspondingly.

Construction of the input encoderΨ

The construction of the input encoder is determined by the primary input information
required by the partial machines. This information is defined by the input partitions π1

I

and π2
I . For example, π1

I implies that the first partial machineM1 only needs information
about the primary input that allows one to distinguish input combination 00 from all the
other combinations. To supply this information, the input encoder Ψ needs to compute
values of a two-valued variable associated with π1

I , which will assume its first value (e.g.
i1) when the input is 00, and the second value (i2) for all the other input combinations.
The complete function table of the input encoder Ψ is given in Figure 3.5.

PI1 PI2 π1
I π2

I

0 0 i1 j1
0 1 i2 j2
1 0 i2 j2
1 1 i2 j1

Figure 3.5. Function table of input encoder Ψ

Construction of partial machines M1 and M2

Information available to partial machines. The partial information about the state and
input (S×I) of the specificationmachineM available to a partial machineMi is delivered
by a combination of three information sources: information about S× I derived from its

own state information (given by partition πS
S×I

i
on S × I induced by πi

S), information

about S× I derived from its own primary input information (given by partition πI
S×I

i
on

S × I induced by πi
I) and information imported from other partial machines (π′

S×I
i
).

The induced partitions can easily be determined according to Def. 2.21 from input

and state partitions πi
I and πi

S . For example, the block of πS
S×I

1
induced by the first block

(s1, s2)of π1
S will include all state/input combinations involving states s1 and s2, i.e.

(s1, 00)(s1, 01)(s1, 10)(s1, 11)(s2, 00)(s2, 01)(s2, 10)(s2, 11). This fact has a simple in-
terpretation: knowing only that the specification machine M is in either state s1 or
s2, we are not able to distinguish whether the current state/input situation is (s1, 00),
(s1, 01) . . . or (s2, 11). The induced partitions therefore are the following (the symbols
in parenthesis describe the values inducing a particular block) :

πS
S×I

1
= {(s1, 00)(s1, 01)(s1, 10)(s1, 11)(s2, 00)(s2, 01)(s2, 10)(s2, 11)(s1, s2);

(s3, 00)(s3, 01)(s3, 10)(s3, 11)(s4, 00)(s4, 01)(s4, 10)(s4, 11)(s3, s4);

(s5, 00)(s5, 01)(s5, 10)(s5, 11)(s6, 00)(s6, 01)(s6, 10)(s6, 11)(s5, s6)}

3.1. DECOMPOSITION OF COMPLETELY SPECIFIED FSM 53

πS
S×I

2
= {(s1, 00)(s1, 01)(s1, 10)(s1, 11)(s3, 00)(s3, 01)(s3, 10)(s3, 11) . . .

. . . (s5, 00)(s5, 01)(s5, 10)(s5, 11)(s1, s3, s5);

(s2, 00)(s2, 01)(s2, 10)(s2, 11)(s4, 00)(s4, 01)(s4, 10)(s4, 11) . . .

. . . (s6, 00)(s6, 01)(s6, 10)(s6, 11)(s2, s4, s6)}

πI
S×I

1
= {(s1, 00)(s2, 00)(s3, 00)(s4, 00)(s5, 00)(s6, 00)(00);

(s1, 01)(s1, 10)(s1, 11)(s2, 01)(s2, 10)(s2, 11)(s3, 01)(s3, 10)(s3, 11) . . .

. . . (s4, 01)(s4, 10)(s4, 11)(s5, 01)(s5, 10)(s5, 11)(s6, 01)(s6, 10)(s6, 11)

(01, 10, 11)}

πI
S×I

2
= {(s1, 00)(s1, 11)(s2, 00)(s2, 11)(s3, 00)(s3, 11)(s4, 00)(s4, 11) . . .

. . . (s5, 00)(s5, 11)(s6, 00)(s6, 11)(00, 11);

(s1, 01)(s1, 10)(s2, 01)(s2, 10)(s3, 01)(s3, 10)(s4, 01)(s4, 10) . . .

. . . (s5, 01)(s5, 10)(s6, 01)(s6, 10)(01, 10)}.

The theorem does not prescribe the method to derive the partitions describing the
information imported by particular partial machines from some other partial machines

(π′
S×I

i
). It only puts limits on these partitions. The upper bound of the information

that can be imported by a particular machine Mi is all the information available for

importing, i.e. all information produced by the other machines (π′
S×I

i =
∏

j πji
S×I ,

where πji
S×I describes the fraction of the output information of Mj that is imported by

Mi, and πj
S×I ≤ πji

S×I). The lower bound is imposed by conditions (1) and (2) of the
theorem. The imported information has to be sufficiently large for these conditions to
be satisfied. Between these two limits any imported partition will allow a construction of
a valid decomposition. It is left as a design choice how much information will actually

be imported and in which form (the choice of π′
S×I

i
) and from which machines this

information will originate (the choice of πji
S×I).

The only additional limit on the imported information is given by condition (3). It
demands that no information can be imported by a partial machine that cannot be orig-
inally derived from the total primary input or state information (described by πI

S×I and
πS

S×I , respectively). This condition prevents the creation of combinational loops due to
interconnections between the partial machines.

In this example, it can be verified that the lower bound on the information imported
by M1 is zero information, while the lower bound and upper bound on the information
imported by M2 is the entire output information of M1. Therefore,

π′
S×I

1
= π21

S×I = πS×I(1)

π′
S×I

2
= π12

S×I = π1
S×I

As discussed in Section 2.4, we use one-partition πS×I(1) to indicate the lack of informa-

tion. Both partitions π′
S×I

i
satisfy condition (3), with the partition πI

S×I ∗πS
S×I describing

54 3. GENERAL DECOMPOSITION THEOREM

the global state and input information:

πI
S×I ∗ πS

S×I = {(s1, 00); (s2, 00); (s3, 00); (s4, 00); (s5, 00); (s6, 00); (s1, 11);

(s2, 11); (s1, 01)(s1, 10); (s2, 01)(s2, 10); (s3, 11); (s4, 11);

(s3, 01)(s3, 10); (s4, 01)(s4, 10); (s5, 11); (s6, 11); (s5, 01)(s5, 10);

(s6, 01)(s6, 10)}

Using the above results, we can derive the partitions πin
S×I

1
describing the combined

information about the state and input of the specification machine available to a partial
machine Mi.

πin
S×I

1
= πS

S×I

1
· πI

S×I

1
· π′

S×I
1

=

= {(s1, 00)(s2, 00); (s3, 00)(s4, 00); (s5, 00)(s6, 00);

(s1, 01)(s1, 10)(s1, 11)(s2, 01)(s2, 10)(s2, 11);

(s3, 01)(s3, 10)(s3, 11)(s4, 01)(s4, 10)(s4, 11);

(s5, 01)(s5, 10)(s5, 11)(s6, 01)(s6, 10)(s6, 11)}

πin
S×I

2
= πS

S×I

2
· πI

S×I

2
· π′

S×I
2

=

= {(s1, 00)(s5, 00); (s3, 00); (s1, 11)(s3, 11)(s5, 11); (s2, 00)(s6, 00);

(s4, 00); (s2, 11)(s4, 11)(s6, 11);

(s1, 01)(s1, 10)(s3, 01)(s3, 10)(s5, 01)(s5, 10);

(s2, 01)(s2, 10)(s4, 01)(s4, 10)(s6, 01)(s6, 10)}

Construction of M1. In the same fashion as the partition π1
I defines the primary input

alphabet ofM1 to be {i1, i2} (see the input encoder construction), partitions π1
S and π1

S×I

determine the state and output alphabet of M1, respectively. Thus, M1 has three states
defined by the three blocks of the state partition π1

S . M1 is in the state a corresponding to
the first block of the state partition π1

S whenever the specification machine is in the state
s1 or s2. Similarly, state b ofM1 is associated with the states s3 and s4 of the specification
machine M and c with s5 and s6. Partition π1

S×I defines a ternary output variable, which

for example assumes value o2 defined by block (s3, 00)(s4, 00) when the specification
machine M sees 00 on its input and is in either state s3 or s4.

The conditions of the General Decomposition Theorem guarantee that for the partial
machine M1 defined in this way it is possible to build STT consistent with the specifica-
tion machine. We will show how these conditions are verified and use the results of the
verification to construct the STT.

The total information available to a partial machine Mi is described by πin
S×I

i
. Each

block of this partition therefore defines a single indivisible input situation recognized by
the partial machine. It therefore corresponds to a single transition of Mi. For example,

block (s3, 00)(s4, 00) of πin
S×I

1
corresponds to the situation in which the specification

machine is in state s3 or s4 and the input is 00. In these conditions the state variable of
M1 assumes the value associated by π1

S with states s3 and s4 (b), while the primary input
variable assumes the value associated by π1

I with the input 00 (i1). It means that M1 is in
state b and its input is i1. In this situation, the behavior of M1 is determined by the re-
quirement of consistency with the specification machine M. For M1 to behave in a man-

3.1. DECOMPOSITION OF COMPLETELY SPECIFIED FSM 55

ner consistent with the specification machine, it has to transit to the state corresponding
to the subset of the next states of the specification machine in these conditions. The
subset of the next states of the specification machine is determined by δ((s3, 00)(s4, 00))
= {δ(s3, 00); δ(s4, 00)} = {s1, s2}. This means that in these input/state conditions the
specification machine transits to either s1 or s2. However, since M1 does not recognize
s1 from s2 anyway (s1 and s2 are placed in the same block of π1

S), M1 unambiguously

performs the transition to its state associated with the block s1, s2 (a) of π1
S . Note that

in this way we have shown that for block (s3, 00)(s4, 00) of πin
S×I

1
there is a block of π1

S

including δ((s3, 00)(s4, 00)), and thus verified condition (1) of the theorem for the block

(s3, 00)(s4, 00). At the same time, we have determined that the next state ofM1 in state b
under input i1 is a. To determine the output value of M1 we need to find a block of π1

S×I

unambiguously indicated by the current input/state conditions ((s3, 00)(s4, 00)). In this

case it is the second block ((s3, 00)(s4, 00)) associated with the output value o2. As a

result, we have determined the block of π1
S×I including the considered block of πin

S×I
1
,

which verifies the condition (2) for ((s3, 00)(s4, 00)) and determines the output of M1 to
be o2.

Thus, we have constructed one transition of M1 (i1, b, a, o2), i.e. transition 3 in
Fig. 3.6. Following the same procedure, conditions (1) and (2) can be verified for the

remaining blocks of πin
S×I

1
and the other transitions of M1 can be determined. The

complete STT of M1 is given in Fig. 3.6.

Construction of M2. In the case of M1 we were able to neglect the information im-

ported from the partial machines, since M1 does not import any information (π′
S×I

1
=

πS×I (1)). M2 on the other hand imports the information from M1 carried by a three-

valued output variable of M1 described by π′
S×I

2
. The input alphabet of M2 therefore

becomes a combination of symbols delivered by the input encoding block Ψ and im-
ported from machine M1. It is described by the Cartesian product {j1, j2}× {j′1, j

′
2, j

′
3},

where j′1, j
′
2, j

′
3 are the values of the imported variable. Since M2 directly imports the

output of M1 without any encoding, {j ′1, j
′
2, j

′
3} = {o1, o2, o3} and the input alphabet of

M2 becomes {j1, j2} × {o1, o2, o3}.
The state alphabet of M2 is determined by the blocks of partition π2

S . Therefore, M2

has two states: x corresponding to the states s1, s3 and s5 of the specification machine;

in ps ns out
(π1

I) (π1
S) (π1

S) (π1
S×I)

i1 a a o1

i2 a b o3

i1 b a o2

i2 b b o3

i1 c c o1

i2 c b o3

Figure 3.6. STT of M1

in imp ps ns out

(π2
I) (π′

S×I
2
) (π2

S) (π2
S) (π2

S×I)
j1 o1 x x p1

j1 o2 x y p1

j1 o3 x x p1

j2 − x y p1

j1 o1 y x p2

j1 o2 y x p1

j1 o3 y x p1

j2 − y y p2

Figure 3.7. STT of M2

56 3. GENERAL DECOMPOSITION THEOREM

and y corresponding to the states s2, s4 and s6.
To explain the transition determination for M2, let us consider the block

(s1, 00)(s5, 00) of πin
S×I

2
. It corresponds to the state s1 or s5 of the specification machine

with the primary input 00. In this situation, M2 is in state x (s1 and s5 are included in
block s1, s3, s5 of π2

S associated with state x), the primary-input-component of its input

is j1 (00 is included in the block 00, 11 of π2
I associated with the value j1) and the im-

ported component of the input is o1 ((s1, 00)(s5, 00) is a subset of the first block of π′
S×I

2

associated with the value o1).
The next states of the specification machine in (s1, 00) or (s5, 00) are s5 or s1, which

are included in the first block (s1, s3, s5) of π2
S , which corresponds to the state x of M2.

The output of M2 is determined by the block of π2
S×I including (s1, 00)(s5, 00), i.e. the

first block of π2
S×I associated with the value p1. Thus, we have verified conditions (1) and

(2) for the block (s1, 00)(s5, 00) and constructed transition ((j1, o1), x, x, p1), i.e. the first

transition in Fig. 3.7. The verification of the conditions for the remaining blocks of πin
S×I

2

results in STT of M2, presented in Fig. 3.7.

Interconnection network.

The interconnection network is responsible for the exchange of information between
the partial machines. The functions implemented within the interconnection network
(Coni) provide the mapping between the combined output of the partial machines and
the imported input of a particular partial machine Mi. In this case, M1 does not import
any information, so there’s no connection from M2 to M1, while M2 imports the entire
output information ofM1, so functionCon2 is an identity function (amulti-valued “wire”
from M1 output to M2 input).

Construction of the output decoderΘ.

The task of the output decoder is to determine the primary output value of the specifi-
cation machine M based on the partial information about state/input delivered by the
output variables of the partial machines Mi. This partial information is a combination
of the output information of the partial machines Mi and it is described by the partition
πS×I .

πS×I = π1
S×I · π2

S×I = {(s1, 00)(s5, 00)(o1, p1); (s2, 00)(s6, 00)(o1, p2);

(s3, 00)(s4, 00)(o2, p1);

(s1, 01)(s1, 10)(s1, 11)(s2, 11)(s3, 01)(s3, 10)(s3, 11)(s4, 11) . . .

. . . (s5, 01)(s5, 10)(s5, 11)(s6, 11)(o3, p1);

(s2, 01)(s2, 10)(s4, 01)(s4, 10)(s6, 01)(s6, 10)(o3, p2)}

The interpretation of this partition is that when the machine M1 produces output
o1 and the machine M2 produces output p1, the decoder "knows" that the specification
machine M is either in state s1 or s5 and the input of the network is 00. However,
since the decoder cannot distinguish between these two situations, the output of the
specification machine for (s1, 00) and (s5, 00) has to be the same. This is the sense of

3.1. DECOMPOSITION OF COMPLETELY SPECIFIED FSM 57

condition (4). Consulting the STT of the specification machine M, we determine that the
output for both (s1, 00) and (s5, 00) is indeed the same, i.e. 00, and therefore condition
(4) is satisfied for the first block of πS×I . At the same time we determine that the output
of the output decoder is 00 for the output o1 of M1 and p1 of M2, and thus also the
primary output of M is 00. The consideration of the remaining blocks of πS×I leads to
the output decoder function presented in Fig. 3.8.

π1
S×I π2

S×I PO1 PO2

o1 p1 0 0
o1 p2 1 1
o2 p1 0 0
o3 p1 1 1
o3 p2 0 1

Figure 3.8. Output decoder function

State behavior.

Finally, the product of the state partitions π1
S · π2

S of the partial machines is πS(0), which
means that the combination of the states of the partial machines always indicates only a
single state of the specification machine or is empty. Thus, in accordance with condition
(5), the state behavior of the specification machine M is also realized.

Resulting network.

All of the above information is sufficient to construct the decomposition network com-
posed of the partial machines M1 and M2, input encoder Ψ, output decoder Θ and inter-
connection Con2, which realizes the state and output behavior of the original machine
M. This network is depicted in Fig. 3.9.

The combined behavior of the network of partial machines M1 and M2 is described
by a composition machine in Fig. 3.10. Let us consider, for example, the situation when
M1 is in state a, M2 is in state x and the output of the input encoder Ψ is (i1, j1). This
corresponds to the situation when the specification machine is in state s1 (the intersec-
tion of the block s1, s2 corresponding to the state a of M1 and block s1, s3, s5 corre-
sponding to the state x of M2) with the input 00 (see the input encoder construction).
This situation triggers the transition (i1, a, a, o1) in M1. Since the output of M1 is o1 in
M2 the transition ((j1, o1), x, x, p1) is triggered. The resulting next state of the network
therefore is (a, x) (which translates to the state s1 of the specification machine) and the
output is (o1, p1)(which is decoded to 00 by the output decoder block). Comparing this
with Fig. 3.4 we can verify that this is consistent with the specification machine M.

Output-only behavior realization.

It can be verified that all conditions except (5) of Theorem 3.1 are still satisfied when
π1

S in the trinity (π1
I , π1

S , π1
S×I) is replaced by {s1, s2, s5, s6(a

′); s3, s4(b)}, without any
changes to the other partitions in the two trinities. It means that with the modified π1

S it
is possible to realize the output behavior of the specification machine without realizing

58 3. GENERAL DECOMPOSITION THEOREM

its state behavior. Note that this change is interpreted as merging the states of a(s1, s2)
and c(s5, s6) of the original M1 into a new state a′, so it is equivalent to implicit state
minimization. Indeed, upon inspection of STT for M1 it can be observed that the states
a and c are equivalent.

The partitions affected by the change of φ1
S are

πS
S×I

1
= {(s1, 00)(s1, 01)(s1, 10)(s1, 11)(s2, 00)(s2, 01)(s2, 10)(s2, 11) . . .

. . . (s5, 00)(s5, 01)(s5, 10)(s5, 11)(s6, 00)(s6, 01)(s6, 10)(s6, 11)

(s1, s2, s5, s6);

(s3, 00)(s3, 01)(s3, 10)(s3, 11)(s4, 00)(s4, 01)(s4, 10)(s4, 11)(s3, s4)}

πin
S×I

1
= {(s1, 00)(s2, 00)(s5, 00)(s6, 00);

(s1, 01)(s1, 10)(s1, 11)(s2, 01)(s2, 10)(s2, 11)(s5, 01)(s5, 10)(s5, 11) . . .

. . . (s6, 01)(s6, 10)(s6, 11);

(s3, 00)(s4, 00); (s3, 01)(s3, 10)(s3, 11)(s4, 01)(s4, 10)(s4, 11)}

πS
S×I ∗ πI

S×I = {(s1, 00)(s5, 00); (s1, 11)(s5, 11);

(s1, 01)(s1, 10)(s5, 01)(s5, 10); (s3, 00); (s3, 11); (s3, 01)(s3, 10);

(s2, 00)(s6, 00); (s2, 11)(s6, 11); (s2, 01)(s2, 10)(s6, 01)(s6, 10);

(s4, 00); (s4, 11); (s4, 01)(s4, 10)}

Ψ
0 0 i1 j1
0 1 i2 j2
1 0 i2 j2
1 1 i2 j1

M1

i1 a a o1

i2 a b o3

i1 b a o2

i2 b b o3

i1 c c o1

i2 c b o3

o1 p1 0 0
o1 p2 1 1
o2 p1 0 0
o3 p1 1 1
o3 p2 0 1

Θ

M2

j1 o1 x x p1

j1 o2 x y p1

j1 o3 x x p1

j2 - x y p1

j1 o1 y x p2

j1 o2 y x p1

j1 o3 y x p1

j2 - y y p2

PI1

PI2

PO1

P (π2

S×I
)

J(π2

I
)

O(π1

S×I
)

PO2

I(π1

I
)

Figure 3.9. Scheme of the example decomposition

3.1. DECOMPOSITION OF COMPLETELY SPECIFIED FSM 59

in ps ns out
(00) i1j1 ax (s1) ax (s1) o1p1 (00)
(01) i2j2 ax (s1) by (s4) o3p1 (11)
(10) i2j2 ax (s1) by (s4) o3p1 (11)
(11) i2j1 ax (s1) bx (s3) o3p1 (11)
(00) i1j1 ay (s2) ax (s1) o1p2 (11)
(01) i2j2 ay (s2) by (s4) o3p2 (01)
(10) i2j2 ay (s2) by (s4) o3p2 (01)
(11) i2j1 ay (s2) bx (s3) o3p1 (11)
(00) i1j1 bx (s3) ay (s2) o2p1 (00)
(01) i2j2 bx (s3) by (s4) o3p1 (11)
(10) i2j2 bx (s3) by (s4) o3p1 (11)
(11) i2j1 bx (s3) bx (s3) o3p1 (11)
(00) i1j1 by (s4) ax (s1) o2p1 (00)
(01) i2j2 by (s4) by (s4) o3p2 (01)
(10) i2j2 by (s4) by (s4) o3p2 (01)
(11) i2j1 by (s4) bx (s3) o3p1 (11)
(00) i1j1 cx (s5) cx (s5) o1p1 (00)
(01) i2j2 cx (s5) by (s4) o3p1 (11)
(10) i2j2 cx (s5) by (s4) o3p1 (11)
(11) i2j1 cx (s5) bx (s3) o3p1 (11)
(00) i1j1 cy (s6) cx (s5) o1p2 (11)
(01) i2j2 cy (s6) by (s4) o3p2 (01)
(10) i2j2 cy (s6) by (s4) o3p2 (01)
(11) i2j1 cy (s6) bx (s3) o3p1 (11)

Figure 3.10. STT of the composition machine

Considering the modified input partition πin
S×I

1
of M1 , we see that in the first block

of πin
S×I

1
being (s1, 00)(s2, 00)(s5, 00)(s6, 00) the next state for symbols (s1, 00) and

(s2, 00) is s1 , while for (s5, 00) and (s6, 00) it is s5 . However, π1
S has states s1 and

s5 in one block (a′), so the block (s1, 00)(s2, 00)(s5, 00)(s6, 00) still unambiguously iden-

tifies the next state of M1 to be a′ . The remaining blocks of πin
S×I

1
lead to the states b,

a′ and b , respectively. Thus, condition (1) remains satisfied for πin
S×I

1
. Furthermore,

πin
S×I

1
is still smaller-or-equal-to πi

S×I , so condition (2) is also satisfied. Since π′
S×I

1

= πS×I(1) , and πS×I remains unchanged, conditions (3) and (4) are not affected by the
state minimization. Finally, the product state partition πS = {s1, s5; s2, s6; s3; s4}, is not a
zero-partition, so the state behavior ofM is not realized, as the combination of the partial
machines does not recognize state s1 from s5 and s2 from s6.

60 3. GENERAL DECOMPOSITION THEOREM

3.2 Decomposition of incompletely specified FSM

3.2.1 Extensions of GDT

What is central to the General Decomposition Theorem (GDT) for completely specified
FSMs is the concept of a partition pair, which reflects the possibility to compute some
partial information from another partial information, i.e. compute information modeled
by one partition using information modeled by some other partition. Let us consider how
this concept changes with the introduction of nondeterminism, output don’t-cares and
multi-state realizations.

Partitions are no longer sufficient to express don’t-care conditions for state and out-
put. For this reason, they need to be replaced with more general unique-block covers
(simply called covers in the following).

Nondeterminism

The definition of S × I − S partition pair uses block transition function δ(D) , which
calculates a set of next states (combined next state) for a subset D of S × I . In the case
of a nondeterministic machine each element from S × I leads not to a single next state,
but rather to a choice of next states. Conceptually, an element of S × I can lead to any
subset of its next-states-set. To establish the possible sets of next states for D, we need to
consider a combination of all subsets of all the next-state-sets for all S× I elements in D.
Such a combination is performed by the operator

⋃

.

Definition 3.7 (Operator
⋃

).
⋃

: 2Sn
→ 22S

and

⋃

(

[Di]i=1...n

)

= {B|∃C1 ⊆ D1, C
1 6= ∅ . . .∃Cn ⊆ Dn, Cn 6= ∅ : B =

⋃

i=1...n

Cn}

Operator
⋃

accepts a vector of subsets of S. It returns all the possible combinations of
sums of the non-empty subsets of S, provided that each subset is taken from another
vector position.

Ex. 3.2.1.

⋃

([

{1, 2, 3}
{1, 4}

])

=
{

{1}, {1, 2}, {1, 3}, {1, 4}, {2, 4}, {3, 4},

{1, 2, 3}, {1, 2, 4}, {2, 3, 4}, {1, 2, 3, 4}
}

For the example of the application of operator
⋃

to the block transition function see also Exam-
ple 3.2.3.

Definition 3.8 (Operator
⋂

).
⋂

: 22S n
→ 22S

and

⋂

(

[Di]i=1...n

)

= {B|∃C1 ∈ D1 . . .∃Cn ∈ Dn : B =
⋂

i=1...n

Cn}

Operator
⋂

accepts a vector of sets of subsets of S. It returns all the possible combinations
of intersections of the subsets of S, provided that each intersected subset is taken from
another vector position.

3.2. DECOMPOSITION OF INCOMPLETELY SPECIFIED FSM 61

Ex. 3.2.2. For S = {1 . . . 5}

⋂

{

{1}{1, 2}{2, 3}{4}
}

{

{1, 2, 3}{4, 5}
}

{

{1, 2, 4, 5}
}

 = {{1}, {1, 2}, {2}, {4}}

Block transition function δ now becomes

δ : 2S×I → 2S and δ(D) =
⋃

d∈D

δ(d)

To adjust the partition pair concept to this situation, we need to use covers and ensure
that at least one of the possible next-state-sets for D is included in a block of φi

S cover, i.e.
there is a choice of the next states for each state/input combination in D such that the
resulting next-state-sets lead to a block of φi

S .
For this purpose we introduce a "cover transition function", which returns those next

state blocks of δ that are included in a block of φS .

Definition 3.9 (Cover transition function).

∆φS : 2S×I → 2φS and ∆φS (D) = {B′ ∈ φS |∃B′′ ∈ δ(D) : B′′ ⊆ B′}

The S × I − S cover pair condition can then be formulated as

∀D ∈ φS×I : ∆φS (D) 6= ∅

Note that if the machines are deterministic, this condition is exactly equivalent to the
partition pair condition.

in ps ns out
0 a b, c 00, 11
1 a a 01
0 b a, c 11
1 b b 01
0 c a 10, 01
1 c b 10, 01, 11

Figure 3.11. Incompletely specified sequential machine

Ex. 3.2.3. For machine in Fig. 3.11 and φS×I = {(a, 0)(b, 0); (a, 1)(b, 1)(c, 0)(c, 1)} =
{D1; D2}

δ(D1) =
⋃

[

δ(a, 0)
δ(b, 0)

]

=
⋃

[

{b, c}
{a, c}

]

= {{a, b}; {a, c}; {b, c}; {c}; {a, b, c}}

δ(D2) =
⋃

δ(a, 1)
δ(b, 1)
δ(c, 0)
δ(c, 1)

=
⋃

{a}
{b}
{a}
{b}

= {{a, b}}

Therefore, for φS = {a, b, c; b, c},∆φS (D1) = {a, b, c; b, c} 6= ∅ and∆φS (D2) = {a, b, c} 6=
∅, which means that φS×I and φS form a S × I − S pair.

62 3. GENERAL DECOMPOSITION THEOREM

Furthermore, due to the fact that there is a choice of next states for the composition
machine, it is not sufficient for a partial machine to move to a state consistent with any
of the possible next states of M. All partial machines need to move to their respective
states consistent with the same subsets of the M’s next states. Otherwise, the product of
the next states of partial machines is empty and the state of M is unspecified.

This leads to the concept of a synchronized set of cover pairs. A set of cover pairs
is synchronized if and only if each of the pairs is a cover pair, and each of the blocks
of the first covers leads to such blocks of the second covers that the intersection of the
blocks of the first covers leads to the intersection of the blocks of the second covers. Note
that synchronized sets of cover pairs is a stronger requirement than the cover pair of the
product of the first covers with the product of the second covers.

Definition 3.10 (Synchronized set of S × I − S cover pairs). ([φi
S×I]i, [φ

i
S]i) is a synchro-

nized S × I − S cover pair if and only if

1 . ∀i∀Di ∈ φi
S×I∆

φi
S (Di) 6= ∅ (cover pair condition)

2 . ∀i∀Di ∈ φi
S×I∃B′

Di ∈ ∆φi
S (Di) : ∀[Di]i ∈ ×iφ

i
S×I :

⋂

i

Di 6= ∅ ⇒

⇒ ∀B′
D ∈

⋂

i
B′

Di∃B′ ∈ ∆
Q

i
φi

Sl (
⋂

i

Di) : B′ = B′
D (synchronization condition)

Taking all this into account, the condition (1) of GDT can be rewritten as

(

[φin
S×I

i
]i, [φ

i
S]i

)

is a synchronized set of S × I − S cover pairs

For an example of synchronized set of cover pairs see Section 3.4.1.

Output don’t-cares

Similarly, the consideration of output don’t cares requires the adjustment of a block out-
put function λ and introduction of a cover output function ΛφO .

Definition 3.11 (Block output function).

λ : 2S×I → 2O and λ(D) =
⋃

d∈D

λ(d)

λ computes a set of all possible combinations of choices between values of output for
elements of D.

Definition 3.12 (Cover output function).

ΛφO : 2S×I → 2φO and ΛφO(D) =
{

C ∈ φO | ∃C ′ ∈ λ(D) : C ′ ⊆ C
}

ΛφO returns those blocks of φO that can be calculated as outputs for input combinations
in D, allowing for don’t-care assignment.

Definition 3.13 (S × I − O cover pair). (φS×I , φO) is a S × I − O cover pair if and only if

∀D ∈ φS×I : ΛφO(D) 6= ∅

3.2. DECOMPOSITION OF INCOMPLETELY SPECIFIED FSM 63

Ex. 3.2.4. For machine and φS×I from Example 3.2.3

λ(D1) =
⋃

[

λ(a, 0)
λ(b, 0)

]

=
⋃

[

{00, 11}
{11}

]

= {{00, 11}; {11}}

λ(D2) =
⋃

λ(a, 1)
λ(b, 1)
λ(c, 0)
λ(c, 1)

=
⋃

{01}
{01}

{10, 01}
{10, 01, 11}

=

= {{01}; {10, 01}; {01, 11}; {10, 01, 11}}

Therefore, for φO = {01; 11; 00, 10}, ΛφO(D1) = {11} 6= ∅ and ΛφO (D2) = {01} 6= ∅,
which means that φS×I and φO form a S × I − O pair.

Since output don’t cares can prevent some output symbols from being produced,
the cover specialization concept needs to be introduced to allow for the reduction of the
output alphabet.

Definition 3.14 (Cover specialization). Specialization of cover φS is a cover φS′ such that

S′ ⊆ S

∧ ∀A ∈ φS ∃B ∈ φS′ : B ⊆ A

∧ ∀B ∈ φS′ ∃A ∈ φS : A ⊇ B

Cover is specialized by removing some elements from its blocks.
With this in mind, condition (4) of the GDT becomes:

φO has specialization φO′ and
(

φS×I , φO′

)

is a S × I − O′ cover pair .

Multi-state realization

Definition 3.15 (Multi-state realization). Incompletely specifiedmachineMl(Il, Sl, Ol, δl, λl)
is a multi-state realization of i.s. machine M(I, S, O, δ, λ) if and only if

1. Il = I

2. Ol = O

3. there is an injective copy-assignment function L : S → 2Sl , which establishes corre-
spondence between states in M and their copies in Ml

4. δl is a multi-state realization of δ, i.e.

∀s ∈ S ∀x ∈ I ∀sl ∈ L(s) δ(s, x) ⊇ L′(δl(sl, x))

5. λl is amulti-state realization of λ, i.e.

∀s ∈ S ∀x ∈ I ∀sl ∈ L(s) λ(s, x) ⊇ λl(sl, x)

where L′ : 2Sl → 2S is inverse of L defined as L′(Al) = {s ∈ S|L(s) ∩ Al 6= ∅}

64 3. GENERAL DECOMPOSITION THEOREM

in ps ns out
0 a1 b,c1,c2 00
1 a1 a2 01
0 a2 b,c2 00,11
1 a2 a1 01
0 b a1,c 11
1 b b 01
0 c1 a1,a2 10,01
1 c1 b 10,01,11
0 c2 a2 10
1 c2 b 10,11

Figure 3.12. Multi-state realization of machine in Fig. 3.11

Ex. 3.2.5. Consider the state transition table in Fig. 3.12. It was created by splitting states a
and c of the machine in Fig. 3.11 into its two copies: a1, a2 and c1, c2, respectively. It can
be observed that outputs of the copies of the states are subsets of the outputs of their originals
(under the same input) and that the next-states of the copies of the states are some copies of the
next-states of the originals.

The possibility of multi-state realization means that there are multiple states of the
network of partial machines (i.e. of the composition machine) corresponding to a single
state in the specificationmachine. We treat thesemultiple states as the "labeled copies" of
a particular state of the specification machine. Note that while we introduce this concept
for incompletely specified FSMs, it is also valid for completely specified machines as a
special case — their decomposition may also have multiple states corresponding to a
single state of the original machine.

The most immediate consequence for the conditions of GDT is the expansion of the
machine’s state set from S to Sl, and input space from S × I to Sl × I .

This introduces additional freedom to the composition machine. For the behavior of
the network to be consistent with the behavior of the specificationmachine, it is sufficient
for copies of a certain state to transit to some copies of its next state, and produce a com-
patible output under the same input. This freedom can be exploited to optimize the FSM
implementation or to resolve some implementation problems (e.g. race-free assignment
for asynchronous level-mode circuits using multi-state assignment called “multiple-row
assignment”). We recall that the partition (or cover) pair concept corresponds to the abil-
ity of partial machines to perform transitions under the given input conditions (a block

of input cover φin
S×I

i
) to their next states (blocks of state cover φi

S) in a manner consistent
with the behavior of the specificationmachine. For this consistency to be preserved in the
case of labeled covers φi

Sl×I and φi
Sl

it is sufficient if unlabeled blocks of φi
Sl×I transit to

unlabeled blocks of φi
Sl
. This can be expressed by an adequate reformulation of the cover

transition and cover output functions to correctly operate on covers on labeled copies of
the states.

Definition 3.16 (Labeled cover transition function).

∆φSl : 2Sl×I → 2φSl and ∆φSl (D) = {B′
l ∈ φSl

|∃B′ ∈ δ(L′(D)) : B′ ⊆ L′(B′
l)}

3.2. DECOMPOSITION OF INCOMPLETELY SPECIFIED FSM 65

Definition 3.17 (Labeled cover output function).

ΛφO : 2Sl×I → 2φO and ΛφO (D) =
{

C|C ∈ φO ∧ ∃C ′ ∈ λ(L′(D)) : C ′ ⊆ C
}

As a consequence, cover pairs for the multi-state realizations become the following:

Definition 3.18 (Sl × I − Sl cover pair). (φSl×I , φSl
) is a Sl × I −Sl cover pair if and only

if

∀D ∈ φSl×I : ∆φSl (D) 6= ∅

Definition 3.19 (Sl × I − O cover pair). (φSl×I , φO) is a Sl × I − O cover pair if and only
if

∀D ∈ φSl×I : ΛφO (D) 6= ∅

Ex. 3.2.6. Consider machine M in Fig. 3.11 with state a split (labeled) into two copies a1 and

a2 and covers φSl×I = {(a1, 1)(c, 0); (a2, 1)(c, 0)(b, 0); (a1, 0)(a2, 0)(b, 1)(c, 1)} =

{D1; D2; D3} and φSl
= {a1, c; a2; b, c}. The unlabeled version ofD1 isL

′(D1) = (a, 1)(c, 0).
For these two input combinations M moves to

δ(L′(D1)) =
⋃

[

δ(a, 1)
δ(c, 0)

]

=
⋃

[

{a}
{a}

]

= {{a}}

After labeling, block {a} can fit into either a1, c or a2 of φSl
, so ∆φSl (D1) = {a1, c; a2}. For

D2 and D3: L′(D2) = (a, 1)(b, 0)(c, 0) and L′(D3) = (a, 0)(b, 1)(c, 1).

δ(L′(D2)) =
⋃

δ(a, 1)
δ(b, 0)
δ(c, 0)

 =
⋃

{a}
{a, c}
{a}

 = {{a}; {a, c}} and

∆φSl (D2) = {a1, c; a2}.

δ(L′(D3)) =
⋃

δ(a, 0)
δ(b, 1)
δ(c, 1)

 =
⋃

{b, c}
{b}
{b}

 = {{b}; {b, c}; } and

∆φSl (D3) = {b, c}

Therefore, φSl×I and φSl
form a Sl × I − Sl pair.

Finally, the fact that there are multiple instances of the same state necessitates the
introduction of the Sl − S cover pair. It expresses the fact that blocks of φSl

only include
the copies of the states that are included in the same blocks of φS .

Definition 3.20 (Sl − S cover pair). (φSl
, φS) is a Sl − S cover pair if and only if

∀D ∈ φSl
∃B ∈ φS L′(D) ⊆ B

66 3. GENERAL DECOMPOSITION THEOREM

3.2.2 General Decomposition Theorem

Using the above discussed extensions necessary to account for nondeterminism (next-
state don’t-cares), incompletely specified output function (output don’t-cares) and multi-
state realizations, the General Decomposition Theorem for the multi-state realizations of
incompletely specified nondeterministic FSMs can be formulated as follows:

Let φO and φS be covers on M = (I, S, O, δ, λ) on O and S, respectively. Let
φi

I , φ
i
Sl

, φi
Sl×I be covers on multi-state specialization Ml = (I, Sl, O, δl, λl) of machine

M, on I ,Sl and Sl × I , respectively. Let cover φO be a partition defined by the following
expression:

[o]φO = [p]φO ⇐⇒ ∀s ∈ S∀x ∈ I : o ∈ λ(s, x) ⇐⇒ p ∈ λ(s, x) (3.2.1)

(φO groups in one block the output symbols, which are not distinguished by any input
combination).

Let φij
Sl×I be covers of Sl × I such that φij

Sl×I ≥ φi
Sl×I and φ

′

Sl×I

j
=

∏

i=1...n φij
Sl×I .

Let φSl×I =
∏

i=1...n φi
Sl×I . Let φI

Sl×I
i
and φSl

Sl×I

i
be covers induced on Sl × I by φi

I

and φi
Sl
, respectively. Let φI

Sl×I =
∏

i=1...n φI
Sl×I

i
and φSl

Sl×I =
∏

i=1...n φSl

Sl×I

i
. Let

φin
Sl×I

i
= φI

Sl×I
i
· φSl

Sl×I

i
· φ

′

Sl×I

i
.

Theorem 3.2 (General full-decomposition of incompletely specified FSM). A sequential ma-
chineM = (I, S, O, δ, λ) has a general full-decomposition with the output behavior realization
with n component machines if and only if n input covers φi

I , n state covers φi
S , and n label as-

signmentsLi : φi
S → φi

Sl
exist such that n trinities of covers (φi

I , φ
i
Sl

, φSl×I
i) exist that satisfy

the following conditions:

(1)
(

[φin
Sl×I

i
]i, [φ

i
Sl

]i

)

is an Sl × I − Sl synchronized cover set pair

(2) φin
Sl×I

i
≤ φSl×I

i

(3) φI
Sl×I · φ

Sl

Sl×I ≤ φ
′

Sl×I

i

(4) φO has specialization φO′ and
(

φSl×I , φO′

)

is a Sl × I − O′ cover pair

Additionally, if

(5)
(
∏

i φi
Sl

, φS(0)
)

is an Sl − S cover pair

then the state behavior of M will be realized too.

3.3 Proof of the General Decomposition Theorem

3.3.1 Forward proof

For more clarity, we will conduct the forward part of the proof in two steps. First, we
will introduce a machine M∗ that is built based on the covers mentioned in the Theorem
and represents the combined behavior of the partial machines. We will show that, if the
conditions of the theorem are fulfilled, M∗ is a realization of the specification machine

3.3. PROOF OF THE GENERAL DECOMPOSITION THEOREM 67

M. Then, we will show that a network of partial machines built based on the covers in
the theorem is indeed equivalent to M∗, and hence is a realization of M.

In each of the steps, we will propose appropriate transition and output functions (δ
and λ) for the discussed machines and show that under the conditions of the theorem
they are well defined. Then, we will show that thus defined machines are realizations
of the specification machine in the light of the definitions of the behavior realization
(Defs. 2.8 and 2.9).

In the proof, we will use the following lemmas.

Lemma 3.3.1. ∀S, T : φ1
S ≤ φ2

S ⇒ indS
S×T (φ1

S) ≤ indS
S×T (φ2

S)

Proof.

φ1
S ≤ φ2

S ⇐⇒ ∀A1 ∈ φ1
S∃A2 ∈ φ2

S : A1 ⊆ A2

additionally, A1 ⊆ A2 ⇒ A1 × T ⊆ A2 × T hence,

∀B1 ∈ {A1 × T |A1 ∈ φ1
S}∃B2 ∈ {A2 × T |A2 ∈ φ2

S} : B1 ⊆ B2

by definition of induced cover (Def. 2.21)

∀B1 ∈ indS
S×T (φ1

S)∃B2 ∈ indS
S×T (φ2

S) : B1 ⊆ B2

which means that indS
S×T (φ1

S) ≤ indS
S×T (φ2

S)

Lemma 3.3.2.

∀φSl
∀Dl ⊆ Sl × I ∀(sl, x) ∈ Dl : ∆φSl (Dl) 6= ∅ ⇒

⇒ ∀B′
l ∈ ∆φSl (Dl)∃s′l ∈ B′

l : s′l ∈ L(δ(L′(sl), x))

(for each element (sl, x) ofDl, each block of∆φSl (Dl) contains a copy of the specification
machine’s next state for the unlabeled version of (sl, x))

Proof. By definition of ∆φSl it only returns those blocks of φSl
which, after unlabeling,

entirely include a block of δ(L′(Dl)) (i.e. contain at least copies of all elements of a block
of δ(L′(Dl))). By definition of δ, each block of δ(D) contains a next state for each element
d ∈ D. Therefore, each block of δ(L′(Dl)) contains a next state for the unlabeled version
of each element dl ∈ Dl. Therefore, for each block returned by ∆φSl , it contains a copy
of the next state for the unlabeled version of each element of Dl.

Lemma 3.3.3. For the specialization φO′ of φO defined by (3.2.1)

∀D ∈ Sl × I ∀(sl, x) ∈ D : ΛφO′ (D)) 6= ∅ ⇒ ∀Y ∈ ΛφO′ (D) : Y ⊆ λ(L′(sl), x)

(for each element of D, each block of ΛφO′ (D) is a subset of the output values for the
unlabeled version of this element in the specification machine)

Proof. Each block of ΛφO′ (D) includes some output for any element of D. The blocks of
φO , and hence φ′

O only contain output values not distinguished by any input combination
(by definition of φO and specialization). Hence, any returned block of φ′

O only contains
outputs that are common to all combinations in D.

Lemma 3.3.4.

∀D1 ⊆ S × I ∀D2 ⊆ S × I : D1 ⊆ D2 ⇒ ∆φS (D1) ⊇ ∆φS (D2)

68 3. GENERAL DECOMPOSITION THEOREM

Proof.

by definition of δ : D1 ⊆ D2 ⇒ ∀B2 ∈ δ(D2) ∃B1 ∈ δ(D1) : B1 ⊆ B2

hence, ∀B2 ∈ δ(D2) ∀B′ ∈ φS : (B2 ⊆ B′ ⇒ ∃B1 ∈ δ(D1) : B1 ⊆ B′)

by the definition of ∆φS (D)∀B′ ∈ ∆φS (D2) : B′ ∈ ∆φS (D1)

and ∆φS (D1) ⊇ ∆φS (D2)

Composition machine

First, we will show that machine M∗, defined by the trinity of covers
(
∏

i φi
I ,

∏

i φi
Sl

,
∏

i φi
Sl×I) that satisfy conditions of Theorem 3.2, is a realization of M.

Let functions Φ∗, Ψ∗ and Θ∗ be defined as follows:

Φ∗ : 2S → 2φSl and Φ∗(S) =
⋃

sl∈L(S)

[sl]φSl
(3.3.1)

Φ∗ returns all the blocks of φSl
including copies of elements of S.

Ψ∗ : I → 2φI and Ψ∗(x) = [x]φI (3.3.2)

Ψ∗ returns all the blocks of φI including x.

Θ∗ : 2φSl×I → 2O and Θ∗(D) =
⋃

D∈D

ΛφO′ (D) (3.3.3)

Let M∗ = (φI , φSl
, φSl×I , δ

∗, λ∗) be the machine describing the combined behavior
of the composition of n component machines. Let:

φI =
∏

i

φi
I (3.3.4)

φSl
=

∏

i

φi
Sl

(3.3.5)

φSl×I =
∏

i

φi
Sl×I (3.3.6)

δ∗ : φSl
× φI → φSl

and δ∗(B, A) = ∆φSl (B × A) (3.3.7)

λ∗ : φSl
× φI → φSl×I and λ∗(B, A) = [B × A]φSl×I (3.3.8)

Since φI =
∏

i φi
I ≤ φi

I , by Lemma 3.3.1, indI
Sl×I(φI) ≤ indI

Sl×I(φ
i
I) and ∀A ∈

φI∃Ai ∈ φI
Sl×I

i
: Sl × A ⊆ Ai. Similarly, φSl

=
∏

i φi
Sl

≤ φi
Sl
, indSl

Sl×I(φSl
) ≤

indSl

Sl×I(φ
i
Sl

) and ∀B ∈ φSl
∃Bi ∈ φSl

Sl×I

i
: B × I ⊆ Bi. Finally, indSl

Sl×I(φSl
) ·

indI
Sl×I(φI) ≤ φ′

Sl×I (by Condition (3)), so ∀A ∈ φI∀B ∈ φSl
∃Ci ∈ φ′

Sl×I : B×A ⊆ Ci

From all of the above:

∀A ∈ φI∀B ∈ φSl
∀i

∃Di ∈ φin
Sl×I

i
∃Ai ∈ φI

Sl×I

i
∃Bi ∈ φSl

Sl×I

i
∃Ci ∈ φ′

Sl×I
i
:

(Ai ⊇ Sl × A) ∧ (Bi ⊇ B × I) ∧ (Ci ⊇ B × A) ∧

∧(Di = Ai ∩ Bi ∩ Ci ⊇ B × A) (3.3.9)

3.3. PROOF OF THE GENERAL DECOMPOSITION THEOREM 69

Hence,

∀A ∈ φI∀B ∈ φSl
∃[Di]i ∈ ×iφ

in
Sl×I

i
: B × A ⊆

⋂

i

Di

Furthermore, condition (1 p.2) guarantees that

∀[Di]i ∈ ×iφ
in
Sl×I

i
:
⋂

i

Di 6= ∅ ⇒ ∆
Q

i
φi

Sl (
⋂

i

Di) 6= ∅ (3.3.10)

From Lemma 3.3.4,

B × A ⊆
⋂

i

Di ⇒ ∆φSl (B × A) ⊇ ∆
Q

i
φi

Sl (
⋂

i

Di) 6= ∅

Hence,

∀A ∈ φI∀B ∈ φSl
: ∆φSl (B × A) 6= ∅ ⇒ δ∗(B, A) 6= ∅

Similarly, from (3.3.9), condition (2), and the fact that φSl×I =
∏

i φi
Sl×I , we conclude

that B × A is included in some block of φSl×I , so λ∗(B, A) 6= ∅.
We will now show that M∗ is a realization of M.
Let δ∗(Φ∗(s), Ψ∗(x)) =

⋃

B∈Φ∗(s),A∈Ψ∗(x) δ∗(B, A).

by definition of Φ∗ : ∀B ∈ Φ∗(s)∃sl ∈ L(s) : sl ∈ B

by definition of Ψ∗ : ∀A ∈ Ψ∗(x) : x ∈ A

hence, ∀B ∈ Φ∗(s)∀A ∈ Ψ∗(x)∃sl ∈ L(s) : (sl, x) ∈ B × A

by Lemma 3.3.2 ∀B′
l ∈ ∆φSl (B × A)∃s′l ∈ B′

l : s′l ∈ L(δ(L′(sl), x)) = L(δ(s, x))

from that and the definition of δ∗ ∀B′
l ∈ δ∗(B, A)∃s′l ∈ L(δ(s, x)) : s′l ∈ B′

l

hence, δ∗(B, A) ⊆
⋃

s′

l
∈L(δ(s,x))

[s′l]φSl
= Φ∗(δ(s, x))

Finally,

∀s ∈ S∀x ∈ I : δ∗(Φ∗(s), Ψ∗(x)) ⊆ Φ∗(δ(s, x)) (3.3.11)

Further,

∀B ∈ Φ∗(s) ∀A ∈ Ψ∗(x) : Θ∗(λ∗(B, A)) = Θ∗
(

[

B × A
]

φSl×I

)

=

=
⋃

D∈[B×A]φ
Sl×I

(

ΛφO′ (D)
)

By Lemma 3.3.3:

∀(sl, x) ∈ D ∀Y ∈ ΛφO′ (D) : Y ⊆ λ(L′(sl), x) (3.3.12)

By definition of Φ∗, ∃sl ∈ L(s) : (sl, x) ∈ B × A,

∀D ∈ [B × A]φSl×I : (sl, x) ∈ D (3.3.13)

70 3. GENERAL DECOMPOSITION THEOREM

From (3.3.12) and (3.3.13) it follows that

∀D ∈ [B × A]φSl×I ∀Y ∈ ΛφO′ (D) : Y ⊆ λ(L′(sl), x) = λ(s, x)

Hence
⋃

D∈[B×A]φ
Sl×I

ΛφO′ (D) ⊆ λ(s, x)

and

Θ∗
(

λ∗
(

Φ∗(sl), Ψ
∗(x)

)

)

⊆ λ(s, x) (3.3.14)

From (3.3.11), (3.3.14) and definition 2.8 it follows that M∗ is an output behavior real-
ization of M.

State behavior realization

We will show that under the additional condition (5) of the Theorem, the composition
machine M∗ is a state behavior realization (s.b.r.) of M.

Mapping function:

Φ
′∗ : 2φSl → 2S and Φ

′∗(B) =
⋃

B∈B

L′(B)

Then

∀B ∈ φSl
∀x ∈ I : Φ

′∗(δ∗(B, Ψ∗(x))) = Φ
′∗(δ∗(B, [x]φI))

∀A ∈ [x]φI : Φ
′∗(δ∗(B, A)) = Φ

′∗

(

∆φSl (B × A)

)

From (5) it follows that

∀B ∈ φSl
∃̇sB ∈ S : L′(B) = {sB} (3.3.15)

so,

∀B ∈ φSl
∀sl ∈ B∃̇sB ∈ S : L′(B) = L′(sl) = sB (3.3.16)

Hence,

∀(sl, x) ∈ B × A : L′(sl) = sB

then, by Lemma 3.3.2

∀B′ ∈ ∆φSl (B × A)∃s′l ∈ B′ : s′l ∈ L(δ(L′(sl), x)) = L(δ(sB , x))

hence, since B′ ∈ φSl
and (3.3.16)

∀B′ ∈ ∆φSl (B × A)∀s′l ∈ B′ : s′l ∈ L(δ(sB , x))

3.3. PROOF OF THE GENERAL DECOMPOSITION THEOREM 71

Finally,

∀B′ ∈ ∆φSl (B × A) : L′(B′) ⊆ δ(sB , x) = δ(Φ
′∗(B), x)

∀B ∈ φSl
∀x ∈ I :

⋃

A∈Ψ∗(x)

⋃

B′∈∆
φSl (B×A)

L′(B′) ⊆ δ(Φ
′∗(B), x)

and hence

Φ
′∗(δ∗(B, Ψ∗(x))) ⊆ δ(Φ

′∗(B), x) (3.3.17)

Additionally, by Lemma 3.3.3

∀B ∈ φSl
∀x ∈ I ∀A ∈ Ψ∗(x) ∀D ∈ λ∗(B, A)

∀(sl, x) ∈ D ∀Y ∈ ΛφO′ (D) :

Y ⊆ λ(L′(sl), x)
(3.3.16)

= λ(L′(B), x)

hence,

∀B ∈ φSl
∀x ∈ I :

⋃

D∈λ∗(B,Ψ∗(x))

ΛφO′ (D) ⊆ λ(L′(B), x) = λ(Φ
′∗(B), x)

and

Θ∗(λ∗(B, Ψ∗(x))) ⊆ λ(Φ
′∗(B), x) (3.3.18)

By (3.3.17),(3.3.18) and definition 2.9, machine M∗ therefore is a state behavior real-
ization of M. Since, as shown in the following section, the network of partial machines
Mi always is a state realization of M∗, we conclude that if condition (5) is met, the net-
work of partial machines Mi is a state and output behavior realization of M.

Component machines

LetMi =
(

φi
I × φ′

Sl×I
i
, φi

Sl
, φi

Sl×I , δ
i, λi

)

be a component sequential machine for which

the following conditions are satisfied:

1.
(

φi
I , φ

i
Sl

, φi
Sl×I

)

satisfy the conditions of Theorem 3.2

2.

∀B ∈ φSl
∀A ∈ φI ∀Bi ∈ [B]φi

Sl
∀Ai ∈ [A]φi

I ∀Ci ∈ [B × A]φ
′

Sl×I

i
:

δi
(

Bi, (Ai, Ci)
)

=
{

B′
i | B

′
i ∈ ∆φi

Sl

(

Di
)

∧

∧Di ∈ [(Bi × Ai) ∩ Ci]φin
Sl×I

i
∧ ∀[Dj]j ∈ ×jφ

in
Sl×I

j
:

⋂

j

Dj 6= ∅ ⇒ ∀B′ ∈
⋂

j
δj(Dj)∃B∗ ∈ δ∗(B, A) : B∗ ⊇ B′

}

(3.3.19)

3.

λi
(

Bi, (Ai, Ci)
)

=
[

(

Bi × Ai
)

∩ Ci
]

φi
Sl×I (3.3.20)

72 3. GENERAL DECOMPOSITION THEOREM

The two conditions for the next state of component machine (B ′
i) may interpreted as

follows:

• The first (B′
i ∈ ∆φi

Sl (. . .)) is a local condition and ensures that the component
machine may only perform a transition to its legal state (a block of φi

Sl
).

• The second is a global synchronization condition – it ensures that all the component
machines make the choice between their next-states in such way that the resulting
state of the network is a legal state (a block of φSl

).

Since (Bi × Ai) ∩ Ci is included in a block of φin
Sl×I

i
(by definition of φin

Sl×I
i
),

[(Bi × Ai) ∩ Ci]φin
Sl×I

i
6= ∅. From condition (1.1) it follows that there is a block of φi

Sl

that includes next-states of Di ∈ [(Bi × Ai) ∩ Ci]φin
Sl×I

i
. Hence, ∆φi

Sl

(

Di
)

6= ∅. Also,

there is a block of φi
Sl×I containing (Bi × Ai) ∩ Ci (from condition (2)).

Since δ∗(B, A) = ∆
Q

i
φi

Sl (B × A), condition (1.2) guarantees that

∃B′
i ∈ ∆φi

Sl

(

Di
)

: ∀[Dj]j ∈ ×j [B × A]φin
Sl×I

j
:

⋂

j

Dj 6= ∅ ⇒ ∀B′ ∈
⋂

j
δj(Dj)∃B∗ ∈ δ∗(B, A) : B∗ = B′

hence,

∀B ∈ φSl
∀A ∈ φI ∀Bi ∈ [B]φi

Sl
∀Ai ∈ [A]φi

I ∀Ci ∈ [B × A]φ
′

Sl×I

i
:

δi(Bi, (Ai, Ci)) 6= ∅ ∧ λi(Bi, (Ai, Ci)) 6= ∅

The behavior of the net of component machines is described by the following func-
tions:

δGC : ×iφ
i
Sl

××iφ
i
I → ×iφ

i
Sl

and

δGC

(

[Bi]i, [A
i]i

)

=
[

⋃

Ci∈[B×A]φ′

Sl×I
i

δi
(

Bi, (Ai, Ci)
)

]

i

λGC : ×iφ
i
Sl

××iφ
i
I → ×iφ

i
Sl×I and

λGC

(

[Bi]i, [A
i]i

)

=
[

⋃

Ci∈[B×A]φ′

Sl×I
i

λi
(

Bi, (Ai, Ci)
)

]

i

Let the mapping functions be:

Φ : φSl
→ ×i2

φi
Sl and Φ(B) =

[

[B]φi
Sl

]

i
(3.3.21)

Ψ : φI → ×i2
φi

I and Ψ(A) =
[

[A]φi
I

]

i
(3.3.22)

Θ : ×i2
φi

Sl×I → 2φSl×I and Θ
(

[

Di
]

i

)

=
⋃

[Di]i∈×iDi

[

⋂

i

Di
]

φSl×I (3.3.23)

Φ′ : ×iφ
i
Sl

→ 2φSl and Φ′
(

[Bi]i
)

=
[

⋂

i

Bi
]

φSl
(3.3.24)

3.3. PROOF OF THE GENERAL DECOMPOSITION THEOREM 73

From the above it follows that

∀B ∈ φSl
∀[Bi]i ∈ ×i[B]φi

Sl
∀A ∈ φI : Φ′

(

δGC

(

[Bi]i, Ψ(A)
)

)

=

= Φ′
(

δGC

(

[Bi]i, [A]φi
I

)

)

and

∀[Ai]i ∈ ×i[A]φi
I : δGC

(

[Bi]i, [A
i]i

)

=
[

⋃

Ci∈[B×A]φ′

Sl×I
i

δi
(

Bi, (Ai, Ci)
)

]

i

By definition of δi

∀B′ ∈
⋂

i
δi(Bi, (Ai, Ci))∃B∗ ∈ δ∗(B, A) : B∗ = B′

hence,

∀B′ ∈
⋂

i
[

⋃

Ci∈[B×A]φ′

Sl×I
i

δi(Bi, (Ai, Ci))]∃B∗ ∈ δ∗(B, A) : B∗ = B′

Since ∀B∗ ∈ δ∗ : B∗ ∈ φSl
:

∀B′ ∈
⋂

i
[

⋃

Ci∈[B×A]φ′

Sl×I
i

δi(Bi, (Ai, Ci))]∃B∗ ∈ δ∗(B, A) : [B′]φSl
= [B∗]φSl

= B∗

Therefore,

Φ′
(

δGC

(

[Bi]i, [A
i]i

)

)

⊆ δ∗(B, A) = δ∗(Φ′([Bi]i), A)

and

∀B ∈ φSl
∀[Bi]i ∈ ×i[B]φi

Sl
∀A ∈ φI : Φ′

(

δGC

(

[Bi]i, Ψ(A)
)

)

⊆ δ∗(Φ′([Bi]i), A)

(3.3.25)

Further,

∀B ∈ φSl
∀[Bi]i ∈ ×i[B]φi

Sl
∀A ∈ φI : Θ

(

λGC

(

[Bi]i, Ψ(A)
)

)

= Θ
(

λGC

(

[Bi]i, [A]φi
I

)

)

and

∀[Ai]i ∈ ×i[A]φi
I : λGC

(

[Bi]i, [A
i]i

)

=
[

⋃

Ci∈[B×A]φ′

Sl×I
i

λi
(

Bi, (Ai, Ci)
)

]

i

74 3. GENERAL DECOMPOSITION THEOREM

Since (Bi × Ai) ∩ Ci ⊇ B × A

∀[Y i]i ∈ λGC

(

[Bi]i, [A
i]i

)

Y i ⊇ B × A

therefore,

∀[Y i]i ∈ λGC

(

[Bi]i, [A
i]i

)

⋂

i

Y i ⊇ B × A

and

[
⋂

i

Y i]φSl×I ⊆ [B × A]φSl×I = λ∗(B, A)

This leads to

∀B ∈ φSl
∀[Bi]i ∈ ×i[B]φi

Sl
∀A ∈ φI : Θ

(

λGC

(

[Bi]i, Ψ(A)
)

)

⊆ λ∗(Φ′([Bi]i), A)

(3.3.26)

From (3.3.25) and (3.3.26) it follows that the net of component machines is an uncon-
ditional state and output behavior realization of the compositionmachineM∗. Therefore,
it is an output behavior realization of M whenever M∗ is (i.e. under conditions (1)-(4))
and state and output behavior realization, whenever M∗ is (i.e. under conditions (1)-(5))

3.3.2 Reverse proof

Let the output behavior of M be realized by a general composition M∗ of n machines
Mi = (I∗i , Si, Oi, δ

i, λi), where:

I∗i = I ′i × Ii

Coni : ×2Oj → I ′i is a surjective function

Let:

Ψ : I → ×Ii be a function

Φ : S → 2×Si be a function

Θ : ×2Oi → 2O be a surjective partial function

In any case, there is a multi-state specialization Ml of M such that M∗ is an output
behavior realization of Ml (in a trivial case, Ml ≡ M). Hence, it is possible to identify
two functions : Φl : S → 2Sl and Φ∗ : Sl → ×Si such that Φ(s) = Φ∗(Φl(s)). Intuitively,
the process of mapping of states of M to (sets of) states of M∗ is divided in two parts:
first, a state of M is mapped to a set of states of its multi-state specialization Ml, and
then a state of Ml is mapped to a state of composition machine M∗. Again, in a trivial
case, where Ml ≡ M, Sl = S, Φl is the identity function and Φ∗ = Φ.

Then, the mappingsΨ andΦ∗ introduce the following covers on I and Sl, respectively:

φi
I : [x]φi

I ∩ [z]φi
I 6= ∅ ⇐⇒ xi = zi

where (x1, . . . , xi, . . . , xn) = Ψ(x) and (z1, . . . , zi, . . . , zn) = Ψ(z)

φi
Sl

: [s]φi
Sl

∩ [t]φi
Sl

6= ∅ ⇐⇒ si = ti

where (s1, . . . , si, . . . , sn) = Φ∗(s) and (t1, . . . , ti, . . . , tn) = Φ∗(t)

3.3. PROOF OF THE GENERAL DECOMPOSITION THEOREM 75

If the composition of Mi is legal, then the output function λi of each component
machine computes its values from (a part of) the original primary input and state infor-
mation present in the composition machine (directly or imported). Therefore, λi can be
considered as a function λi : Sl × I → 2Oi . Thus, it introduces a cover φi

Sl×I on Sl × I
such, that

[(sl, x)]φi
Sl×I ∩ [(tl, z)]φi

Sl×I 6= ∅ ⇐⇒ λi(sl, x) ∩ λi(tl, z) 6= ∅

The values of λi (the elements of Oi) can be considered as the blocks of φi
Sl×I , or the

names of the blocks of φi
Sl×I .

In a similar way, the connection functions Coni introduce the covers φ′
Sl×I

i =

=
∏

j φji
Sl×I .

Since λi : Si × Ii × I ′i → 2Oi is a function, values of λi (i.e. blocks of φi
Sl×I) must

be computed from φi
Sl

(φSl

Sl×I

i
), φi

I (φ
I
Sl×I

i
), and φ′

Sl×I
i
. This is equivalent to condition

(2). Similarly, since δi : Si × Ii × I ′i → 2Si is a function, the blocks of φi
Sl

must be com-

puted from φi
Sl

(φSl

Sl×I

i
), φi

I (φ
I
Sl×I

i
), and φ′

Sl×I
i
. This requirement is stated in condition

(1 p.1).
The condition (1 p.1), however, only guarantees that for any state/input combination

for each partial machine Mi there is a valid next-state that the partial machine can tran-
sit to. The fact that the partial machines transit to their valid states does not guarantee
that the composition machine does. If the intersection of the current states of partial
machines (i.e. intersection of blocks of φi

Sl
) is empty, then the present state of the com-

position machine (i.e. a block of φSl
) is undefined. To avoid such a situation, it must

be guaranteed that for any state/input combination there is a choice of next-states in the
partial machines such that the intersection of the chosen next-states results in a valid
state of the composition machine. This synchronization requirement is fulfilled by the
condition (1 p.2).

If the composition does not contain combinational loops, and thus is legal, then val-
ues of each connection function, and so the values of φ′

Sl×I must only be computed
(directly or indirectly) from the original primary input and state information present in
the composition. Since the total primary input information in the composition is defined
by φI

Sl×I and the total state information by φSl

Sl×I , condition (3) must be satisfied.
The output information produced by all the component machines and described by

φSl×I enables the computation of the output information of the original machine M. Let

us consider the original output function λ : S × I → 2O of M. λ introduces the output
cover (in fact, it always is a partition) φO such that

[o]φO = [p]φO ⇐⇒ ∀s ∈ S∀x ∈ I : o ∈ λ(s, x) ⇐⇒ p ∈ λ(s, x)

The blocks of φO thus are the blocks of values of λ not distinguished from each other
by any input/state combination (in most cases, φO = φO(0)). To calculate the output we
need to be able to calculate either a block of φO or a block of a cover smaller than φO

(with smaller blocks - removing output value from a block of φO is equivalent to filling in
the don’t-care). This is guaranteed by condition (4).

If additionally the state behavior of M is realized, then the state information of all the
component machines enables the unambiguous computation of the state for the specifi-
cation machine M, i.e. a surjective partial function Φ′ : ×Si → S exists. Such a function

76 3. GENERAL DECOMPOSITION THEOREM

introduces the following n covers φ1
Sl

on S:

φi
Sl

: [s]φi
Sl

∩ [t]φi
Sl

6= ∅ ⇐⇒ si = ti

where s = Φ′(s1, . . . , si, . . . , sn), t = Φ′(t1, . . . , ti, . . . , tn)

Since Φ′ is a surjective partial function, each element from S must be unambiguously
defined by n-tuples of elements from ×φi

Sl
, i.e. elements of πS(0) must be calculated

from the elements of
∏

i φi
Sl
. This is equivalent to stating condition (5).

Summarizing, if a sequential machine M has a general full-decomposition then n
trinities of partitions (φi

I , φ
i
Sl

, φi
Sl×I) exist and they satisfy conditions (1)–(5) of Theorem

3.2. This ends the proof.

3.4 General decomposition example

3.4.1 Output and state behavior realization

i0i1 ps ns o0o1

00 1 1 00
01 1 1 11,01
10 1 1 11,01
11 1 3 11
00 2 1,2 11
01 2 1 01
10 2 1 01
11 2 3 11
00 3 2 00
01 3 1 11,01
10 3 1 11,01
11 3 3 11
00 4 4 00
01 4 1 11,01
10 4 1 11,01
11 4 3 11
00 5 4,5 11
01 5 1 01
10 5 1 01
11 5 3 11

Figure 3.13. Example FSM

00 01 10 11
1a 0 1 2 3
1b 4 5 6 7
2 8 9 10 11
3 12 13 14 15
4 16 17 18 19
5 20 21 22 23

Figure 3.14. Sl × I space mapping

Let us now illustrate with an example the General decomposition theorem for the
multi-state realizations of incompletely specified nondeterministic FSMs and its applica-
tion for the construction of the decompositional FSM structures.

Let us consider an incompletely specified finite state machine M in Fig. 3.13 and its

3.4. GENERAL DECOMPOSITION EXAMPLE 77

decomposition into two partial machines M1 and M2 defined by the following covers:

φ1
S = {1, 2; 1, 3; 4, 5} and φ1

I = {00; 01, 10, 11} for M1

and φ2
S = {1, 3, 4; 1, 2, 5} and φ2

I = {00, 11; 01, 10} for M2

After the labeling of states this introduces two copies of state 1: 1a and 1b and leaves other
states unchanged. Two trinities of covers are given: (φ1

I , φ
1
Sl

, φ1
Sl×I) and (φ2

I , φ
2
Sl

, φ2
Sl×I),

where:

φ1
I = {00; 01, 10, 11} = {i1; i2} φ1

Sl
= {1a, 2; 1b, 3; 4, 5} = {a; b; c}

φ1
Sl×I = {0, 8, 16, 20; 4, 12;

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23}

= {o1; o2; o3}

φ2
I = {00, 11; 01, 10} = {j1; j2}

φ2
Sl

= {1a, 3, 4; 1b, 2, 5} = {x; y}

φ2
Sl×I = {0, 1, 2, 3, 4, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 23;

1, 2, 5, 6, 8, 9, 10, 13, 14, 17, 18, 20, 21, 22} = {p1; p2}

In the above, for the conciseness of notation, the elements of the Sl × I space were
replaced with the numbers assigned to them by the mapping introduced in Fig. 3.14.

The interpretation of this situation is as follows. Machine M has a multi-state real-
ization ML, which in turn is composed of two partial machines: M1 and M2. States of
the partial machines are described by covers φi

Sl
(i = 1, 2). Each cover φi

Sl
groups in

one block the states of the machine ML, which correspond to a single state of a partial
machine Mi defined by this block. For example, φ2

Sl
defines a two-state machine M2,

which is in its first state 1a, 3, 4(x), whenever the machine ML is in state 1a, 3, or 4, and
it is in its second state 1b, 2, 5(y) whenever the machine ML is in one of the states 1b, 2
or 5.

Similarly, covers φi
I (i = 1, 2) define (multi-valued) input variables to the partial ma-

chines Mi. Values of the original inputs of M grouped in a single block of φi
I correspond

to the value of ii associated with this block. Note that except for primary input infor-
mation delivered to partial machines and modeled by φi

I , the input space of partial ma-
chines is expanded by information imported from other partial machines, and modeled

by φ′
Sl×I

i
.

Multi-valued output variables of the partial machines Mi defined by the blocks of
covers φi

Sl×I (i = 1, 2) convey partial information about the current state and input of
the machine ML, which is computed from the total input and state information of Mi

and transferred to Mi’s output. This information is used by function Θ to determine
the values of the primary outputs of ML and by other partial machines to acquire the
state/input information necessary for their computations and not produced locally. The
scheme of this decomposition is presented in Fig. 3.15. In the following we will show
how to determine the encoder/decoder functions and the STTs of the partial machines.

First, let us check whether the trinities define a valid decomposition. The derived
covers mentioned in Theorem 2 are the following:

φO = {00; 11; 01}

78
3.
G
E
N
E
R
A
L
D
E
C
O
M
P
O
S
IT
IO

N
T
H
E
O
R
E
M

Ol = OMl Sl = Sl Il = I

S2
= {x, y}

O2
= {p1, p2}

I2
= {j1, j2} × {o1, o2, o3}

S1
= {a, b, c}

I1
= {i1, i2}

O1
= {o1, o2, o3}

00 → i1j1

01, 10 → i2j2

11 → i2j1

Ψ

M∗ S∗ = φSl
I∗ = φI O = φSl×I

o0

o1
i0

i1

Ψ∗

00 → 00

01 → 01, 10
10 → 01, 10
11 → 11

r1 → 00

r2 → 11

r3 → 00

r4 → 11

r5 → 01

M1

M2

Con2

Θ∗Θ

o1p1 → r1

o1p2 → r2

o2p1 → r3

o3p1 → r4

o3p2 → r5

MGC

Fig
u
re

3
.1
5
.
S
ch
e
m
e
o
f
th
e
e
xa
m
p
le
d
e
co
m
p
o
sitio

n

3.4. GENERAL DECOMPOSITION EXAMPLE 79

φO groups in one block these output symbols, which are not distinguished by any input
combination; in this case there are no such symbols and φO is a zero-partition;

φI
Sl×I

1
= {0, 4, 8, 12, 16, 20(00);

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23(01, 10, 11)}

is the state/input information derived from the primary input information available to
machine M1;

φI
Sl×I

2
= {0, 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23(00, 11);

1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22(01, 10)}

is the state/input information derived from the primary input information available to
machine M2;

φSl

Sl×I

1
= {0, 1, 2, 3, 8, 9, 10, 11(a); 4, 5, 6, 7, 12, 13, 14, 15(b);

16, 17, 18, 19, 20, 21, 22, 23(c)}

is the state/input information derived from the state information available to machine
M1;

φSl

Sl×I

2
= {0, 1, 2, 3, 12, 13, 14, 15, 16, 17, 18, 19(x);

4, 5, 6, 7, 8, 9, 10, 11, 20, 21, 22, 23(y)}

is the state/input information derived from the state information available to machine
M2;

φI
Sl×I = φI

Sl×I

1
∗ φI

Sl×I

2
= {0, 4, 8, 12, 16, 20(00); 3, 7, 11, 15, 19, 23(11);

1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22(01, 10)}

φSl

Sl×I = φSl

Sl×I

1
∗ φSl

Sl×I

2
= {0, 1, 2, 3(1a); 4, 5, 6, 7(1b); 8, 9, 10, 11(2);

12, 13, 14, 15(3); 16, 17, 18, 19(4); 20, 21, 22, 23(5)}

φ21
Sl×I = φ′

Sl×I
1

= φSl×I(1)

φ12
Sl×I = φ′

Sl×I
2

= φ1
Sl×I

φSl
= φ1

Sl
· φ2

Sl
= {1a(ax); 2(ay); 3(bx); 1b(by); 4(cx); 5(cy)}

φSl×I = φ1
Sl×I · φ2

Sl×I = {0, 16(o1, p1); 8, 20(o1, p2); 4, 12(o2, p1);

1, 2, 3, 7, 11, 13, 14, 15, 17, 18, 19, 23(o3, p1);

1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22(o3, p2)}

= {r1, r2, r3, r4, r5}

Condition (1 p.1) requires that the entire information available to a partial machine

Mi (i.e. φI
Sl×I

i
·φSl

Sl×I

i
·φ

′

Sl×I

i
) is sufficient to unambiguously calculate the next state of

80 3. GENERAL DECOMPOSITION THEOREM

Mi. Similarly, condition (2) requires that this information is sufficient to unambiguously
calculate the output of Mi. The total information available to the partial machines M1

and M2 is as follows:

φin
Sl×I

1
= φI

Sl×I

1
· φSl

Sl×I

1
· φ

′

Sl×I

1
=

{0, 8; 4, 12; 16, 20; 1, 2, 3, 9, 10, 11; 5, 6, 7, 13, 14, 15;

17, 18, 19, 21, 22, 23} – for M1

φin
Sl×I

2
= φI

Sl×I

2
· φSl

Sl×I

2
· φ

′

Sl×I

2
=

{0, 16; 12; 3, 15, 19; 8, 20; 4; 7, 11, 23; 1, 2, 13, 14, 17, 18;

5, 6, 9, 10, 21, 22} – for M2

It is easy to verify that the condition (2) is met, i.e. φin
Sl×I

1
≤ φSl×I

1 and φin
Sl×I

2
≤

φSl×I
2.

To show how to verify condition (1), let us consider the first block of φin
Sl×I

1
: 0, 8.

First, we check whether this block leads to a block of φ1
Sl
. For this purpose, we calculate

the value of ∆φ1

Sl (0, 8) (Def. 3.16). Recall that ∆φi
Sl (D) returns a block of φi

Sl
, which

includes possible next states for all elements of D. Since D = 0, 8 = (1a, 00)(2, 00), its
unlabeled version is L′(D) = (1, 00)(2, 00). In the specification machine M this block
can lead to the blocks described by

δ((1, 00)(2, 00)) =
⋃

[

δ(1, 00)
δ(2, 00)

]

=
⋃

[

{1}
{1, 2}

]

= {{1}, {1, 2}}.

For the composition machine to be consistent with the specification machine, the next
state of M1 (B′

l ∈ φ1
Sl
) must include copies of the states in δ(0, 8), i.e. {1} ⊆ L′(B′

l) or

{1, 2} ⊆ L′(B′
l). The blocks of φ1

Sl
satisfying this condition are 1a, 2 and 1b, 3. Thus,

∆φ1

Sl (0, 8) = {1a, 2; 1b, 3} 6= ∅ and the first part of condition (1) (cover pair condition) for
the block 0, 8 is satisfied.

Similarly, for the first block of φin
Sl×I

2
= 0, 16 = (1a, 00)(4, 00), L′((1a, 00)(4, 00)) =

(1, 00)(4, 00).

δ((1, 00)(4, 00)) =
⋃

[

δ(1, 00)
δ(4, 00)

]

=
⋃

[

{1}
{4}

]

= {{1, 4}}.

The only block of φ2
Sl

that is consistent with 1, 4 is 1a, 3, 4, and therefore ∆φ2

Sl (0, 16) =

{1a, 3, 4} 6= ∅.
The synchronization criterion of the synchronized sets of cover pairs additionally

requires that the intersection of the blocks of the input covers of the partial machines

(
⋂

i Di ∈ φin
Sl×I

i
) leads to a block being an intersection of the partial machine’s next

states. In the case of the previously discussed blocks, for block 0, 8 of φin
Sl×I

1
there are

two blocks of φin
Sl×I

2
with nonempty intersections: 0, 16 and 8, 20 . For the first com-

bination (D1 = 0, 8 , D2 = 0, 16), ∆φ1

Sl (D1) = {1a, 2, 1b, 3}, ∆φ2

Sl (D2) = {1a, 3, 4}, i.e.
in these input conditions, M1 can perform the transition to state 1a, 2 or 1b, 3, and M2

3.4. GENERAL DECOMPOSITION EXAMPLE 81

transits to 1a, 3, 4. The possible products of the states are given by

⋂

i
∆φi

Sl (Di) =
⋂

[

{1a, 2, 1b, 3}

{1a, 3, 4}

]

= {1a; 3}.

This means that the combination of the two partial machines can move to either 1a or 3
in these conditions . Meanwhile, the product of the input conditions (

⋂

i Di = 0) should

lead to the state ∆
Q

i
φi

Sl (0) in the composition machine. δ(L′(0)) = δ(1, 00) = 1, so

∆
Q

i
φi

Sl (0) = {1a; 1b}. This means that for the composition machine to be consistent
with the specification machine, it has to move to either 1a or 1b. The confrontation of
these results shows that it is possible for the combination of partial machines to move
to a state inconsistent with the specification machine (3). In terms of the definition of

the synchronized set of cover pairs it means that for B ′
D1 = 1b, 3 ∈ ∆φ1

Sl (D1) and

B′
D2 = 1a, 3, 4 ∈ ∆φ2

Sl (D2) their intersection (
⋂

i B′
Di = 3) is not included in any block

of ∆
Q

i φi
Sl (

⋂

i Di) = {1a; 1b}.

However, if we limit the freedom of M1 by removing the state 1b, 3 from the set of its
possible next states, the synchronization condition for the remaining state of M1 (1a, 2)

is satisfied, because for B′
D1 = 1a, 2 ∈ ∆φ1

Sl (D1) and B′
D2 = 1a, 3, 4 ∈ ∆φ2

Sl (D2) their

intersection (
⋂

i B′
Di = 1a) is included in a block of ∆

Q

i
φi

Sl (
⋂

i Di).
Following this procedure we can verify that the next state blocks for the blocks of

φin
Sl×I

1
are as follows: {1a, 2(a), 1b, 3(b)} for 0, 8 (and 1b, 3(b) is then removed by the syn-

chronization criterion); a for 4, 12; c for 16, 20; b for 1, 2, 3, 9, 10, 11; b for 5, 6, 7, 13, 14, 15;

and b for 17, 18, 19, 21, 22, 23. For the blocks of φin
Sl×I

2
the next state blocks are as fol-

lows: x for 0, 16; y for 12; x for 3, 15, 19; {x; y} for 8, 20; {x; y} for 4 (and y is removed
by the synchronization criterion); x for 7, 11, 23; {x; y} for 1, 2, 13, 14, 17, 18 (and x is
removed by the synchronization criterion); {x; y} for 5, 6, 9, 10, 21, 22 (and x is removed
by the synchronization criterion).

Condition (3) requires that the information imported by any partial machine does not
exceed the total information available to all partial machines. It is satisfied, because

φI
Sl×I · φSl

Sl×I = {0; 1, 2; 3; 4; 5, 6; 7; 8; 9, 10; 11; 12; 13, 14; 15; 16;

17, 18; 19; 20; 21, 22; 23}

is smaller than both φ
′

Sl×I

i
.

The condition (4) is met when all elements in a block of φSl×I (after unlabeling)
have a common subset of output values in the specification machine M that is included
in a block of some specialization φO′ of φO . Recall that φSl×I = {0, 16; 8, 20; 4, 12;

1, 2, 3, 7, 11, 13, 14, 15, 17, 18, 19, 23; 1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22} and φO =
= {00; 11; 01}. Let φO′ = φO . To check condition (4) we need to compute values of
ΛφO′ (D) for each D ∈ φSl×I .
For example, for block D = 1, 2, 3, 7, 11, 13, 14, 15, 17, 18, 19, 23, the value of λ(L′(D))
is the combination of all possible output values produced in the specification machine
by elements of D. For the unlabeled elements 3, 7, 11, 15, 19, 23 the output value of the
specification machine is 11. The unlabeled versions of elements 1, 2, 13, 14, 17, 18 pro-
duce output 01 or 11 in the specification machine. Therefore, λ(L′(D)) = {11; 11, 01}.

82 3. GENERAL DECOMPOSITION THEOREM

Since 11 fits in the second block of φO′ , so ΛφO′ (D) = 11 6= ∅. For the other blocks
of φSl×I , the values of ΛφO′ (D) are: 00 for 0, 16, 11 for 8, 20, 00 for 4, 12 and 01 for

1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22.
Condition (5) must only be met for the state behavior realization. It states that each

block of the product state cover of the partial machines needs to contain exclusively copies
of the same state of M, so that the state of the specification machine can be determined
unambiguously. In this case, φ1

Sl
· φ2

Sl
= φSl

(0) so the condition is met and the decom-
position is both state and output behavior realization.

Thus we have demonstrated that the above given covers indeed define a valid decom-
position of M.

3.4.2 Output behavior realization

Similarly as in the example in Section 3.1.2, the state space of machine M∗ can be min-
imized without affecting its output behavior. If the state space of M1 is defined by the
cover φ1

Sl
= {1a, 2, 4, 5(a); 1b, 3(b)}, the product state cover of both partial machines be-

comes φSl
= {1a, 4(ax); 2, 5(ay); 3(bx); 1b(by); }, which does not form a Sl−S pair with

φS(0), since the first block contains copies of two different states 1 and 4 for example.
This is a violation of (5), and so the state behavior of M is not realized.

If the input and output covers remain unchanged, the only covers affected by the
change of φ1

Sl
are the following:

φSl

Sl×I

1
= { 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23(a);

4, 5, 6, 7, 12, 13, 14, 15(b)}

φin
Sl×I

1
= { 0, 8, 16, 20; 1, 2, 3, 9, 10, 11, 17, 18, 19, 21, 22, 23;

4, 12; 5, 6, 7, 13, 14, 15}

φSl

Sl×I ∗ φI
Sl×I = { 0, 16; 1, 2, 17, 18; 3, 19; 4; 5, 6; 7; 8, 20; 9, 10, 21, 22;

11, 23; 12; 13, 14; 15}

The verification of condition (1) proceeds along the lines outlined in Section 3.4.1. For

example, let us consider block D = 0, 8, 16, 20, ∆φ1

Sl (D) = {B′
l ∈ φSl

|∃B′ ∈ δ(L′(D)) :
B′ ⊆ L′(B′

l)}. The possible next state of the specification machine for this block is given

by δ(L′(D)). Since L′(D) = L′((1a, 00)(2, 00)(4, 00)(5, 00)) = (1, 00)(2, 00)(4, 00)(5, 00),

δ(L′(D)) =
⋃

δ(1, 00)
δ(2, 00)
δ(4, 00)
δ(5, 00)

=
⋃

{1}
{1, 2}
{4}
{4, 5}

=

= {{1, 4}; {1, 2, 4}; {1, 2, 5}; {1, 4, 5}; {1, 2, 4, 5}}.

Since any of these blocks fits in the unlabeled version of the first block of φ1
Sl

(L′(1a, 2, 4, 5) = 1, 2, 4, 5), the next state of M1 for the input situation described by D

will be a. For the other blocks of φin
Sl×I

1
, the next states are b, a and b, respectively.

As the cover φin
Sl×I

2
did not change, the condition of Sl × I − Sl pair for φin

Sl×I
2
and

φ2
Sl

is still satisfied. However, the change of φin
Sl×I

1
can influence the synchronization

3.4. GENERAL DECOMPOSITION EXAMPLE 83

criterion of the synchronized set of cover pairs. In this case, the synchronization criterion

is still satisfied, so condition (1) is still met for both partial machines. Also, φin
Sl×I

1
is still

smaller-or-equal-to φ1
Sl×I , so condition (2) is met. Since φ′

Sl×I
1

= φSl×I(1), condition (3)
is still satisfied. Finally, the output cover of M1 did not change, so condition (4) remains
satisfied.

Thus, if φ1
Sl

= {1a, 2, 4, 5(a); 1b, 3(b)} the covers satisfy all conditions of General
Decomposition Theorem except for (5) and the network of partial machines described by
these covers realizes output behavior of M without realizing its state behavior.

3.4.3 Construction of the decomposition structure

Composition machine M∗

We will show, how the machines M∗ and Mi considered in the proof of the General
Decomposition Theorem can actually be constructed from their cover descriptions, and
that they indeed constitute a realization of machine M.

Machine M∗ is defined by a quintuple (φI , φSl
, φSl×I , δ

∗, λ∗). Its input alphabet is
described by the cover φI = φ1

I ∗ φ2
I = {00; 11; 01, 10}. It therefore has three distinct

input values. Similarly, its state cover φSl
= φ1

Sl
∗ φ2

Sl
= {1a; 1b; 2; 3; 4; 5}, describes a

6-valued state variable. Finally, output of the machine is described by the output cover

φSl×I = φ1
Sl×I · φ

2
Sl×I = { 0, 16(r1); 8, 20(r2); 4, 12(r3);

1, 2, 3, 7, 11, 13, 14, 15, 17, 18, 19, 23(r4);

1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22(r5)}

that defines a 5-valued output variable.
To build the state transition table (STT) for machine M∗, we need to calculate values

of its next-state and output functions for all combinations of input (blocks of φI) and state
(blocks of φSl

). Recall that according to definitions (3.3.7) and (3.3.8), the functions are
defined as follows:

∀B ∈ φSl
∀A ∈ φI : δ∗(B, A) = ∆φSl (B × A) and λ∗(B, A) = [B × A]φSl×I

Let us consider the behavior of M∗ in the state B = 1a under the input A = 01, 10. The
total state/input information available in these conditions is B × A = (1a, 01)(1a, 10) =
1, 2. Next state of the machine is calculated by calculating the next state for this block

as ∆φSl . In this case, the unlabeled version of this block is (1, 01)(1, 10), which leads to
state 1 in the specification machine. In M∗ state 1 can be labeled to fit either in the block
1a or 1b of φ1

Sl
. Therefore, δ∗(B, A) = {1a; 1b}. The output of M∗ in this situation is

established as a set of the blocks of the output cover including B ×A. In this case, these
are blocks 4 and 5, so λ∗(B, A) = r4, r5.

Following this procedure, the STT in Fig. 3.16 is built. Since a check was done in the
verification process of the condition (4) to see whether for any block of φSl×I an output
value of the specification machine can be computed, the corresponding output values are
given in parenthesis. It can be easily verified that machine in Fig. 3.16 is a multi-state
state and output behavior realization of machine in Fig. 3.13, because for any copy of a
state of M, M∗ moves under the same input conditions to some copy (or copies) of the
next states of M and produces a subset of output values.

84 3. GENERAL DECOMPOSITION THEOREM

in ps ns out

00 1a 1a, 1b r1(00)

01, 10 1a 1a, 1b r4(11), r5(01)

11 1a 3 r4(11)

00 1b 1a, 1b r3(00)

01, 10 1b 1a, 1b r5(01)

11 1b 3 r4(11)

00 2 1a, 1b, 2 r2(11)

01, 10 2 1a, 1b r5(01)

11 2 3 r4(11)

00 3 2 r3(00)

01, 10 3 1a, 1b r4(11), r5(01)

11 3 3 r4(11)

00 4 4 r1(00)

01, 10 4 1a, 1b r4(11), r5(01)

11 4 3 r4(11)

00 5 4, 5 r2(11)

01, 10 5 1a, 1b r5(01)

11 5 3 r4(11)

Figure 3.16. Transition table of machineM∗

Partial machines Mi

Remember that the partial machine M1 has three states associated with the states of the
original machine in the way defined by cover φ1

Sl
. We will refer to those states as a, b

and c. The input alphabet of M1 is determined by combination of φ1
I and φ′

Sl×I
1
. In this

case, since φ′
Sl×I

1
= φSl×I(0) imported cover does not introduce new information, and

may be omitted in consideration. The possible input values for M1 therefore are i1 and
i2. Let us establish functions δ1 and λ1, as defined by expressions (3.3.19) and (3.3.20).

For example, let us consider behavior of M1 in state a under input i1. The current
state and input of the specification machine M available to the partial machine M1 is
given by the expression (a × i1) ∩ (Sl × I). The first component of the expression is
the information available locally in the machine (combination of local state information
and local input information), while the second component expresses a refinement of the
information available through imported information. In this case, since no information
is imported, the lack of refinement is indicated by an intersection with the entire space
(Sl × I). The information available to the machine therefore is (a× i1) = (1a, 2× 00) =
(1a, 00); (2, 00) or, in short, 0, 8. To establish the next state for these input conditions,
we follow the procedure used for verification of condition (1) in Section 3.4.1. Since each

distinct input situation of a partial machine corresponds to a block of φin
Sl×I

i
, condition

(1) guarantees that a next state can be found for this input condition. In this case, in
Section 3.4.1 we have shown that the next state in input conditions 0, 8 is a or b, but the
synchronization criterion excludes b. Thus, δ1(a, i1) = a. Condition (2) guarantees that
0, 8 is included in some block of φ1

Sl×I (in this case, the first), and the output of M1

3.4. GENERAL DECOMPOSITION EXAMPLE 85

therefore is λ1(a, i1) = o1. Following the same procedure we obtain the complete state
transition table of machine M1 given in Fig. 3.17.

Similarly, machine M2 has two states x and y defined by blocks of φ2
Sl
. However,

since M2 imports information from M1, its input alphabet is a combination of symbols

of φ2
I and φ′

Sl×I
2
: {j1, j2} × {J ′

1, J
′
2, J

′
3}. Since φ′

Sl×I
2

= φ1
Sl×I , J

′
1 = o1,J

′
2 = o2 and

J ′
3 = o3, and hence I2 = {(j1, o1); (j1, o2); (j1, o3); (j2, o1); (j2, o2); (j2, o3)}. Let us con-

sider, for example, the transition ofM2 from state x under input (j1, o1). The input/state
of the specification machine is given by (x× j1)∩ o1 = (1a, 3, 4× 00, 11)∩ 0, 8, 16, 20 =
0, 3, 12, 15, 16, 19∩0, 8, 16, 20 = 0, 16. As discussed earlier, this combination leads to the
state associated with the first block of φ2

Sl
. The next state for this combination therefore

is δ2(x, (j1, o1)) = x. The output of the partial machine M2 for this combination is the
block of φ2

Sl×I containing 0, 16, i.e. p1. In the same fashion, the remaining transitions
of M2 can be determined. The resulting STT of M2 is given in Fig. 3.18. Note that four
of the transitions do not have next-state/output values specified. These transitions cor-
respond to the input combinations of j2 and o1 or o2, which actually cannot occur. This
stems from the fact that j2 corresponds to primary input values 01 or 10, while both o1

and o2 may only be produced by M1 under input i1, which corresponds to primary input
value 00. These two input conditions cannot occur at the same time, and therefore the
four transitions may be treated as don’t-cares and used for minimization of M2.

The combination of the above-constructed partial machinesM1 andM2 (themachine
MGC) has a transition table defined by functions δGC and λGC . To illustrate determina-
tion of these functions, let us consider a situation, in which machine M1 is in state a,
M2 in state x, and the value of function Ψ is i1j1.

in ps ns out
i1 a a o1

i2 a b o3

i1 b a o2

i2 b b o3

i1 c c o1

i2 c b o3

Figure 3.17. STT of M1

in imp ps ns out
j1 o1 x x p1

j1 o2 x y p1

j1 o3 x x p1

j2 o1 x * *
j2 o2 x * *
j2 o3 x y p1,p2

j1 o1 y x, y p2

j1 o2 y x p1

j1 o3 y x p1

j2 o1 y * *
j2 o2 y * *
j2 o3 y y p2

Figure 3.18. STT of M2

86 3. GENERAL DECOMPOSITION THEOREM

δGC

([

a
x

]

,

[

i1
j1

])

=

[⋃

C1∈[(a∩x)×(i1∩j1)]φ′

Sl×I
1 δ1(a, (i1, C

1))
⋃

C2∈[(a∩x)×(i1∩j1)]φ′

Sl×I
2 δ2(x, (j1, C

2))

]

=

[

δ1(a, (i1, Sl × I))
δ2(x, (j1, o1))

]

=

[

{a}
{x}

]

λGC

([

a
x

]

,

[

i1
j1

])

=

[⋃

C1∈[(a∩x)×(i1∩j1)]φ′

Sl×I
1 λ1(a, (i1, C

1))
⋃

C2∈[(a∩x)×(i1∩j1)]φ′

Sl×I
2 λ2(x, (j1, C

2))

]

=

[

λ1(a, (i1, Sl × I))
λ2(x, (j1, o1))

]

=

[

{o1}
{p1}

]

This situation triggers transition (i1, a, a, o1) in M1. Since the output of M1 is o1,
the transition (j1, o1, x, x, p1) is triggered in M2. Combined, this results in transition
([i1, j1], [a, x], [a, x], [o1, p1]). The entire STT of MGC is given in Fig. 3.19. Taking into
consideration the mapping functions Ψ, Φ and Θ, we obtain corresponding values of
input, state and output of the machine M∗ given in parenthesis. Again, it can be verified
that the composition of partial machines Mi is a state and output behavior realization of
M∗ and of M.

In this way, we have demonstrated how the trinities of covers from Theorem 3.2 de-
termine the multi-state decompositional realization structures of incompletely specified
sequential machines.

in ps ns out
[i1, j1](00) [a, x](1a) [a, x](1a) [o1,p1](r1)

[i2, j2](01, 10) [a, x](1a) [b, y](1b) [o3,p1](r4),[o3,p2](r5)
[i2, j1](11) [a, x](1a) [b, x](3) [o3,p1](r4)
[i1, j1](00) [a, y](2) [a, x](1a), [a, y](2) [o1,p2](r2)

[i2, j2](01, 10) [a, y](2) [b, y](1b) [o3,p2](r5)
[i2, j1](11) [a, y](2) [b, x](3) [o3,p1](r4)
[i1, j1](00) [b, x](3) [a, y](2) [o2,p1](r3)

[i2, j2](01, 10) [b, x](3) [b, y](1b) [o3,p1](r4),[o3,p2](r5)
[i2, j1](11) [b, x](3) [b, x](3) [o3,p1](r4)
[i1, j1](00) [b, y](1b) [a, x](1a) [o2,p1](r3)

[i2, j2](01, 10) [b, y](1b) [b, y](1b) [o3,p2](r5)
[i2, j1](11) [b, y](1b) [b, x](3) [o3,p1](r4)
[i1, j1](00) [c, x](4) [c, x](4) [o1,p1](r1)

[i2, j2](01, 10) [c, x](4) [b, y](1b) [o3,p1](r4),[o3,p2](r5)
[i2, j1](11) [c, x](4) [b, x](3) [o3,p1](r4)
[i1, j1](00) [c, y](5) [c, x](4), [c, y](5) [o1,p2](r2)

[i2, j2](01, 10) [c, y](5) [b, y](1b) [o3,p2](r5)
[i2, j1](11) [c, y](5) [b, x](3) [o3,p1](r4)
[i1, j2](∅) * * *

Figure 3.19. STT of MGC

3.5. CONCLUSIONS 87

3.5 Conclusions

In this chapter, we have presented the theory of decomposition of finite state machines
based on information modeling with covers. We have presented the theorem about exis-
tence of the general decomposition of an incompletely specified FSM into a network of
partial FSMs interconnected in an arbitrary fashion, with input encoder and output de-
coder and with multi-state realization of the FSM. The theorem views all elements of the
decomposition (i.e. partial machines and coders) as information processing sub-systems,
where the input and output information streams are modeled by covers. The theorem
formulates conditions that these input/output covers need to fulfill in order to define a
valid decomposition. Given a set of covers fulfilling the conditions of the theorem, we are
guaranteed to be able to build an actual network of partial FSMs that will realize the be-
havior of the original specification machine. We demonstrated with an example, how the
covers describing the decomposition relate to the particular partial machines and coder
blocks in the decomposition network.

The decomposition scheme described by the theorem is the most general known de-
composition scheme for any finite state machine. It includes multi-state behavior realiza-
tions and generalized don’t-cares in both output and next-state functions. Thus, it covers
also nondeterministic FSMs. Since Boolean functions are a special case of FSMs with
a single state and trivial next-state function, the theorem also covers decompositions of
Boolean functions. In [35], Jóźwiak showed that other well known decomposition struc-
tures, such as serial and parallel decomposition, are some special cases of the structures
described by the General Decomposition Theorem.

In the following chapters we will focus on one specific special case of the General De-
composition Theorem that is related to FSM state assignment, and we will use the condi-
tions of the theorem to formulate conditions for a valid assignment. We will also mention
other practical application of the theorem to functional decomposition of Boolean func-
tions. However, the applicability of the theorem goes far beyond these two applications.
It can be used in any field dealing with discrete systems involving finite state machines,
functions or relations, and their decompositions.

88 3. GENERAL DECOMPOSITION THEOREM

Chapter 4

General Decomposition in circuit
synthesis

4.1 Sequential synthesis

The goal of FSM state encoding is to assign binary codes to the symbolic states of a se-
quential machine in such a way that the resulting binary next-state and output functions
can be effectively and efficiently realized in the target implementation technology. Re-
gardless of the method used to assign the codes, a sequential machine encoded with a
valid encoding is functionally equivalent or compatible with the original, symbolic ma-
chine. If no state minimization is performed by the state encoding, the encoded machine
is a state and output behavior realization of the symbolic machine. Otherwise it is an
output behavior realization. We can interpret the encoded machine structure as a special
case of the general decomposition of the original, symbolic machine into a network of
two-state (binary) partial machines.

In the following, we will show how a particular state assignment induces the corre-
sponding decomposition of the symbolic machine. By applying conditions of the General
Decomposition Theorem to this specific decomposition, we derive conditions for a valid
state assignment. These conditions, which are more general and flexible than conditions
used in current state assignment methods, form the basis of a general, implementation-
platform-independent encoding method. As a result of the underlying flexible condi-
tions, the method is able to exploit some implicit optimizations of the encoded machine,
making its implementation more efficient.

4.1.1 State-encoding-induced decomposition

Let us consider how state encoding induces decomposition of a symbolic finite state ma-
chine. First, we will discuss encoding of completely specified machines and then extend
the results to the incompletely specified case.

To illustrate the process, we will consider the completely specified FSM given in
Fig. 4.1(a). The example state assignment for this machine, given in Fig. 4.1(b), mini-
mized the state space of the machine by assigning the same code to states b and e. The
gate implementation of the example machine is shown in Fig. 4.2. We superimposed on

89

90 4. GENERAL DECOMPOSITION IN CIRCUIT SYNTHESIS

the circuit the outline of the decomposition structure introduced by the encoding. Let us
discuss how this structure was derived.

Decomposition structure

The current state of the symbolic machine is determined by the value of a single sym-
bolic (multi-valued) state variable. In the case of encoded machine, the current state is a
composition of the states of the binary encoding variables. For instance, in the encoded
machine in Fig. 4.1 the current state a is composition of the state ’0’ of the first encoding
bit and state ’1’ of the second encoding bit, while state b is indicated by state ’1’ of the
first encoding bit and ’1’ of the second. In this formulation, we can view each binary
encoding variable as a state variable of a partial, two-state machine. The composition of
the current states of these partial machines gives the current state of the realized original
symbolic machine.

In addition to the current state computation performed by the partial state machines,
the encoded machine has to produce the primary output of the realized machine. This
task is performed by the output decoder block Θ. This combinational block uses outputs
of the partial machines (binary encoding bits), which deliver the state information, and
the primary inputs to compute the primary outputs. (In general, the output decoder uses
some sub-sets of the state variables and input variables to compute a particular primary
output). Naturally, as in the case of any combinational function, the output encoder block
can be viewed as a special case of sequential machine with trivial state behavior. This way,
it is subject to further decomposition according to General Decomposition Theorem. In
particular, it can be decomposed into a set of binary functions (combinational partial
machines), each producing a single binary primary output of the original machine.

The last element of general decomposition is the input encoder block Ψ. Since state
assignment does not introduce any input encoding, the role of the input encoder is lim-
ited to distribution of the binary inputs to the particular partial machines and the output
decoder sub-circuits. The connection between the input encoder and the output decoder
blocks is realized by a trivial combinational partial machine that simply transfers inputs
received from the input encoder block to the output decoder block (identity function).
Note that for a Moore machine, where the output only depends on the current state, this
trivial machine is not needed, as the output decoder does not need any primary input
information.

The resulting decomposition structure is shown in Fig. 4.3. The partial machine M1
is the sequential machine associated with the first encoding bit. Therefore, the machine
has two states: ’0’ for the original machine’s states a and d and ’1’ for states b, c and
e (see encoding table in Fig. 4.1). Thus, its state space is described by the set system
π1

S = {a, d; b, c, e}. The second state-bit-machine, M2, has the state space defined by the
second encoding bit — it is in state ’0’ for the states c and d and in state ’1’ for the states
a, b and e. Therefore, π2

S = {c, d; a, b, e}.
Since in general state assignment does not introduce any encoding of the inputs or

state information flowing between the machines, the role of both the input encoder block
Ψ and the inter-machine connection blocksConi,j is reduced to distribution of the binary
input and state variables. The selection of particular binary signals to distribute to partial
machines is determined by the input supports of the combinational functions associated
with each of the machines. These input supports can be derived from the encoded form

4.1. SEQUENTIAL SYNTHESIS 91

pi1pi2 ps ns po1po2

00 a d 01

01 a a 00

10 a c 11

11 a b 10

00 b a 11

01 b d 10

10 b a 11

11 b d 10

00 c d 11

01 c a 11

10 c d 11

11 c a 11

00 d a 01

01 d d 01

10 d e 11

11 d c 11

00 e a 11

01 e d 10

10 e a 11

11 e d 10

(a) Transition table

state code

a 01

b 11

c 10

d 00

e 11

(b) Encoding

pi1 pi2 sb1 sb2 sb1 sb2 po1 po2

0 0 0 1 0 0 0 1

0 1 0 1 0 1 0 0

1 0 0 1 1 0 1 1

1 1 0 1 1 1 1 0

0 0 1 1 0 1 1 1

0 1 1 1 0 0 1 0

1 0 1 1 0 1 1 1

1 1 1 1 0 0 1 0

0 0 1 0 0 0 1 1

0 1 1 0 0 1 1 1

1 0 1 0 0 0 1 1

1 1 1 0 0 1 1 1

0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 1

1 0 0 0 1 1 1 1

1 1 0 0 1 0 1 1

0 0 1 1 0 1 1 1

0 1 1 1 0 0 1 0

1 0 1 1 0 1 1 1

1 1 1 1 0 0 1 0

(c) Encoded machine

Figure 4.1. Example finite state machine

D

D

Ψ
Θ

po1sb1

sb2
po2

pi1

pi2

Figure 4.2. Circuit implementing the encoded machine

92 4. GENERAL DECOMPOSITION IN CIRCUIT SYNTHESIS

of the finite state machine, such as the one presented in Fig. 4.1(c). Using any input
support minimization method we can determine that the supports of the binary outputs
are as follows:

sb1 : {pi1, sb1}

sb2 : {pi2, sb1, sb2}

po1 : {pi1, sb1}

po2 : {pi2, sb2}

We may further differentiate between the primary inputs and state inputs in the input
support :

sb1 : {IS1, SS1} = {{pi1}, {sb1}} (4.1.1)

sb2 : {IS2, SS2} = {{pi2}, {sb1, sb2}}

po1 : {IS3, SS3} = {{pi1}, {sb1}}

po2 : {IS4, SS4} = {{pi2}, {sb2}}

This way we determine that the primary input information delivered to M1 by the Ψ
block is equal to the set system induced on the input symbols by the first input bit, i.e.
π1

I = {00, 01; 10, 11}. In general, the primary input information available to a partial

O = π2

S

S = π2

S
= {cd;abe}

I = (π2

I , π1

S)

O = πOB2

S×I

S = {ε}

I = (πIB2

I , π2

S)

O = πOB1

S×I

S = {ε}

I = (πIB1

I
, π1

S
)

S = π1

S
= {ad; bce}

M1

M3

Ψ

M2

O = π1

S

Θ

po2

po1

I = π1

I

Con2,1

sb1

sb2

S = π3

S
= {abcde}

I = (πIB1

I
, πIB2

I
)

O = I

MΘ1

MΘ2

π′
S

2

pi1

pi2

Figure 4.3. Encoding-induced decomposition

4.1. SEQUENTIAL SYNTHESIS 93

machine can be described by the product of set systems induced by the primary inputs
in the input support of the state bit associated with this machine, i.e.

πi
I =

∏

pij∈ISi

πIBj
I (4.1.2)

where:
– ISi are the primary inputs in the support of the state bit i (primary support)
– πIBx

I is the set system induced on the input symbols by the primary input
bit x.

Similarly, the state information imported by a particular partial machine is a product of
the state set systems associated with the state bits in the state input support of the partial
machine, i.e.

π′
S

i =
∏

sbj∈SSi\{sbi}

πj
S (4.1.3)

where SSi are the state inputs in the support of the state bit i (state support)

In the example above, the state support of M2 contains sb1, and therefore the state infor-
mation imported by M2 is π′

S
2 = π1

S = {ad, bce}.
This example brings us to another specific feature of the encoding-induced decompo-

sition. Since the output of a partial sequential machine is in fact an encoding bit, it only
conveys state information, without any partial primary input information. Therefore,
instead of describing the output of a partial machine by πi

S×I , as in General Decomposi-
tion Theorem, we can use simplified representation by the state set system of the partial
machine πi

S .
Let us consider now the combinational machines MΘ1 and MΘ2 producing the pri-

mary outputs. As already mentioned, they are the result of decomposition of the combi-
national output decoder block Θ. As for any combinational machine, the state space of
Θ is a single state that does not change, and therefore the state behavior of the output
machines is trivial and can be omitted. The input of Θ is composed of state bits (out-
puts of sequential partial machines M1 and M2) and the primary inputs forwarded by
the trivial machine M3. These inputs are distributed without any encoding to the output
machines according to the input supports of the primary output functions. Therefore,
as in the case of sequential machines, the input information of an output machine has
two components: the primary input component being the combination of primary input
information delivered by the primary input bits in the input support of the binary output
function computed by the machine, and the state component being the combination of
state information delivered by the state bits in the input support of the binary output
function. Since the output of each output machine is a primary binary output, the out-
put information of the machine is described by the set system on the state/input space
induced by the corresponding binary output variable (πOBi

S×I).

Impact on General Decomposition Theorem

The structure described in the previous section is a special case of the general decom-
position of the symbolic machine. Therefore, as for any other decomposition, the condi-
tions imposed by the General Decomposition Theorem on the set systems describing the

94 4. GENERAL DECOMPOSITION IN CIRCUIT SYNTHESIS

information flows within the decomposition structure have to hold. Now, we can formu-
late the conditions imposed by the General Decomposition Theorem on the set systems
defining the encoding. Let us analyze how the above mentioned specific features of the
encoding-induced decomposition influence the specific formulation of General Decom-
position Theorem.

Partial machines In our analysis we have to distinguish between the two types of ma-
chine present in the encoded network: the sequential partial machines (state-bit ma-
chines) implementing the next-state function, and the combinational partial machines
(output machines) implementing the output decoder, i.e. the output function. We will
omit the trivial machine that forwards the input information to the Θ block (M3 in
Fig.4.3), as it does not perform any information processing, and therefore does not intro-
duce any new set systems.

The most significant impact on the formulation of General Decomposition Theorem
is associated with the fact that the trinity of partitions (πi

I , π
i
S , πi

S×I) is no longer neces-
sary to define a partial machine. In the case of state-bit machines, their input information
is unambiguously defined by their input supports, and the state information is defined
by the state partition. The output is equal to the state partition, and so πi

S×I is reduced to
πi

S . A state-bit machine can be therefore described by a pair {(ISi, SSi), π
i
S}. For each

output machine, its input information is also defined by its input support, and its output
information is induced by the corresponding primary output variable. Thus, an output
machine can be described by a pair {(ISo, SSo), π

OBo
S×I }.

Input information of a partial machine This influences the expression for the total in-

put and state information available to a partial machine (πin
S×I

i
= πS

S×I
i
· πI

S×I
i
· π′

S×I
i).

For state-bit machines, the last factor in this expression (the imported information) be-
comes now the input/state information induced by the imported state information, i.e.

π′
S×I

i = indS
S×I

(

π′
S

i
)

= indS
S×I

∏

sbj∈SSi

πj
S

 (4.1.4)

This expression contains the information about the machine’s own state if it is used

by the machine (πi
S if sbi ∈ SSi), so the first factor of the input information πS

S×I
i

=
indS

S×I(π
i
S) is covered by the third and can be removed.

The output machines do not import information from each other, but to introduce a
uniform notation we may treat the state-bit inputs in a support of an output machine as
an imported information. Then, the imported part of the input information is described
with the same expression as for state-bit machines. The output machines do not have
any own state information, so the first factor of input information can also be removed.

The second factor, the state/input information delivered by primary inputs can be
described for both state-bit and output machines by

πI
S×I

i
= indI

S×I(π
i
I) = indI

S×I

∏

pij∈ISi

πIBj
I

 (4.1.5)

4.1. SEQUENTIAL SYNTHESIS 95

In summary, the total state/input information available to either state-bit or output partial
machine is

πin
S×I

i
= indI

S×I

∏

pij∈ISi

πIBj
I

 · indS
S×I

∏

sbj∈SSi

πj
S

 (4.1.6)

This expression can be used to formulate the specific modified conditions (1) and (2) of
the General Decomposition Theorem.

In the example we follow, the state information available to M1 is determined by its
state input support ({sb1}, see Eq.4.1.1) and is equal to π1

S . The primary input informa-
tion is determined by the primary input support ({i1}) of the state bit associated with the
machine and is equal to πIB1

I . Therefore, the total input information available to M1 is

πin
S×I

1
= indI

S×I

(

πIB1
I

)

· indS
S×I

(

π1
S

)

=

= indI
S×I

(

{00, 01; 10, 11}
)

· indS
S×I

(

{ad; bce}
)

= {(a, 00)(a, 01)(b, 00)(b, 01)(c, 00)(c, 01)(d, 00)(d, 01)(e, 00)(e, 01);

(a, 10)(a, 11)(b, 10)(b, 11)(c, 10)(c, 11)(d, 10)(d, 11)(e, 10)(e, 11)}

· {(a, 00)(a, 01)(a, 10)(a, 11)(d, 00)(d, 01)(d, 10)(d, 11);

(b, 00)(b, 01)(b, 10)(b, 11)(c, 00)(c, 01)(c, 10)(c, 11)(e, 00)(e, 01)(e, 10)(e, 11)}

= {(a, 00)(a, 01)(d, 00)(d, 01); (a, 10)(a, 11)(d, 10)(d, 11);

(b, 00)(b, 01)(c, 00)(c, 01)(e, 00)(e, 01);

(b, 10)(b, 11)(c, 10)(c, 11)(e, 10)(e, 11)}

(4.1.7)

Machine M2 uses primary input {i2} and both state bits, and so its input information is

πin
S×I

2
= indI

S×I

(

πIB2
I

)

· indS
S×I

(

π1
S · π2

S

)

=

= {(a, 00)(a, 10); (a, 01)(a, 11); (c, 00)(c, 10); (c, 01)(c, 11);

(b, 00)(b, 10)(e, 00)(e, 10); (b, 01)(b, 11)(e, 01)(e, 11); (d, 00)(d, 10);

(d, 01)(d, 11); }

(4.1.8)

96 4. GENERAL DECOMPOSITION IN CIRCUIT SYNTHESIS

For machines MΘ1 and MΘ2 input information is

πin
S×I

3
= indI

S×I

(

πIB1
I

)

· indS
S×I

(

π1
S

)

=

= indI
S×I

(

{00, 01; 10, 11}
)

· indS
S×I

(

{ad; bce}
)

= {(a, 00)(a, 01)(d, 00)(d, 01); (a, 10)(a, 11)(d, 10)(d, 11);

(b, 00)(b, 01)(c, 00)(c, 01)(e, 00)(e, 01);

(b, 10)(b, 11)(c, 10)(c, 11)(e, 10)(e, 11)}

πin
S×I

4
= indI

S×I

(

πIB2
I

)

· indS
S×I

(

π2
S

)

=

= {(a, 00)(a, 10)(b, 00)(b, 10)(e, 00)(e, 10);

(a, 01)(a, 11)(b, 01)(b, 11)(e, 01)(e, 11);

(c, 00)(c, 10)(d, 00)(d, 10); (c, 01)(c, 11)(d, 01)(d, 11)}

(4.1.9)

Output of the partial machines The condition (2) of the General Decomposition Theo-
rem requires in general case that the output information of a machine can be computed
from its input information. For state-bit machines, the output of a machine is its state,
so a machine is capable of producing the output as long as it is capable of producing the
state. Thus, condition (2) is covered by condition (1) and can be left out. For output-bit
machines, the input information has to be sufficient to compute the binary primary out-
put of the machine that is associated with the particular partial machine. This can be
described as

πin
S×I

n+o ≤ πOBo
S×I (4.1.10)

The n + o index reflects the numbering of the partial machines, such that the machines
1, . . . , n (where n is the code length) are the state-bit partial machines, while n+1, . . . , n+
l (where l is the number of primary output bits) are the output-bit partial machines.

Remaining conditions The condition (3), which prevents forming of combinational
loops through imported information, can be removed as only state information is trans-
ferred between the machines and the feasibility of producing this information is already
ascertained by condition (1).

The condition (4) of General Decomposition Theorem describes the conditions for
the network to produce valid primary output of the realized machine. This is, however,
already guaranteed by the validity of the output machines, i.e. condition (2). Therefore,
condition (4) can be omitted.

The condition (5) of General Decomposition Theorem remains unaffected by the spe-
cific nature of the decomposition. For the network to realize the state behavior of the sym-
bolic machine, the combination of state information delivered by particular machines still
has to allow for unambiguous identification of the current state of the symbolic machine.

State assignment theorem As discussed above, the specific structure of the encoding-
induced decomposition gives rise to specific reformulation of the conditions of the Gen-
eral Decomposition Theorem.

4.1. SEQUENTIAL SYNTHESIS 97

The particular form of partial machines and the structure of their interconnections
allows to express the input information of the partial machines as a function of the sup-
ports of the binary functions realized by these machines. This influences the formulation
of the conditions expressing the relationship of input and output information in the par-
tial machine. Moreover, the distinction between the state-bit and output-bit partial ma-
chines allows to omit some of the conditions concerning state or output behavior. In par-
ticular, the output behavior of state-bit machines is the direct consequence of their state
behavior, so the output-behavior condition (2) for these machines can be omitted. On
the other hand, the output-bit machines are purely combinational, so the state-behavior
condition (1) can be omitted for them.

Also, the conditions (3) and (4) turn out to be superseded by the other conditions,
and thus can be removed. The only condition that remains essentially unaffected by the
encoding-specific structure is the condition (5).

Taking into account all of the above, we can derive from the General Decomposition
Theorem the conditions for a valid state assignment described by a set of two-block set
systems.

Let M = {I, S, O, δ, λ} be a completely specified finite state machine with a set of k
binary inputs PIM = {pi1, . . . , pik} and a set of l binary outputs POM = {po1, . . . , pol}.
Let πIBi

I for i = 1, . . . , k be a partition induced on the input alphabet symbols by the
binary primary bit input number i and πOBo

I for o = 1, . . . , l be a partition induced on
the output alphabet symbols by the binary primary output bit number o. Let encoding
EM = {π1

S , . . . , πn
S} be a set of n two-block partitions on the set of states S of M. Let

SBM (EM) = {sb1, . . . , sbn} be a set of binary state variables, such that a variable sbi

assumes value 0 for states that are present in the first block of πi
S and value 1 for states

that are present in the second block of πi
S .

Definition 4.1 (Support pair set). A support pair set for a k-input, l-output machine M en-
coded with n-bit encoding EM is a set of pairs (ISi, SSi) for i = 1, . . . , n, . . . , n + l, such
that ISi ⊆ PIM , SSi ⊆ SBM (EM) and ISi ∪ SSi is an input support of the ith binary
next-state (i = 1, . . . , n) or output function (i = n + 1, . . . , n + l) of the encoded M.

For a given encoding EM and some support pair set {(ISi, SSi) | i = 1, . . . , n + l}
for M encoded with EM let

πin
S×I

i
= indI

S×I

∏

pij∈ISi

πIBj
I

 · indS
S×I

∏

sbj∈SSi

πj
S

 (4.1.11)

denote the input information of a partial state-bit machine (for i = 1, . . . , n) or a partial
output-bit machine (for i = n + 1, . . . , n + l).

Theorem 4.1 (Encoding of completely specified FSM). Let M = {I, S, O, δ, λ} be a com-
pletely specified finite state machine with k binary inputs and l binary outputs. A set of two-block
partitions E = {π1

S , . . . , πn
S} defines a valid n-bit encoding with output behavior realization

of M if and only if a support pair set {(ISi, SSi) | i = 1, . . . , n+ l} exists for M encoded with
E such that

(1) ∀i ∈ {1 . . . n} (πin
S×I

i, πi
S) is a (S × I − S) partition pair

(2) ∀o ∈ {1 . . . l} πin
S×I

o+n ≤ πOBo
S×I

98 4. GENERAL DECOMPOSITION IN CIRCUIT SYNTHESIS

Additionally, if

(3)
∏

i∈{1...n} πi
S = πS(0)

then the state behavior of M will be realized too.

To verify the conditions of the above theorem for the example machine, we first an-
alyze the next states of the blocks of πin

S×I
1 (Eq.4.1.7). For elements of the first block

(a, 00)(a, 01)(d, 00)(d, 01) the next states of the realized machine are d, a, a, d, respec-
tively. Therefore, δ((a, 00)(a, 01)(d, 00)(d, 01)) = {a, d} is a subset of the first block of
π1

S . Similarly, for the remaining blocks of πin
S×I

1 the next state sets are {b, c, e}, {a, d},
and {a, d}, respectively. Each of these next state sets is included in a block of π1

S , so
(πin

S×I
1, π1

S) is a (S × I −S) pair. In the same manner it can be verified that (πin
S×I

2, π2
S)

is a (S × I − S) pair, and therefore the condition (1) is fulfilled.
Condition (2) requires that the input partitions of the output machines (πin

S×I
3 and

πin
S×I

4, see Eq. 4.1.9) are smaller or equal to the partitions induced by the values of the
primary output bits. We can derive the induced partitions directly from the STT in Fig. 4.1

πOB1
S×I = {(a, 00)(a, 01)(d, 00)(d, 01);

(a, 10)(a, 11)(b, 00)(b, 01)(b, 10)(b, 11)(c, 00)(c, 01)(c, 10)(c, 11)(d, 10)(d, 11) · · ·

· · · (e, 00)(e, 01)(e, 10)(e, 11)}

πOB2
S×I = {(a, 01)(a, 11)(b, 01)(b, 11)(e, 01)(e, 11);

(a, 00)(a, 10)(b, 00)(b, 10)(c, 00)(c, 01)(c, 10)(c, 11)(d, 00)(d, 01)(d, 10)(d, 11) · · ·

· · · (e, 00)(e, 10)}

(4.1.12)

and verify that indeed every block of πin
S×I

3 fits into a block of πOB1
S×I and every block of

πin
S×I

4 fits into a block of πOB2
S×I .

Finally, the product partition of the state partitions π1
S · π2

S = {a; be; c; d} is not a
zero-partition, so the encoded machine only realizes the output behavior of the symbolic
machine, without realizing its state behavior.

Multi-state incompletely specified encoding We can also apply the above reasoning to
the General Decomposition Theorem for the incompletely specified, non-deterministic
machines. In this case, the theorem reads as follows.

Let M = {I, S, O, δ, λ} be an incompletely specified finite state machine with a
set of k binary inputs PIM = {pi1, . . . , pik} and a set of l binary outputs POM =
{po1, . . . , pol}. Let φIBi

I for i = 1, . . . , k be a set system induced on the input alpha-
bet symbols by the binary primary bit input number i and φOBo

I for o = 1, . . . , l be a set
system induced on the output alphabet symbols by the binary primary output bit num-
ber o. Let encoding EM = {φ1

S , . . . , φn
S} be a set of n two-block set systems on the set

of states S of M. Let SBM (EM) = {sb1, . . . , sbn} be a set of binary state variables, such
that a variable sbi assumes value 0 for states that are present in the first block of φi

S ,
value 1 for states that are present in the second block of φi

S and any of the values 0 or 1
(denoted “–”) for states that are present in both blocks of φi

S . Let L
i for i = 1, . . . , n be

4.1. SEQUENTIAL SYNTHESIS 99

a set of mappings of blocks of φi
S containing states of M to the blocks containing some

copies of the same states in a multi-state realization Ml = {I, Sl, O, δl, λl} of M.
For a given encoding EM and some support pair set {(ISi, SSi) | i = 1, . . . , n + l}

for M encoded with EM let

φin
Sl×I

i
= indI

Sl×I

∏

pij∈ISi

φIBj
I

 · indSl

Sl×I

∏

sbj∈SSi

Lj(φj
S)

 (4.1.13)

denote the input information of a partial state-bit machine (for i = 1, . . . , n) or a partial
output-bit machine (for i = n + 1, . . . , n + l).

Theorem 4.2 (Encoding of incompletely specified FSM). Let M = {I, S, O, δ, λ} be an
incompletely specified non-deterministic finite state machine with k binary inputs and l binary
outputs. A set of two-block set systems E = {φ1

S , ..., φn
S} defines a valid n-bit encoding with

output behavior realization of M if and only if n + l support pair sets (ISi, SSi) and n label
assignments Li : φi

S → φi
Sl

exist such that

(1) ∀i ∈ {1 . . . n} (
[

φin
Sl×I

i
]

i
,
[

φi
Sl

]

i
) is a synchronized (Sl × I − Sl) cover pair

(2) ∀o ∈ {1 . . . l} L−1(φin
Sl×I

o+n) ≤ φOBo
S×I

Additionally, if

(3)
(

∏

i∈{1...n} φi
Sl

, φS(0)
)

is a Sl − S cover pair

then the state behavior of M will be realized too.

4.1.2 Mechanics of state assignment

The example in the previous section illustrated the specific structure of the encoding-
induced decomposition. In this structure, a single partial machine is present for each of
the binary next-state and output functions induced by the encoding. The partial machines
are interconnected with binary wires, without any interconnection encoders.

Therefore, the problem of state encoding can be formulated as the problem of finding
the specific decomposition of a symbolic sequential machine to partial machines with at
most two states (two states for sequential machines and one state for combinational). Ad-
ditionally, the output set systems of the combinational partial machines are constrained
to the set systems induced by the primary output variables (output of a combinational
machine is a binary primary output), and the output set systems of the sequential ma-
chines are constrained to the state set systems πi

S (output of a sequential machine is a
binary state bit). The set systems are subject to conditions formulated in Theorem 4.2.

This formulation is a generalization of the formulation used by the dichotomy-based
state assignment methods, which search for a set of dichotomies defining particular en-
coding bits (equivalent to 2-block set systems defining the state spaces of the sequen-
tial partial machines). However, most current dichotomy-based methods require that
the product of all dichotomies is equal to zero-partition. In other words, they require a
unique code for each of the states. This requirement is equivalent to the condition (3)
of Theorem 4.2, i.e. the state behavior realization. Meanwhile, usually it is not neces-
sary to realize state behavior of a sequential machine as long as the output behavior is

100 4. GENERAL DECOMPOSITION IN CIRCUIT SYNTHESIS

realized. The condition (3) can be therefore dropped. Such relaxation of the conditions
means that the encoded machine is only required to realize the output behavior of the
symbolic machine, and therefore allows for implicit state minimization during state as-
signment. Under this formulation, very flexible state assignment is possible, allowing for
state minimization and incompletely specified codes (state set systems with overlapping
blocks).

In the following, we will describe mechanics of the construction of a valid state en-
coding of a finite state machine, which exploit the freedom afforded by the Theorem 4.2.
This mechanics are independent of the target implementation platform, as they only
consider validity of the encoding, without attempt at optimizing the implementation ef-
fectiveness or cost. On top of this mechanics, platform-specific heuristics have to be used
to guide the encoding construction process towards efficient implementations.

State assignment construction

The goal of a state encoding method is the construction of a set of two-block set sys-
tems fulfilling the conditions of Theorem 4.2. In this process we propose to exploit the
correspondence between a set system and its information set.

A symbolic FSM state variable has a single value to represent each state of the ma-
chine, e.g. the state variable of the example FSM in Fig. 4.1 has a separate value a, b, c, d or
e for each of the machine’s states. Therefore, if we denote the set of states {a, b, c, d, e} as
T , the symbolic state variable delivers the full information about T , described as a zero
partition πT (0) = {a; b; c, d, e} or an information set of all distinctions IS(πT (0)) =
{a/b, a/c, a/d, a/e, b/c, b/d, b/e, c/d, c/e, d/e}. After encoding, this information is de-
livered by a set of binary state variables, each of which can be represented by their cor-
responding two-block set system or information set. Therefore, the construction of the
two-block set systems that define the encoding can be described as a problem of finding
a set of two-block set systems that in product give the zero partition describing the infor-
mation delivered by the symbolic encoding variable. Alternatively, it is equivalent to the
problem of distribution of the distinctions from IS(πT (0)) between the information sets
of the encoding set systems.

The above formulation obeys the condition (3) of Theorem 4.2, which is required for
state behavior realization. If we drop this requirement and only require output behavior
realization of the encoded machine, the product of the encoding set systems does not
need to be a zero partition. In the information set formulation it means that the sum of
information sets of the encoding variables does not need to include all distinctions from
IS(πT (0)). Therefore, a valid encoding can be constructed by distribution of some of the
state distinctions realized by the symbolic encoding variable between the information
sets of the encoding variables in such way that the set systems corresponding to these
information sets fulfill the conditions of Theorem 4.2.

For instance, to construct the encoding in Fig. 4.1(b), the distinctions from IS(πT (0))
can be distributed over the two information sets IS1 = {a/b, a/c, a/e, b/d, c/e, d/e}
and IS2 = {a/c, a/d, b/c, b/d, c/e, d/e}. Their corresponding set systems are φ1

S =

{a, d; b, c, e} and φ2
S = {c, d; a, b, e}, which we recognize as the encoding set systems of

the example machine. Note that the information sets need not be disjoint and that not all
distinctions from IS(πT (0)) are present in the union of IS1 and IS2. In particular, the
distinction b/e is missing from the union, which manifests itself in the encoding by the

4.1. SEQUENTIAL SYNTHESIS 101

fact that the states b and e have the same code.
The construction procedure of the encoding set systems performs simultaneous se-

lection of the distinctions for the information set and construction of the corresponding
encoding set system. For this purpose, dichotomies (see Def. 2.22) are used. We recall
that dichotomy is an equivalent shorthand notation for a two-block set system and there-
fore is suitable for encoding representation. The procedure starts with a set of atomic
dichotomies. Atomic dichotomy represents elementary information and is equivalent to
set systems delivering single distinction between two particular states. A set system de-
livering a single distinction is a set system that has the information set containing exactly
one elementary information (distinction).

Take for instance the FSM in Fig. 4.4. It has four states a, b, c and d, and therefore
all state distinctions are {a/b, a/c, a/d, b/c, b/d, c/d}. The set system delivering a single
distinction a/b is φa/b = {a, c, d; b, c, d} and it has an equivalent atomic dichotomy a/b.

At this point the set of atomic dichotomies already defines a valid encoding (so called
atomic encoding, see Fig. 4.5), as the union of their information sets gives the information
set containing all state distinctions, and therefore the encoded machine is state and out-
put behavior realization of the symbolic machine. However, the length of the encoding
(s · (s − 1)/2, where s is the number of states) is likely to introduce prohibitive cost of
the realization. Therefore, a more compact encoding is constructed by combining some
atomic dichotomies what corresponds to combining information sets of the combined
atomic dichotomies, i.e. by construction of encoding set systems with information sets
containing more elementary information items (more state distinctions). Naturally, the
more state distinctions a single encoding set system realizes, the less set systems are nec-
essary to cover all required distinctions, and therefore the less the length of the encoding.
The process of combining the information sets of particular dichotomies corresponds to
merging of the dichotomies involved (see Def. 2.26). For example, joining informa-

i ps ns o
0 a c 1
1 a b 0
0 b c 1
1 b a 0
0 c a 0
1 c d 1
0 d c 1
1 d b 1

Figure 4.4. Example FSM

dich a/b a/c a/d b/c b/d c/d

φ {acd; bcd} {abd; bcd} {abc; bcd} {abd; acd} {abc; acd} {abc; abd}
a 0 0 0 – – –
b 1 – – 0 0 –
c – 1 – 1 – 0
d – – 1 – 1 1

Figure 4.5. Atomic encoding of the example machine

102 4. GENERAL DECOMPOSITION IN CIRCUIT SYNTHESIS

tion sets of the atomic dichotomies a/c and c/d corresponds to merging these two di-
chotomies to a dichotomy {a, d; c} (or ad/c) with information set IS(ad/c) = {a/c, c/d}.

Additionally, assuming that only output behavior realization is required, the encoding
can be compacted by removing some of the atomic dichotomies from the encoding, as
long as the conditions (1) and (2) of the Theorem 4.2 are fulfilled by the remaining set of
dichotomies.

For instance, the dichotomy a/b can be removed from the atomic encoding without vi-
olating the first two conditions of the Theorem 4.2. The remaining dichotomies are then
ad/c, a/d, b/c and b/d, and the corresponding encoding set systems: φ1

S = {abd; bc},

φ2
S = {abc; bcd}, φ3

S = {abd; acd} and φ4
S = {abc; acd} define four partial state ma-

chines associated with four state bits {sb1, sb2, sb3, sb4}. After encoding the FSM with
the encoding defined by these set systems (see Fig. 4.6), input supports of the state bits
and output are as follows

sb1 : {IS1, SS1} = {{i}, {sb1, sb3}}

sb2 : {IS2, SS2} = {{i}, {sb3}}

sb3 : {IS3, SS3} = {{i}, {}}

sb4 : {IS4, SS4} = {{}, {sb1}}

o : {IS5, SS5} = {{i}, {sb1, sb2, sb3, sb4}}

Let us assume that encoding does not introduce any multi-state realization for any
of the states of the symbolic FSM. Then, all mappings Li are identity functions and all
input and output set systems in Theorem 4.2 are on S × I instead of Sl × I . The input

dich sb1 : ad/c sb2 : a/d sb3 : b/c sb4 : b/d

φ {abd; bc} {abc; bcd} {abd; acd} {abc; acd}
a 0 0 – –
b – – 0 0
c 1 – 1 –
d 0 1 – 1

Figure 4.6. Modified encoding of the example machine

4.1. SEQUENTIAL SYNTHESIS 103

set systems of the four state bit machines and one output machine are then

φin
S×I

1 = indI
S×I

(

φIB1
I

)

· indS
S×I

(

φ1
S · φ3

S

)

= indI
S×I

(

{0; 1}
)

· indS
S×I

(

{abd; bc} · {abd; acd}
)

= indI
S×I

(

{0; 1}
)

· indS
S×I

(

{abd; c}
)

= {(a, 0)(b, 0)(c, 0)(d, 0); (a, 1)(b, 1)(c, 1)(d, 1)}·

· {(a, 0)(a, 1)(b, 0)(b, 1)(d, 0)(d, 1); (c, 0)(c, 1)}

= {(a, 0)(b, 0)(d, 0); (c, 0); (a, 1)(b, 1)(d, 1); (c, 1)}

φin
S×I

2 = {(a, 0)(b, 0)(d, 0); (a, 0)(c, 0)(d, 0); (a, 1)(b, 1)(d, 1); (a, 1)(c, 1)(d, 1)}

φin
S×I

3 = {(a, 0)(b, 0)(c, 0)(d, 0); (a, 1)(b, 1)(c, 1)(d, 1)}

φin
S×I

4 = {(a, 0)(a, 1)(b, 0)(b, 1)(d, 0)(d, 1); (b, 0)(b, 1)(c, 0)(c, 1)}

φin
S×I

5 = {(a, 0)(b, 0); (c, 0); (d, 0); (a, 1)(b, 1); (c, 1); (d, 1)}

(4.1.14)

It can be verified that the next state sets of the blocks of φin
S×I

1 are {c}, {a}, {a, b} and
{d}, respectively, which fit into blocks 2,1,1, and 2 of φ1

S , respectively. φin
S×I

1 and φ1
S

are therefore a S × I − S cover pair. Since there is no non-determinism present in
the FSM, this is sufficient to verify the condition (1) of Theorem 4.2 for i = 1. The
verification for i = 2, 3, 4 is left as an exercise. To verify condition (2), we have to show
that L−1(φin

S×I
5) ≤ φOB1

S×I . This is true, since

φOB1
S×I = {(a, 1)(b, 1)(c, 0); (a, 0)(b, 0)(c, 1)(d, 0)(d, 1)} (4.1.15)

and L−1 is the identity function. Thus, we have verified that removing atomic dichotomy
a/b from the set of encoding dichotomies, and therefore assigning overlapping codes to
states a and b, still preserves the output behavior realization of the original machine.

Further, dichotomy ad/c can be merged with b/c and a/d with b/d, and thus the final
encoding defined by two dichotomies abd/c and ab/d is constructed (Fig. 4.7).

Additional considerations

The method of combining information sets of the encoding dichotomies, or merging the
dichotomies, offers a significant flexibility in the construction of the encoding. In fact,
using this method, any valid non-redundant encoding of the FSM can be constructed.

dich sb1 : abd/c sb2 : ab/d

φ {abd; c} {abc; cd}
a 0 0
b 0 0
c 1 –
d 0 1

Figure 4.7. Final encoding of the example machine

104 4. GENERAL DECOMPOSITION IN CIRCUIT SYNTHESIS

However, the merging of information sets is not entirely arbitrary. There are two impor-
tant aspects that have to be considered: compatibility and implied information (distinc-
tions).

The compatibility consideration has to do with the fact that the merged information
set has to correspond to a two-block set system to have a valid dichotomy representation
and define a valid encoding bit. However, for some sets of information (distinctions)
it is impossible to build a corresponding two-block set system. Consider, for example,
the information set ISacd = {a/c, a/d, c/d}. The corresponding set system with the
minimum of blocks {ab; bc; bd} has three blocks rather than two, and therefore it does
not define a single valid binary encoding variable. In the case of code construction by
pairwise merging of the encoding dichotomies this problem is alleviated by consider-
ing dichotomy compatibility. If two dichotomies are compatible (Def. 2.24) they can be
merged to a single dichotomy and therefore their combined information set is guaran-
teed to have a corresponding two-block set system. If we consider a pair of dichotomies
a/cd and c/d, with corresponding information sets {a/c, a/d} and {c/d}, the compati-
bility test reveals that both blocks of dichotomy c/d intersect the right-block of dichotomy
a/cd, and therefore the two dichotomies are incompatible and their combined infor-
mation set {a/c, a/d, c/d} does not have a corresponding two-block set system. If, on
the other hand, the second dichotomy was a/b, the pair of dichotomies a/cd and a/b
would be compatible and the combined information set {a/b, a/c, a/d} would have a
corresponding two-block set system {a; bcd}. The compatibility test fails however for the
sets of dichotomies larger than two. For example, the three atomic dichotomies defined
by the distinctions in ISacd cannot be merged together, even though they are pairwise-
compatible. The problem of compatibility of an arbitrary set of dichotomies is in general
equivalent to graph coloring, and therefore it is NP-hard.

The second consideration when merging dichotomies and their information sets is
the implied information (implied distinctions). The implied information consists of all
elementary information items in the information set of a dichotomy that were not present
in the information sets of the dichotomies that were merged to obtain this dichotomy.
Consider, for example, two dichotomies a/b and c/d. When merged, they result in di-
chotomy ac/bd (or ad/bc), which has information set {a/b, a/d, b/c, c/d}. Since the only
elementary distinctions present in the original information sets were a/b and c/d, the
remaining two distinctions a/d and b/c are implied. The implied information is the
result of the requirement that the information set of a dichotomy has to have a corre-
sponding two-block set system, the same requirement that introduced the compatibility
problem. In the above example, naturally it is possible to just merge the information sets
of the dichotomies, but the set system corresponding to the resulting information set
{a/b, c/d} is {ac; ad; bc; bd} – a four-block set system, which does not have a dichotomy
representation and does not define a single valid binary encoding bit.

As a result of the implied information, the encoding bits defined by the merged di-
chotomies may deliver elementary distinctions that they were not intended to deliver. In
some cases this may be beneficial to the encoding process. In particular, this means that
there is more information compressed on a single binary state variable, which may mini-
mize both interconnections and input supports of the functions using this variable. This
is the case when the implied information is relevant, i.e. it can be used by the functions
using this variable. However, if the implied information is redundant, it may actually
complicate implementation of the functions using this variable. Then, the implementa-

4.2. COMBINATIONAL SYNTHESIS 105

tion networks of the functions have to “sort out” the redundant information, which may
result in more complex network structures. Also, the fact that a state variable delivers
some extra information may have influence on the information that is necessary to com-
pute this variable. In particular, the fact that a variable delivers more information may
mean that more information is needed to compute this variable. In this way the imple-
mentation of the function that computes this variable may be more complicated and less
efficient.

Summary

In this section, we have outlined a general method that constructs a state assignment
of an FSM. The method uses dichotomies to represent the encoding. It starts with the
dichotomies representing the encoding in which each state variable delivers a single el-
ementary distinction between the states. In the code construction process, the encod-
ing dichotomies are merged together to compress the state information delivered by the
merged variables on a single variable. To ascertain validity of the constructed encoding,
the method uses correspondence between dichotomies and two-block set systems. This
correspondence allows to check the validity of the encoding defined by the dichotomies
(and their corresponding set systems) against the conditions of Theorem 4.2.

The fact that Theorem 4.2 covers all valid state assignments, including state assign-
ments reducing (for output-only behavior realization) and expanding (for multi-state re-
alizations) the state space of machine, allows the method to explore the solution space
unavailable to most other state assignment methods. Starting from the atomic encoding
and using dichotomy merging to modify it makes it possible to reach any point of this
solution space and provides fine-grained control over the form of constructed encoding.
As a result, the method is extremely flexible and provides any control algorithm guiding
it towards high-quality solution with a great deal of information about the structure of
the FSM and information flows within it. In this thesis, we will show how the flexibility
of the method and the information provided by it can be utilized as the basis for effective
and efficient target-specific state assignment method.

4.2 Combinational synthesis

In the previous sections we described how the General Decomposition Theorem defines
conditions that must be satisfied by a valid state assignment of a finite state machine. In
this section, we will briefly discuss another special case of general decomposition and its
application to combinational logic synthesis. The method, authored by Artur Chojnacki
and Lech Jóźwiak and implemented in the software tool IRMA2FPGA is described in detail
in [41].

A combinational function can be interpreted as a special case of finite state machine
with a single state and trivial state transition function. In this interpretation, the General
Decomposition Theorem can be used to describe a decomposition of the function into a
network of partial combinational functions. The synthesis method is based on the recur-
sive application of the serial decomposition scheme, in which at each step the considered
function is decomposed into two sub-functions (partial combinational machines): prede-
cessor sub-function g and successor sub-function h (see Fig. 4.8). The selection of function
g is driven by the choice of the input and output set systems of the function. At the

106 4. GENERAL DECOMPOSITION IN CIRCUIT SYNTHESIS

same time, the objectives and constraints of the target implementation architecture are
taken into account and g functions are built that fulfill these constraints and optimize the
objectives. Therefore, the decomposed network is directly mappable, as it is composed
of valid and optimized technology primitives. This approach of combination of global
information processing optimization with platform-specific local optimization decisions
gives superior synthesis results, as reported in [41].

In the combinational network built by the method no state information is present.
Therefore, the set systems describing input and output information of the partial ma-
chines (functions) are reduced from the set S × I to I , i.e. only information about the
primary input symbols is present and processed by the network. Therefore, the input
information available to a partial machine is composed of the primary input information

φi
I augmented by the information imported from other machines (φ′

S×I
i
), which in a

combinational network become φ′
I

i
. Since the network is built bottom-up (from primary

inputs towards the outputs) and no loops are allowed in the circuit, the signals available
as inputs to a particular g function being built are the primary inputs and the outputs of
the blocks built earlier (at the lower levels of the circuit). All these signals can be treated
uniformly as delivering information about inputs described by set systems, and thus the
input set system of the function φin

I
i can be determined as the product of the set systems

associated with each of the variables in the bound set. The output of a partial machine
is described in General Decomposition Theorem by the output set system φi

S×I . Again,
due to lack of state information, the symbol set of this set system is reduced from S × I
to I , resulting in the output set system φout

I
i. The structure of an example combinational

decomposition is shown in Fig. 4.9.
Note that a truth-table (or PLA) description of a Boolean function specifies output

values of the function for different input combinations. Each of such (not necessarily
disjoint) input combinations (referred to as term or cube) can be treated as a separate
symbol from the input alphabet I of the function and, therefore, the above mentioned
set systems used to analyze the information flows in the function can be defined on the
set of terms of the function. This approach is illustrated by the example of functional
decomposition of a Boolean function presented in Section 2.4.1.

In [41], the conditions for existence of serial decomposition are formulated as a special
case of the General Decomposition Theorem. Let f be a k-input, n-output incompletely
specified Boolean function. Let X = {xi | i = 1 . . . k} be the set of binary input variables

f

Bound set U

Repeated variables R

Free set V
g

h

Figure 4.8. Serial decomposition

4.2. COMBINATIONAL SYNTHESIS 107

of f and φxi
(i = 1 . . . k) be the set systems induced by the particular input variables

xi on the set of the terms (cubes) of function f . Let Y = {yi | i = 1 . . . n} be the set
of binary output variables of f and φyi

(i = 1 . . . n) be the set systems induced by the
particular output variables yi on the set of the terms of f . Let φY = •i=1...nφyi

be the
product set system induced by all binary output variables on the set of the terms of f .
Let U and V be the subsets X , referred to as bound set and free set, respectively, and the
set systems φU = •xi∈Uφxi

and φV = •xi∈V φxi
be the set systems on the terms of f

induced by the input variables in U and V , respectively.

Theorem 4.3 (Existence of serial decomposition [41]). If there exists a set system φg on the
set of terms of f , such that φU ≤ φg and φg · φV ≤ φY , then the function f has a serial
functional decomposition with respect to (U, V) in the form f = h(g(U), V).

This theorem is recursively applied to the function f and then sub-functions g and h
until the entire network is composed of the functions directly implementable in the target
architecture.

The construction of function g can be completed in the following three steps: selec-
tion of an adequate input support of g (bound-set selection); construction of multi-valued
function g with this support (construction of the output set system φout

I
i, or φg in the The-

orem 4.3); and implementation of the multi-valued function as a set of binary function(s)
(encoding). Based on information relationship analysis, a limited set of the promising
bound sets U is selected. For each bound set, the input set system φin

I
i is calculated as a

product of the set systems associated with the variables in the bound set. Then, the out-
put set system is built. The condition (2) of General Decomposition Theorem requires
that the output set system of a partial machine is larger than the input set system (i.e.
provides less information). Therefore, any legal output set system can be constructed by

i1

i2

i3

i4

i5

Mi

Mp

φi,2
I

φi,3
I

φi,4
I

Mq

φout
I

p

φout
I

q

g

h

f

φout
I

i

φi,1
I

O = φout
I

i

I = φin
I

i =
Q

j φi,j
I

Figure 4.9. Combinational decomposition

108 4. GENERAL DECOMPOSITION IN CIRCUIT SYNTHESIS

merging the blocks of the input set system. In this method, the merging is performed
in such a way as to minimize the number of blocks in the output set system (i.e. the
number of output values of the multi-valued function g) without losing any unique dis-
tinctions (the distinctions only present on the inputs to the g block). The selection of
the best bound set favors the bound sets, which result in the output set systems with the
smallest number of blocks, as this number determines the number of binary outputs of
the block (dlog2(|φout

I
i|)e), and therefore the size of implementation and the convergence

of the block. In addition to convergence criterion, a number of information structuring
criteria is used to break the ties.

The choice of the input support and the output set system defines a multi-valued
function g with binary inputs. To implement this function in hardware, it has to be
transformed into a set of binary function, i.e. the output values of the function have
to be assigned with binary codes. As in the case of state assignment, the problem of
encoding can be expressed as the problem of finding a set of two-block set systems that in
product give the multi-block set system to encode (φI

out
i). In this process the sets of two-

block set systems are favored that repeat the least available (“unique”) information from
the bound set on as many binary output variables as possible. In this way, the further
decomposition of function h is facilitated by eliminating the constraints associated with
unique information transmission.

4.3 Conclusions

In this chapter, we have discussed some special cases of the General Decomposition
Theorem that were used in the research reported in this thesis. In particular, using the
conditions of the theorem, we derived conditions for a valid state assignment of FSM
and based on that proposed a general, target-independent method of building an encod-
ing. The method starts with the encoding defined by the elementary state information
items (atomic dichotomies) and constructs a more compact encoding by merging com-
patible information items (dichotomies). The conditions formulated in this chapter for a
valid encoding are more general than those used in other state assignment methods and
therefore they allow to consider a larger number of valid encodings. In particular, the
method allows considering compatible machines with reduced and expanded state sets
(state minimization and multi-state realization, respectively). This potentially enables
identification of efficient assignments unattainable for other methods.

The general encoding method provides mechanics for construction of a valid encod-
ing. To ascertain that the valid encoding also results in an efficient implementation of the
encoded machine on the target platform, platform-specific heuristics have to be used on
top of this mechanics to guide the encoding construction process. In the next chapter, we
will discuss such heuristics leading to the encodings resulting in efficient implementa-
tion in FPGA. We will present a complete FPGA-targeted state assignment method that
is the result of implementing the heuristics in the framework of the general encoding
method.

In this chapter we also showed that the functional decomposition of Boolean func-
tions (combinational machines) is a special case of the general decomposition of se-
quential machines and outlined a combinational circuit synthesis method based on the
functional decomposition. The combinational synthesis method is compatible with the

4.3. CONCLUSIONS 109

FPGA-targeting state assignment method we will propose in the next chapter, as they
are both based on the same information-driven circuit synthesis paradigm and on the
general decomposition theory. This makes this method particularly suitable for combi-
national synthesis of the Boolean functions resulting from the state assignment of FSM
performed with the proposed state assignment method. Therefore, in our experiments
with state assignment we will use the software tool implementing the combinational syn-
thesis method, IRMA2FPGA, to implement the encoded FSMs.

110 4. GENERAL DECOMPOSITION IN CIRCUIT SYNTHESIS

Chapter 5

Effective and efficient state
assignment for LUT-FPGAs

In Chapter 4 we outlined the general, target-independent mechanics of a state assign-
ment procedure based on a bitwise code construction using atomic state information
and dichotomies. We pointed out that this procedure does not include any target-specific
criteria to arrive at an encoding resulting in an efficient FSM implementation. It only
assures that the resulting encoding is a valid one. The target-specific criteria need to be
applied by particular encoding methods using this general scheme.

In this chapter, we will describe the criteria and heuristics guiding the general code
construction procedure to achieve encoding resulting in an efficient implementation of
the FSM in look-up-table-based FPGA. We will show how these heuristics are imple-
mented in a state assignment software tool – SECODE. We will present the outline and
an example of the operations of the tool and then focus on some specific data structures
and algorithms crucial to the effectiveness and efficiency of the tool. We will also propose
a dedicated analysis procedure that will allow us to address a specific encoding strategy –
one-hot encoding.

5.1 Introduction

The choice of particular encoding ultimately determines the number of flip-flops and
the binary functions (combinational components of the partial machines), and hence the
form and cost of the circuit’s implementation. Therefore, the primary concern of any
state assignment method is the creation of the encoding that will minimize the imple-
mentation cost (in terms of area, delay, power dissipation, etc.). To achieve this goal, state
assignment needs to consider three important factors of the implementation process: the
target implementation platform, the optimization objectives, and the combinational syn-
thesis method that follows the encoding.

Clearly, the target implementation platform has decisive influence on the cost of the
implementation. Depending on the platform different features of binary functions de-
termine their implementation cost. For instance, for PLA structures the circuit area de-
pends on the number and size of the product terms in the minimized sum-of-products

111

112 5. EFFECTIVE AND EFFICIENT STATE ASSIGNMENT FOR LUT-FPGAS

description of the binary function. PLA-targeting state assignment aims therefore on the
encoding, which induces binary next-state and output functions described by small sum-
of-products expressions. On the other hand, in LUT-based FPGAs the number or the
size of terms do not play any role — a building block of this architecture – LUT or CLB
– is capable of realizing any function with a fixed number of inputs (typically, 4 to 6).
However, a totally different set of objectives and cost considerations may be applicable if
the optimization objective changes, and in place of area, e.g. the delay or power is to be
optimized.

In addition to platform characteristics, state assignment has to account for themethod
used to implement the combinational component on the target architecture. With com-
binational synthesis methods applying elaborate heuristics to find a near-optimal real-
ization, state assignment cannot easily predict, how a particular binary function will be
realized, and therefore its cost. Traditionally, state assignment methods deal with this
uncertainty by taking into account main heuristics of a particular combinational synthe-
sis method and searching for an encoding that results in binary functions easy to imple-
ment for the combinational synthesis method. JEDI is an example of this approach. It
assumes that the combinational synthesis is based on extraction of common cubes in
sum-of-products expression, and therefore creates encoding that maximizes potential for
common cube extraction. Therefore, it is particularly suitable for use with division-based
logic synthesis systems, such as SIS [71].

In our experience, however, SIS handles FPGA synthesis inadequately. Therefore,
we are targeting logic synthesis with IRMA2FPGA — the logic synthesis method based on
functional decomposition and outlined in Section 4.2. This tool significantly outperforms
state-of-the-art academic and commercial tools, synthesizing circuits on average about 2
times smaller and 50% faster, and reaching up to 5 times area and 3 times delay reduction
for some specific function classes (such as symmetric functions and functions with many
don’t-cares) [41].

5.2 State assignment heuristics

5.2.1 Heuristic outline

In the previous chapter, we explained that to find a valid state encoding for a symbolic fi-
nite state machine it is sufficient to find a set of n (for n-bit encoding) 2-block set systems
(or dichotomies), and we formulated conditions on these set systems in Theorem 4.2.
When building a set system describing an encoding bit we have to have in mind two
important considerations: the production and consumption of the information associ-
ated with this bit. We recall from Section 4.1.1 that each state bit is realized by a partial
two-state sequential machine. Each such state-bit-machine is implemented as a flip-flop
driven by the output of a combinational circuit implementing certain Boolean function of
some primary inputs and state bits. From the viewpoint of the production of the informa-
tion for the particular encoding bit it is therefore vital that the related combinational logic
can be efficiently implemented in the target architecture. On the other hand, from the
viewpoint of the consumption of the information from a particular encoding bit, the bit
is used as an input to some other partial machines. Therefore, the information delivered
by this bit has influence on the implementation of other partial machines.

As mentioned earlier, the character of this influence heavily depends on the target

5.2. STATE ASSIGNMENT HEURISTICS 113

implementation platform. In the case of LUT-FPGAs there are two important factors in
the implementation of a circuit: size of the input supports of the functions and the num-
ber and length of interconnections. Since LUT is capable of realizing any function of no
more than a certain maximal number of variables, the size of the input support of a func-
tion becomes a much better indicator of the realization complexity than number of terms
or literals. Additionally, the interconnections (especially long), which are relatively scarce
and slow on the FPGA platform, are often the determining factor in the circuit’s delay
and area. Thus, to facilitate efficient implementation of a circuit, (long) interconnections
and input supports of particular functions should be minimized.

Therefore, the heuristic of optimized information flows for the selection of encoding
set systems was proposed. In this context, optimization of information flows means
distribution of state information between the state variables aiming at optimization of
production and consumption of this information. From the viewpoint of information
production, it is advantageous to group together the elementary information items (dis-
tinctions) which require similar information for their production. Then, the state bit
being the composition of these elementary information items will require relatively little
and relatively similar input information. This results in a compact input support and
little interconnections required by partial machine realizing this state bit. From the point
of view of information consumption, the information (distinctions) used together, espe-
cially by many functions, should be delivered together on the same state bit. Then, the
functions using this information require fewer input support bits and fewer connections.

To properly analyze production and consumption of particular atoms of state informa-
tion, we begin with FSM encoded with the atomic encoding and calculate input supports
of primary and state output functions in this encoding. The input supports of the func-
tions supply us with detailed information about how a particular atomic information is
produced (which primary inputs and atomic state variable are in the support of the output
function corresponding to the atomic state bit associated with this information) and how
it is used (which primary and state output functions use the input bit corresponding to
the atomic state variable associated with this information). This analysis is a basis for the
creation of clusters of atomic dichotomies that should be conveyed together by the same
state variable for the benefit of state information production, distribution and consump-
tion. Once the clusters of atomic dichotomies are identified, their relative importance
or quality is estimated and the actual encoding is constructed by considering clusters of
dichotomies in descending order of their quality and merging the dichotomies in the
considered cluster together on the same encoding dichotomy, or, if this turns out to be
impossible, on a smallest possible set of dichotomies.

5.2.2 Information flows example

To illustrate the ideas behind information flow optimization with an example, let us con-
sider again the FSM in Fig. 4.1(a). Fig. 5.1 shows the graph of information flows be-
tween the particular elementary state distinctions and primary inputs and outputs. As
discussed above, the graph was determined by encoding the FSM with atomic encoding
and computing input supports of all atomic encoding variables and primary output vari-
ables. Analysis of the graph reveals the structure of the information flows. We see very
strongly connected subgraphs of the graph marked A and B. Within and between these
subgraphs there is a lot of state information exchanged. Moreover, both subgraphs use

114 5. EFFECTIVE AND EFFICIENT STATE ASSIGNMENT FOR LUT-FPGAS

the same primary input pi1 and are used together to compute the primary output po1.
From this we conclude that if the atomic dichotomies in subgraphs A and B are merged
together, the resulting code bit(s) will be very independent (they will only depend on one
primary input and themselves) and they will provide compressed information to com-
pute the primary output po1. Clearly, this makes the dichotomies very good candidates
for merging.

The fact that the coherent system of six dichotomies was split into two subgraphs A
and B is the consequence of another information flow consideration. We can see from the
graph that the three dichotomies in the subgraph A deliver state information to the other
subgraph of the information flow graph — C. The subgraph C forms another coherent
and relatively independent component of the graph. The dichotomies in the subgraph
C depend on the same primary input pi2 and on each other. They are also all used to
compute the primary output po2. Therefore, they are good candidates to form a separate
subsystem. As a consequence, all external information delivered the potential subsystem
(i.e. information produced in subgraph A) should be compressed to optimize its usage
and minimize interconnections. Another motivation to consider subgraphs A and B

a/b

c/d

a/c

d/e

b/d

a/e

a/d

c/e

b/c

b/e

po1

po2

pi1

pi2

C

B

A

Figure 5.1. Information flows in the example FSM

5.2. STATE ASSIGNMENT HEURISTICS 115

separately is the fact that dichotomies in B are used to compute both primary outputs,
while the dichotomies in A are only used by output po1.

Finally, the isolated dichotomy b/e, which is not used by any other node in the graph,
indicates that this particular state distinction is not necessary to compute any other state
or output information, and thus suggests possible state space minimization.

Given the above analysis, we can reason about the most beneficial merging of the
atomic dichotomies. The prime candidate for merging is the subgraph A. There are two
possible ways of merging the dichotomies in A on one dichotomy – ac/bde or ad/bce.
We will evaluate these two options with the information flows in mind. For that purpose,
let us analyze the complete information delivered by the encoding dichotomies, i.e. the
implied dichotomies (see Section 4.1.2) as well as the merged atomic dichotomies. For
the encoding dichotomy ac/bde, the information set is {a|b, a|d, a|e, b|c, c|d, c|e}, while
for ad/bce it is {a|b, a|c, a|e, b|d, c|d, d|e}. In the first case, we can see that the implied di-
chotomies (a|d, b|c, c|e) are not closely related (as far as information flows are concerned)
to the dichotomies in the subgraph A. They use different input information and are used
by different outputs. In the case of the second merging option, on the other hand, the
implied dichotomies (a|c, b|d, d|e) are all contained in the subgraph B that is very closely
related to A. Clearly, this is the preferred merging option.

Whenmerging the dichotomies in subgraph C, we are also confronted with twomerg-
ing choices: abe/cd or ac/bde. In this case both options introduce implied distinctions
that are not closely related to the distinctions in C. In the first case, these are the distinc-
tions in subgraph B, in the second case – the distinctions in subgraph A. At this point,
we may consider the consumption of the resulting information by primary outputs. We
may observe that the primary output po2 that uses information produced in C also uses
information from B. This indicates that if C is merged in such way that it implies B,
the resulting state bit will deliver complete state information consumed by the primary
output po2.

5.2.3 Additional issues

In the process of identification and merging of dichotomy groups, we have to consider
additional issues discussed in Section 4.1.2 – the compatibility problem and the implied
dichotomies. The problem of implied dichotomies was already discussed and illustrated
in the above example. The compatibility issue, on the other hand, means that we can-
not assume that any set of distinctions (atomic dichotomies) can be grouped (merged)
together and represented by a valid encoding dichotomy with two blocks. To circumvent
this issue, set systems with more than two blocks can be initially allowed to define the se-
quential partial machines. In this case, the encoding is not a binary encoding – an encod-
ing variable has as many values as there are blocks in the encoding set system. Returning
to the analogy between encoding and decomposition, the partial state-bit-machines have
more than two states (they have as many states as there are blocks in the set system) and
the encoding becomes in this way a specific decomposition, which can be transformed to
a valid encoding structure by encoding the partial non-binary sequential machines. This
concession gives additional flexibility to the process of collecting related distinctions and
therefore allows determination of a more natural, non-constrained structure of the finite
state machine. The resulting larger partial machines form then “subsystems” process-
ing and producing related information. This can be beneficial from the point of view of

116 5. EFFECTIVE AND EFFICIENT STATE ASSIGNMENT FOR LUT-FPGAS

minimizing long interconnections (much of the information is processed locally by the
partial machines) as well as the potential for common sub-functions. The latter stems
from the fact that such subsystems have several binary outputs requiring similar infor-
mation, which provides room for common sub-functions.

Since the ultimate target remains the binary encoding, each of the non-binary partial
machines has to be further encoded. However, if the initial decomposition does not de-
part too far from the target binary decomposition, i.e. the sequential partial machines
are not too large, the encoding problem for the partial machines is much smaller and
easier then the original encoding problem. This problem can be again formulated as the
distribution of the distinctions present in the multi-block set system defining a particu-
lar partial machine among several two-block set systems. In this case, the distribution
can be determined by the local analysis of the relations of the information (e.g. some
distinctions may be “more related” than others).

5.3 The method

5.3.1 Outline

The goal of the information-driven state encoding that we propose is to assign binary
codes to the symbolic states of a machine in such a manner that the resulting network of
the binary output- and next-state functions is composed of small, coherent, and relatively
independent parts, with particular binary next-state or output functions depending on a
small number of inputs. To achive this goal, the state information is assigned to partic-
ular binary state variables in such a way that the information using particular inputs, as
well as the information used by particular outputs is grouped on as few as possible state
variables, thus reducing the cost of information production and distribution.

The binary state variables are represented using dichotomies. The state information
delivered by a particular binary variable is given by the atomic dichotomies covered by
the encoding dichotomy representing this variable. We construct the adequate encod-
ing dichotomies for particular state variables delivering a certain desired information by
merging together the atomic dichotomies corresponding to this information. The choice
of the atoms of information to be merged together is guided by their affinity in relation
to a combination of their common source (common inputs used to produce particular
atoms of information) and common destination (common outputs using the atoms).

The state encoding process is divided in two phases (see Fig. 5.2):

• analysis phase – computation of the affinities for the atomic state information

• code construction phase – using the affinity information for code construction

Analysis phase

The analysis phase is composed of four steps:

1. Initial atomic encoding of the FSM.

2. Input support computation of the next-state and output variables of the initially
encoded FSM.

5.3.
T
H
E
M
E
T
H
O
D

117

Analysis phase

state variable clustering

ordering

code
weight

calculation

input

combination

and

sub-function clusters

input clusters

output clusters

computation

support

encoding

initial

construction

.KISS file cluster

Fig
u
re

5
.2
.
O
u
tlin

e
o
f
th
e
sta

te
a
ssig

n
m
e
n
t
m
e
th
o
d

118 5. EFFECTIVE AND EFFICIENT STATE ASSIGNMENT FOR LUT-FPGAS

3. Input weight calculation.

4. Clustering of the state variables from the initial encoding based on the results of
steps 2 and 3.

The clustering results are then used to determine which state variables of the initial en-
coding will be merged together in the code construction phase.

The analysis of the source and destination of a particular atomic information is per-
formed by encoding the machine with the atomic encoding, i.e. the encoding in which
each state variable is defined by an atomic dichotomy, thus delivering atomic state in-
formation (i.e. a single distinction between two particular states). Analysis of the input
supports in such encoded machine supplies us with the detailed information about how
a particular atomic information is produced (which primary inputs and atomic state vari-
ables are in its support) and how it is used (in which supports it appears). This analysis
is augmented by considering not only which inputs are present in particular input sup-
ports, but also their relative importance. The importance of an input is expressed as its
input weight. The weight reflects the influence of the input on the quality of the solution.

Consider, for example, the FSM in Fig. 5.3. The initial atomic encoding for the five
states of themachine is given in Fig. 5.4. Encoding themachine with the atomic encoding
results in the PLA description (truth table) of the combinational logic necessary to realize
the next state and output behavior of the machine. The PLA is presented in Fig. 5.5.
Given the binary next state and output function, we calculate minimum input supports
for the functions, shown in Fig. 5.6. These supports are the basis for information flow
analysis. The analysis informs us, for example, that to produce an atom of information
distinguishing states a and b we require only the distinction d/e. The distinction a/b is
then used to calculate distinction c/d and the primary output o1. For clarity, we will not
consider input weights in this example. The issue of input weights is discussed in detail
in Section 5.3.3.

Using the results of the input support analysis, we identify clusters of atomic di-
chotomies that need to be merged together to optimize information flow. For the sake
of optimized information distribution and consumption, dichotomies that are used by
the outputs that may form independent subsystems should be conveyed together. Then,

i ps ns o
0 a e 00
0 b e 00
0 c e 00
0 d e 00
0 e b 01
1 a d 11
1 b c 01
1 c d 11
1 d a 10
1 e c 01

Figure 5.3.

Example FSM

a/b a/c a/d a/e b/c b/d b/e c/d c/e d/e
a 0 0 0 0 − − − − − −
b 1 − − − 0 0 0 − − −
c − 1 − − 1 − − 0 0 −
d − − 1 − − 1 − 1 − 0
e − − − 1 − − 1 − 1 1

Figure 5.4. Initial atomic encoding

5.3. THE METHOD 119

the subsystem formed by the related outputs is fed with compressed, relevant informa-
tion. To identify such related outputs, we analyze information consumed by the outputs
and cluster together outputs with high similarity of consumed information, or with high
potential for extracting common subfunctions.

In the example we are considering, we observe that the outputs o2, a/b, a/c, a/d
and b/e use similar information. They have therefore the potential to form a separate,
coherent sub-network. From the viewpoint of the state information transmission and
consumption it would be therefore advantageous to combine the information consumed
by these outputs and deliver it in as compressed form as possible. The information used
by these outputs is a/d, a/e, b/d, b/e, c/d, c/e and d/e. These atomic distinction form
therefore a dichotomy cluster that is a candidate for merging together.

On the other hand, from the viewpoint of the state information production, we would
like the dichotomies (state information) produced using the same information to be

i a
b

a
c

a
d

a
e

b
c

b
d

b
e

c
d

c
e

d
e

a
b

a
c

a
d

a
e

b
c

b
d

b
e

c
d

c
e

d
e o1 o2

0 0 0 0 0 − − − − − − − − − 1 − − 1 − 1 1 0 0
0 1 − − − 0 0 0 − − − − − − 1 − − 1 − 1 1 0 0
0 − 1 − − 1 − − 0 0 − − − − 1 − − 1 − 1 1 0 0
0 − − 1 − − 1 − 1 − 0 − − − 1 − − 1 − 1 1 0 0
0 − − − 1 − − 1 − 1 1 1 − − − 0 0 0 − − − 0 1
1 0 0 0 0 − − − − − − − − 1 − − 1 − 1 − 0 1 1
1 1 − − − 0 0 0 − − − − 1 − − 1 − − 0 0 − 0 1
1 − 1 − − 1 − − 0 0 − − − 1 − − 1 − 1 − 0 1 1
1 − − 1 − − 1 − 1 − 0 0 0 0 0 − − − − − − 1 0
1 − − − 1 − − 1 − 1 1 − 1 − − 1 − − 0 0 − 0 1

Figure 5.5. PLA of the FSM with atomic encoding

a/b : {d/e}

a/c : {b/d, d/e}

a/d : {a/d, c/d}

a/e : {i}

b/c : {i}

b/d : {i}

b/e : {a/e, b/e, c/e, d/e}

c/d : {a/b, a/e, b/c, c/e}

c/e : {i}

d/e : {i}

o1 : {i, a/b, a/e, b/c, b/d, c/e, d/e}

o2 : {i, a/d, a/e, b/d, b/e, c/d, c/e, d/e}

Figure 5.6. Initial input supports

acd/be abc/de
a 0 0
b 1 0
c 0 0
d 0 1
e 1 1

Figure 5.7. Final encoding

120 5. EFFECTIVE AND EFFICIENT STATE ASSIGNMENT FOR LUT-FPGAS

merged, so that the distribution and usage of the input information is optimized. There-
fore, we construct clusters of state outputs using similar input information. The di-
chotomies represented by these outputs are candidates for merging. In our example, the
obvious candidates for merging are dichotomies a/e, b/c, b/d, c/e and d/e, which all use
the same, single primary input. If they are merged together, the resulting code bit can
potentially only depend on one input, thus making its implementation very efficient.

Once the clusters are determined, they are combined and ordered according to a clus-
ter quality measure. The measure estimates the saved interconnections and circuitry if
the dichotomies in the cluster are merged together. For instance, the dichotomy cluster
{a/e, b/c, b/d, c/e, d/e} has a very high quality, as it results in a very small implemen-
tation of the code bit. This is the consequence of the fact that, when merged together,
the dichotomies form an encoding bit that can be computed using only a single primary
input.

Code construction

In the code construction phase, the atomic dichotomy clusters sorted in the descending
order of their quality are merged in order to realize the gains predicted by the cluster
quality. The encoding dichotomy(-ies) resulting from the merging of particular clusters
define consecutive state variables of the final encoding. Since some atomic dichotomy
clusters cannot be merged to one dichotomy due to compatibility constraints, the distri-
bution of the clusters’ atomic dichotomies over the two or more encoding dichotomies
has to be established. This process is driven by the atomic-dichotomy-affinity measure,
which for a given pair of atomic dichotomies reflects, how important it is for the two
dichotomies to be merged together. This measure is calculated based on the number
and quality of the atomic dichotomy clusters, in which the pair of dichotomies appears
together.

The merging process stops when all the atomic dichotomies that appear in any in-
put support are realized by some of the current encoding dichotomies. Note, that this is
not necessarily equivalent to realizing all the atomic dichotomies, since some state dis-
tinctions may not be needed (as is the case in the not minimized sequential machines).
This relaxation of the constraint to realize all the atomic dichotomies is a consequence of
Theorem 4.2 and means that our method is capable of implicit state minimization of the
encoded machine by assigning overlapping, incompletely specified codes to equivalent
states.

For instance, the dichotomies in the cluster {a/e, b/c, b/d, c/e, d/e} can be merged
together to a single encoding dichotomy acd/be. However, the dichotomies in the sec-
ond cluster {a/d, a/e, b/d, b/e, c/d, c/e, d/e} cannot be merged to one bit, due the fact
that three dichotomies a/d, a/e and d/e can never be realized on a single binary state
variable. The maximum compression of this information is achieved when the atomic
dichotomies are merged to two dichotomies: abc/de and d/e. In this way, we have ob-
tained three encoding dichotomies : abc/de, d/e and acd/be. Since the second dichotomy
d/e is covered by the third, we may remove it. Finally, we have obtained two encoding di-
chotomies, which define the encoding showed in Fig. 5.7. We may observe that the states
a and c were assigned with the same code. This is because the distinction a/c is not
realized by any of the encoding dichotomies. However, if we analyze the input supports
in Fig. 5.4, we can see that the distinction a/c is not used for calculation of any output,

5.3. THE METHOD 121

so it needs not to be computed. In this way, an implicit state minimization is performed:
states a and c are both represented by a single state 00 in the final encoding.

The realization structure of the resulting binary machine is shown in Fig. 5.8. We
can observe that the encoding introduced a serial decomposition of the realization struc-
ture, with two distinct submachines. First submachine, associated with the encoding
bit defined by dichotomy acd/be, only uses primary input and local state information to
produce the encoding bit and the first primary output. The second submachine, associ-
ated with encoding bit abc/de, imports state information from the first submachine and
produces the second encoding bit and the second primary output.

In contrast, in Fig. 5.9, the realization structure for the same machine encoded with
the natural binary encoding is shown. Not only does it require more memory elements,
as it does not benefit from the implicit state minimization performed by our method, but
also the supports of the functions are larger and the interconnection structure is much
more complicated. This results in a much less efficient implementation.

acd/be

o1

i

abc/de

o2

o1

o2

Figure 5.8. Realization struc-

ture of the encoded machine

o1

o2
o2

o1

abe/cd

ace/bd

i

abcd/e

Figure 5.9. Realization structure of the binary-

encoded machine

Summary

In this section, we have outlined the state assignment method based on information
flow analysis and optimization. The method encodes the FSM with the initial encoding
based on atomic dichotomies. It then computes the input supports of the binary func-
tions in thus encoded machine to analyze the origin and destination of particular state
information items. It also determines the relative importance of the information flowing
within the network by assigning weights to signals carrying this information. Based on
that analysis, the method determines clusters of related logic that may form coherent
subsystems and the clusters of atomic dichotomies that need to be delivered together to
optimize production and consumption of information in the subsystems. The atomic di-
chotomies in the clusters are merged together to compress the information represented
by them on as few encoding variables as possible. In the following, we will describe in
more detail the abovementioned steps.

122 5. EFFECTIVE AND EFFICIENT STATE ASSIGNMENT FOR LUT-FPGAS

5.3.2 Initial encoding

The input of the method is a Mealy-type finite state machine in KISS format. In this
format the transitions of the machine are listed in the form

< input combination > < present state > < next state > < output >

As described in Section 4.1.2, the machine is initially encoded with the atomic encod-
ing. This encoding is defined by s(s − 1)/2 atomic dichotomies (where s is the number
of states). An atomic dichotomy is constructed for each pair (a, b) of states by placing
the first state in the left block of the dichotomy, and the second in the right block. An
encoding bit defined by an atomic dichotomy (a/b) has 0 for state a, 1 for state b, and
don’t-care for the rest of states. Thus, a symbolic FSM is transformed to a table of the
binary output and next state functions by replacing the state symbols (names) in the state
transition table with binary vectors (codes of the states). The result is an incompletely
specified Boolean function with i + sb inputs (i is number of the FSM inputs, sb is the
number of state bits in initial encoding) and sb + o outputs (o is number of outputs of
the FSM).

5.3.3 Input supports calculation

To analyze production and consumption of the atomic information about states, the min-
imum input supports of the binary next state and primary output functions resulting
from the atomic encoding are calculated.

Minimum input support selection is formulated as row covering problem. For each
binary output function a set of distinction between the STT rows necessary to calculate
this output is found. A distinction between rows ri and rj is necessary to calculate an
output o if and only if the values of the output o are distinct (i.e. both are specified – not
don’t-care – and different) for rows ri and rj . For each row distinction a set of inputs
capable of making this distinction is found. An input i is capable of making a distinction
between rows ri and rj if and only if the values of the input i are distinct for rows ri and
rj . (Minimum) input support of output o is a (minimum cardinality) set of inputs such
that each of the row distinctions necessary for the output function is realized by at least
one of the inputs. The choice of the input set is made by constructing a cover matrix
C with columns labeled by the inputs and rows labeled by the distinctions required for
the output. Matrix C has 1 in position (i, j) iff input j is capable of realizing distinction
i. Therefore the input support problem may be reformulated as finding (minimum)
number of columns (inputs) such that at least one 1 is present in each of the rows (each
distinction is realized by at least one input). In our state assignment tool, the task of
column selection is realized by QuickScan [45] algorithm.

Inputs in each of the input supports may be divided in two groups: primary inputs
and state inputs. The fact that each of the state bits is defined by an atomic dichotomy,
and therefore may be interpreted as delivering an elementary information about states
(single distinction between two states) allows us to interpret the state input support as the
state information required for the “production” of the function. Therefore, the produc-
tion of a particular state distinction is determined by the state distinctions present in the
input support of the output state bit defined by the distinction. Its consumption is then
determined by the input supports in which the input state bit defined by the distinction
appears.

5.3. THE METHOD 123

This type of analysis provides us with very detailed information about the information
flows and dependencies in the analyzed machine.

Input weights The information about production and consumption of the state infor-
mation also allows us to make informed decision about the relative importance of the
state distinctions and primary inputs. The importance is related to the influence of a
particular input on the cost of the solution. We recall that our main stated objective is the
reduction of the input supports of the particular binary functions and interconnections,
as this has positive influence on the implementation cost of the circuit. Therefore, the
importance of an input (or input weight) is related to the predicted input support saving
associated with the input.

Intuitively, the weight reflects how important a particular input is from the viewpoint
of the input support reduction, and hence how important it is to merge two dichotomies
sharing this input. The weights depend on the frequency of occurance of a particular
input in the input supports. The rationale behind this approach is that the inputs that are
used by most of the outputs will have to appear in all or almost all of the input supports
anyway, so no significant gain can be realized. Also, the inputs which appear only in
one or two supports offer no gain, since they will be used by one output only anyway the
merging proceeds. For these inputs the potential gains are low, hence their low weights.
On the other hand, high gains may be realized in the case of inputs that appear in about
30% of input supports. If the dichotomies that use them are merged together, those
inputs may potentially be used by very few outputs. However, if the dichotomies that use
the outputs are not merged together, the inputs may be used everywhere in the circuit.
It is therefore very important to group outputs having common high-weight input bits in
supports, because this is where the savings lay.

To determine the weights, we calculate for each input bit a number of input supports
in which the input is expected to appear. This figure has two components: input supports
of primary outputs (these are the certain part, and will not change), and input supports
of state bits (which are still to be merged, so the final input supports are not certain). The
first component is calculated by simple counting the primary outputs, which have the
input bit in the support. For estimation of the second component, we take the percentage
of the expected final number of the state bits that is proportional to the percentage of all
atomic state bits using the particular input.

Once the expected number of the outputs using given input is calculated, the input
weight is determined by the weight mapping function that for a given percentage of

0.3 10.7 frequency of occurrence

0.5

1

weight value

Figure 5.10. Weight mapping function

124 5. EFFECTIVE AND EFFICIENT STATE ASSIGNMENT FOR LUT-FPGAS

output number returns the input weight. The function is built based on the reasoning
outlined above: the inputs with very low or very high utilization are assigned low weights.
The maximum weight is assigned to the inputs with about 30% occurrence rate. In our
experience, good results are achieved for the weight mapping functions of the shape
similar to the function in Fig. 5.10.

5.3.4 Dichotomy clustering

The main problem in the general encoding scheme presented in Section 4.1.2 is the
selection of the groups of atomic dichotomies to be merged together on the encoding
dichotomies. In our method this selection is performed by clustering the atomic di-
chotomies in groups based on several information-flow-based criteria. In this procedure
we identify several types of clusters of output functions, each reflecting different aspect
of possible information flow optimization:

• output clusters (input approach) The output logic is analyzed to identify groups
of outputs with large common subsets of input supports. Such relationship can
indicate significant similarity between the outputs and possible realization as a
separate, coherent and relatively independent subsystem. During implementation,
the circuitry for such group of outputs is likely to be placed together in the layout.
To optimize information delivery to such prospective subsystem, the information
consumed by the subsystem’s functions should be compressed. Therefore, the
atomic dichotomies in the supports of the clustered outputs are candidates to be
merged together.

• output clusters (sub-function approach) The output logic is analyzed to identify
potential groups of outputs with large common sub-functions. Such groups are
very good candidates for subsystems within the circuit. Following the reasoning of
compressed information for subsystems, the atomic dichotomies in the supports
of such related outputs are good candidates to be merged together.

• next-state-bit clusters (output approach) To optimize information production, it is
advisable to compute together state information that consumes similar informa-
tion. Then, the resulting next state functions will have compact input supports and
will be relatively independent of the other next state functions, thus reducing inter-
connections. This is reflected by the dichotomy clusters that group together atomic
dichotomies with similar input supports.

The clusters are created by two general clustering approaches: hierarchical and seed
clustering. The hierarchical clustering creates non-disjoint clusters of elements by itera-
tivemerging of the current set of clusters. The seed clustering, on the other hand, initially
identifies a number of “seeds” that initialize the set of clusters and than assigns the re-
maining elements to one of the clusters. Using different affinity functions and cluster
selection criteria, the two general approaches are used to create the output and dichotomy
clusters. For more detailed discussion of clustering techniques see Section 5.4.2.

The clustering procedure produces three different types of clusters, with different
quality criteria and different impact on the implementation cost. Also, some of the clus-
ters identified may not be useful, e.g. because they are too large or too small and thus
impose too many or too few constraints on the encoding to be meaningful. To build

5.3. THE METHOD 125

a framework for unified analysis of the clusters and their relative importance, a single
cluster quality measure is introduced. It is related to the estimated size of saved circuitry
and connections in the final circuit if the atomic dichotomies associated with the cluster
are merged to one encoding dichotomy in comparison to their distribution over more
encoding dichotomies. Based on their qualities, the different clusters are ordered.

In the following we will discuss the steps of the clustering and cluster ordering pro-
cess: creation of the three types of clusters, ordering of the different types of clusters
based on a common quality measure, transformation of the different clusters to di-
chotomy clusters, and the final ordering of the dichotomy clusters.

Input-oriented clustering

In the input-oriented clustering we identify groups of outputs that use similar state and
input information and therefore have a chance of becoming coherent subsystems in the
circuit. The similarity of the consumed information is estimated based on the input
supports of the output functions. The clustering is performed in two steps. First, hi-
erarchical clustering is applied to the set of singleton clusters. The affinity measure
(TotalDifferenceAffinity) used in this step favors clustering outputs with sim-
ilar supports (small difference). This phase, however, fails to identify relationships be-
tween outputs with large and small supports, even if small support is completely included
in the large one. Therefore, the resulting clusters of the first phase are subjected to hier-
archical clustering with inclusion-favoring measure (InclusionAffinity).

The reason for this two-phase approach is the tendency for the primary outputs to
dominate the clustering process. We recall that at this point the state outputs are de-
fined by atomic dichotomies. This means that they require relatively little information
to be computed and therefore have small input supports, when compared to the primary
outputs. Such small supports tend to be easily dominated by the large supports of the
primary outputs. The result are large clusters built around particular primary outputs.
To avoid this effect, in the first phase clusters of outputs with similar size of supports are
favored.

Phase I. TotalDifferenceAffinity calculates similarity of two clusters as a
difference between the weight of the inputs in the common input support and the weight
of the remaining inputs in the supports. This value is given by 2 · common_weight −
summary_weight

Both common and summary weight are calculated as a sum of two components:
weight of primary inputs in the common or summary support and estimated weight of
state inputs in the common or summary support. The state input weight is estimated by
multiplying average weight of state input in the state supports by the expected number of
state bits, on which the state bits will be merged. The expected number of merged bits is
directly proportional to the number of atomic dichotomies in the supports. In this phase
criteria allow clustering of the clusters with positive affinity, i.e. only outputs that have
more common inputs bits that different are clustered together.

Phase II. InclusionAffinitydetects inclusion of small supports in larger ones.
It reflects the percentage of the small support that is included in the large support. The

126 5. EFFECTIVE AND EFFICIENT STATE ASSIGNMENT FOR LUT-FPGAS

value of the affinity is calculated as

1 −
smaller_tail_size

smaller_IS_size

Where: smaller_IS_size is the number of inputs in the smaller of the two
supports.

smaller_tail_size is the number of inputs present in smaller of the
input supports and not present in the larger one

Since in this step we are interested in clustering outputs with fully or almost fully
covered input supports, the affinity criteria allow for clustering of outputs with affinity
above 0.8.

Sub-function clustering

This procedure identifies clusters of outputs with potentially large common subfunc-
tions. The clusters are created in hierarchical fashion (see 5.4.2), with the initial cluster
set consisting of singleton clusters. The affinity measure guiding the clustering algo-
rithm is based on the number of common row distinctions between the output functions.
Since the combinational synthesis method implemented in IRMA2FPGA is based on anal-
ysis of information expressed as term (row) distinctions, common row distinctions are
consistent with the notion of common information central to the synthesis. Therefore,
it is likely that the combinational synthesis detects and extracts common logic from two
functions with high affinity measure.

The affinity measure is calculated as the ratio of common distinctions to the sum of
distinctions, i.e. for two outputs oi and oj the affinity measure is

aff(oi, oj) =
|IS(φS×I(oi)) ∩ IS(φS×I (oj))|

|IS(φS×I(oi)) ∪ IS(φS×I (oj))|

As described in Section 5.4.2, the hierarchical clustering procedure uses affinity cri-
teria to determine which affinities between the clusters are high enough to merge the
clusters together. In the subfunction-oriented clustering, the affinity criteria allow for
merging of the clusters with the minimum amount of 70% of common distinctions.

Next-state-bit clustering

In the next-state-bit clustering step the next state outputs consuming similar information
are clustered. The functions that compute these outputs have the potential for being
compact, independent subsystems, and therefore the dichotomies that define them will
be merged together. When clustering the state bits we are interested in a partition of
dichotomies into non-overlapping blocks, and, preferably, each block corresponding to a
state bit. For this reason, seed clustering (see Section 5.4.2) is performed rather than the
hierarchical clustering.

The seed clustering starts by selecting a number of “seed” state bits around which the
clusters will form. Since the target number of clusters is close to the number of expected
encoding bits, the number of initial seeds is equal to the minimum encoding length of

5.3. THE METHOD 127

the FSM. The remaining state bits are then assigned to one of the existing clusters or, if
they do not fit into any cluster, a new cluster is created.

This process is guided by the affinity measure reflecting similarity of input supports.
This measure is the weighted average of the affinities of the primary and state input
supports. The weight is related to the ratio of primary to state inputs in the encoded
machine. The support similarity is evaluated as the ratio of common inputs in the two
supports to the sum of all inputs in the two supports. Thus, the affinity measure is

(

p ·
common_primary_weight

summary_primary_weight
+ (1 − p) ·

common_state_weight

summary_state_weight

)

·

·(1 − size_penalty)

where p is the percent of primary inputs in the final number of inputs given by

primary_inputs

primary_inputs + dlog2#statese

The additional factor size_penalty can be introduced to prevent too large clusters from
forming. The penalty is related to the size of the cluster size. In our experiments we used
linear penalty ranging from 0 to 1 for clusters of the sizes between m and M , where M
is the number of all dichotomies and m is the minimum penalized size, e.g. 50% above
the cluster size that would result from the balanced partition to equally sized clusters.

Output cluster ordering

The output groups identified by the clustering procedures described in the previous sec-
tions represent three different approaches to the optimization of the encoded machine.
To reconcile the three views and compare their relative influence on the cost of imple-
mentation, a combined quality measure is necessary. The measure reflects savings in the
realization cost if a given cluster is taken into account in the code creation. Of course,
since each of the cluster types was created with different optimizations in mind, the qual-
ity estimation procedures will have to consider different saving sorts for different cluster
types.

The procedures described below analyze possible savings in the realization logic if
the dichotomies associated with a particular cluster are merged together. These savings
involve both primary output and next state logic. To estimate the savings, the procedures
analyze reductions of the input supports. These reductions involve primary input bits
and present state bits. However, at this stage of the analysis, the state bits are defined by
atomic dichotomies. This means that their number is much larger than it is going to be
in the final encoding, but also that the state bits will change significantly, so any savings
associated with them have to be considered as uncertain. Therefore, the identified sav-
ings have two distinct components: the primary savings – associated with primary inputs
and outputs – and the state savings – associated with the state bits.

Output clusters The output clusters (both subfunction-based and input-based) are cre-
ated to optimize information delivery to possible subsystems in the realization structure.
The aim is to merge the dichotomies used by the clustered outputs to make the output’s

128 5. EFFECTIVE AND EFFICIENT STATE ASSIGNMENT FOR LUT-FPGAS

supports compact and delivering compressed, relevant information. Therefore, the qual-
ity measure for output clusters reflects savings in the input supports of the clustered
outputs if the used dichotomies are merged together.

These savings are evaluated as a difference between worst-case and best-case sizes
of state bit support for the outputs in the cluster. The worst-case is when all the di-
chotomies in the support in the final realization are on separate state bits (limited by the
expected number of state bits). Best-case is determined by the coloring of (no prefer-
ence) twin graph of dichotomies. This procedure returns (close to) minimum number of
dichotomies on which the given dichotomies may be merged (for details see 5.4.1).

Next-state-bit clusters We recall that the next-state-bit clusters are created to group to-
gether the state bits that share common input information and therefore make good
candidates to be realized together. The savings associated with merging of such a group
of state bits are twofold. On the one hand, the shared information is used by a single state
bit (or a small number of bits) created by the merging of the dichotomies, thus making its
distribution easier and promoting decomposition of the circuit into independent subsys-
tems. On the other hand, we have to consider the influence of the created state bit on the
supports of other functions, as it will be used by the functions instead of the individual
dichotomies in the cluster.

Therefore, the quality measure for the state bit clusters has two components: input
gain and output gain. Input gain expresses gain in terms of number of inputs saved if
the state bits in the cluster are merged, and therefore calculated as one state bit, instead
of being realized separately, on different state bits. Output gain expresses gain in terms
of the number of connections saved if the state bits are sent to the functions that use
them on one bit, instead of being sent on many bits. The above values are estimated as
follows:

• input gain

is calculated as a difference between estimated worst-case and best-case scenario.
The worst-case input support for the dichotomies in the cluster is calculated by
randomly placing the dichotomies on all (predicted) state bits, and assuming the
input support of the cluster to be the sum of the input supports of thus created state
bits. A state bit support is the sum of the supports of component dichotomies. Best-
case is placing the dichotomies on as few bits as possible (no preference twin-graph
coloring) and calculating the resulting input support as above.

• output gain For all outputs including in their supports some of the dichotomies in
the cluster, the gain is estimated as the difference between the case, when all the
used dichotomies are on maximum versus minimum possible number of bits.

Cluster transformation

At this point, the three types of output clusters exist and have cluster qualities associated
with them. We recall, however, that for different clusters different sets of dichotomies
need to be merged to realize the savings associated with the cluster. In this step, the
groups of dichotomies associated with each cluster are created and organized as di-
chotomy clusters.

5.3. THE METHOD 129

The transformation of clusters resulting from sub-function clustering and input-
oriented clustering is performed in the following manner. Dichotomies (state input
bits) in the input support of the outputs in the cluster are extracted. Intersections of
the dichotomy supports form a partition into the dichotomy groups. Each group has a
“depth” associated with the number of supports intersected, i.e. the number of outputs in
the cluster using the dichotomies in the group. The graphical illustration of dichotomy
groups is presented in Fig. 5.11. The sum of the dichotomy groups forms the dichotomy
cluster.

of output Oi

dichotomy group
depth=1

dichotomy group
depth=2

dichotomy group
depth=3

dichotomy cluster
dichotomies in support

Figure 5.11. Dichotomy groups

The clusters resulting from output-oriented clustering already include the dichotomies
we wish to merge together. Therefore, the transformation of these clusters only involves
replacing the atomic state bits in the clusters with the atomic dichotomies corresponding
to the bits and placing the atomic dichotomies in a single dichotomy group that makes
up the dichotomy cluster.

Dichotomy cluster ordering

Finally, the identified dichotomy clusters are ordered according to their quality. We recall
that the estimated quality of clusters has two components: primary savings, involving
primary inputs and outputs and therefore relatively easy to predict; and state savings,
which involve atomic state bits and can therefore significantly change in the dichotomy
merging process. The ordering criterion is therefore the “reliable” primary gain on the
cluster. The uncertain state gain is used as tie-breaker. It can only cause a change in
the order introduced by certain gain if the difference in uncertain gain is very large (two
times), and the difference in certain gain – small (10 percent).

Clustering process summary

In the above we have described the steps of the clustering of atomic dichotomies that
should be conveyed together on the same encoding variables to optimize the implemen-
tation of the encoded FSM.

To find the dichotomy clusters, we identified three types of output function clusters
that correspond to different potential optimizations. The input-oriented clusters focus

130 5. EFFECTIVE AND EFFICIENT STATE ASSIGNMENT FOR LUT-FPGAS

on the output functions that share common inputs and therefore may form a coherent
sub-system. The sub-function-clusters reflect the term distinctions common to different
output functions, and thus the potential for common subfunctions for these functions.
Finally, the next-state-bit clusters identify atomic dichotomies that share input informa-
tion and therefore should be realized together.

The identified clusters are ordered by introducing the common cluster quality mea-
sure related to estimated savings if the cluster is considered in the code construction.
The ordered clusters are then transformed to corresponding clusters of dichotomies that
should be merged, and the dichotomy clusters are finally ordered to prepare them for the
code construction process.

5.3.5 Code construction

In this phase the created clusters of dichotomies are considered in the descending order
of quality and the dichotomies in the cluster under consideration are merged on a (close
to) minimum set of bits. Thus, an attempt is made to realize the gains estimated by
quality of the clusters. The final result is a set of n encoding dichotomies, which defines
the n-bit encoding.

In the beginning of the procedure, the preferences for each pair of the dichotomies to
be realized on one bit are gathered over all the dichotomy clusters. This is done by consid-
ering number and quality of the clusters, in which the dichotomies appear together. The
result is the dichotomy-affinity-matrix, containing in position (i, j) the level of preference
for dichotomies i and j to be realized on one bit.

Then, the code is created. In each step a set of already created encoding dichotomies
(partial code) is available. The highest quality, yet not merged cluster is selected, and
the dichotomies in it are merged. The merging procedure has as the objective to fit
the merged dichotomies on a minimum number of bits (encoding dichotomies). If the
merged dichotomies do not fit on one bit (due to incompatibility), the distribution of
dichotomies on the set of bits is guided by the dichotomy-affinity matrix, in such way
that the distribution chosen (heuristically) maximizes summary preference over all pairs
over all created bits. The merging procedure is stopped, when the current set of encoding
dichotomies realizes all the atomic dichotomies.

Dichotomy-affinity matrix The dichotomy-affinity matrix reflects number and quality
of the clusters that the particular pair of dichotomies is placed in. Therefore, it reflects
preference for these two dichotomies to be realized on one code bit.

The matrix is initialized with zero values, and then updated by analysis of the di-
chotomy cluster set. For each dichotomy group in each dichotomy cluster, all the pairs of
dichotomies formed within the group are enumerated and each the affinity of each of the
pairs is increased with the value of cluster quality (predicted gain) multiplied by group
depth. Additionally, for all the pairs in the cluster (even if they are not within one group)
the affinity is increased by cluster quality value.

Cluster merging In this phase the code is constructed in such way that the dichotomies
placed in one cluster are (preferably) put on a minimum number of code bits. To achieve
this the clusters are considered in descending order of quality. For each cluster the di-
chotomies in the cluster are merged on a minimum number of encoding dichotomies.

5.3. THE METHOD 131

If the number of resulting dichotomies is larger than one, the distribution of the atomic
dichotomies over the encoding dichotomies is related to the pairwise affinity of the di-
chotomies expressed in the affinity matrix. This task is performed by the twin graph
coloring procedure (see Section 5.4.1) with the preferences between dichotomies deter-
mined by the dichotomy-affinity-matrix.

After merging some encoding dichotomies may include not all state symbols. This
is especially the case if the merged cluster was relatively small or if it did not fit on one
encoding dichotomy and a small number of atomic dichotomies had to be merged on
a separate encoding dichotomy. Such “low-density” encoding dichotomies realize only
a small number of state distinctions, so they contribute to the growing of the number
of state bits in the final encoding. In general, we want to avoid this effect, unless the
low-density dichotomy is of such high quality that the code length increase is justified.

To increase the density of the encoding dichotomy, we select a limited number of not
yet merged dichotomy clusters and attempt to add the not merged atomic dichotomies
to the encoding dichotomy. This solution is only considered if the dichotomies can be
merged on the same number of encoding dichotomies, as the existing cluster, i.e. the
compactness of representation for the previously merged atomic dichotomies is not af-
fected. This is especially important when we consider that the previously merged clus-
ters have higher quality, and hence are more important to realize compactly. If the
equally compact representation is possible, the quality of the two competing solutions
is compared. The quality measure involves the increase of the density of the encoding
dichotomy, weighted against the increased input support of the dichotomy.

Stepwise merging

As an alternative to the regular cluster-basedmerging procedure so called stepwise merging
was developed. The method is similar to the approach proposed in [56], where at each
step a pair of state bits occurring together in a large number of input supports is merged.
In this way, each of the supports where the pair occurs is reduced by one bit.

Our method selects at each step a pair of compatible state bits (a pair of compatible
current encoding dichotomies) with the highest affinity and merges them together. The
affinity measure considers similar aspects as the clustering methods. It takes into ac-
count the aspects important for efficient realization of the resulting binary functions: the
production and consumption of the state information.

The efficient consumption of the created encoding bit is taken into account in two
ways. Firstly, the candidates for merging are selected from the pairs of encoding bits
which occur together in a large number of input supports. These bits are often used
together and therefore it is advantageous to merge them together. The rationale behind
it is that the two merged state bits will be replaced by one bit in all the supports where
the pair occurs and therefore the supports will be reduced by one bit. Furthermore,
the number of interconnections routed to each of the functions will decrease, further
simplifying implementation. When considering the input support reduction as a result of
merging, one needs to take into account not only the twomerged dichotomies, but also all
the dichotomies implied by the merged dichotomy. For instance, merging encoding bits
defined by dichotomies a/b and c/d will produce an encoding dichotomy ac/bd which
will replace in the input supports not only a/b and c/d, but also a/d and b/c. Therefore,

132 5. EFFECTIVE AND EFFICIENT STATE ASSIGNMENT FOR LUT-FPGAS

the total input support saving introduced by merging two dichotomies d1 and d2 is

iss(d1, d2) =
∑

{is∈IS | d1∈is ∧ d2∈is}

∣

∣ {d | d ∈ is ∧ d ⊆ d1 ∗ d2}
∣

∣ − 1

The second aspect of information consumption considered whenmerging state bits is the
number of term distinctions realized by the new bit that are required by output functions.
The larger the number, the more information required by the output is delivered by the
input bit and therefore the fewer other inputs may be required by the output.

From the point of view of information production, the two merged bits (and all the
implied dichotomies) should share the common input information, so that the resulting
next-state function has an efficient implementation. To measure this aspect of state bit’s
affinity, the input support affinity measure is used (see 5.3.4). Its value, calculated for all
pairs of dichotomies covered by the merged one, reflects how much the supports of the
component dichotomies have in common.

The merging procedure selects from the current set of encoding dichotomies the
dichotomy pairs that appear together in the largest number of supports. Then it ana-
lyzes the other encoding dichotomies covered by the merged pair and the supports they
are used in. During this analysis, the pairwise input support affinities of the covered
dichotomies are calculated. Finally, the state input bit resulting from merging the di-
chotomies is constructed and the term distinction realized by it and used by outputs are
identified. The above measures are normalized to the range of [0.0; 1.0] and multiplied
to arrive at the composite affinity measure of the two considered dichotomies. The pair
of encoding dichotomies with the highest composite affinity measure is merged and the
data structures are updated to include the new bit in the input supports.

The update procedure is crucial to the efficiency of the method. In general, to de-
termine input supports of the output functions at each step of the merging procedure,
the machine should be encoded with the current encoding and time consuming input
support procedure should be called. However, considering that the merging process is
composed of relatively small changes to the encoding, most of the input support infor-
mation in a given step can be obtained by appropriate modification of the input supports
from the previous step. During the affinity analysis we already established the current
encoding bits covered by the newly created bit. These bits can all be removed from the
current encoding and they can be replaced in the input supports of the remaining out-
puts by the new bit. The input support of the new bit can be either established as a sum
of the supports of the covered dichotomies or, for more precision, its input support may
be calculated by the regular input support routine. The recalculation of just one input
support at each merging step does not introduce severe performance penalty.

5.4 Structures and algorithms

In this section, we will discuss in more detail some of the fundamental data structures
and algorithms used in SECODE.

5.4.1 Twin Graph

Twin graph is a structure first introduced in [12]. It is an undirected and self-loop-free
graph with two types of edges: regular and “twin edges”. Each node of the graph has

5.4. STRUCTURES AND ALGORITHMS 133

exactly one “twin node” that is connected to it with a twin edge. Additionally, every node
can be connected with arbitrary other nodes by undirected regular edges. In this section
we will present the formal definitions of twin graph and their application to dichotomy
merging and the heuristics we developed to efficiently merge dichotomies with given
preferences.

Definition 5.1 (Matching). Let G = (V, E) be an undirected, self-loop-free graph. A match-
ing on a set of vertices X ⊆ V is a set of edges T ⊆ E such that

∀x ∈ X ∃!{v, v′} ∈ T : x = v ⊕ x = v′

∀{v, v′} ∈ T ∀{w, w′} ∈ T \ {v, v′} : {v, v′} ∩ {w, w′} = ∅

In other words, a matching is a set of edges that group the vertices from X into unique,
disjoint pairs.

Definition 5.2 (Twin graph). A twin graph is a pair (G, T), where G = (V, E) is an undi-
rected, self-loop-free graph and T is a matching on V . Each pair {v, v′} ∈ T is called a twin
couple and v is called a twin of v′.

The graphical representation of a twin graph (G, T), with G = (V, E), V = {a, b, c, d, e},
E = {{a, b}, {a, d}, {c, d}, {d, e}, {d, f}, {e, f}},T = {{a, b}, {c, d}, {e, f}} is shown in
Fig 5.12(a). The twin edges are represented with thick lines.

An instance graph of a twin graph (G, T) is a graph G \ V ′, where V ′ is a set of twin
vertices that does not contain any twin couple and |V ′| = |T |. In other words, an instance
graph is a graph with exactly one vertex from each twin couple removed (see Fig. 5.12(b)).
The remaining twin vertex is called twin representative. A coloring of a twin graph is a
coloring of one of its instance graphs and minimum coloring is the minimum cardinality
coloring that can be obtained for a twin graph over all its instance graphs (Fig. 5.12(c)).

Dichotomy merging with twin graphs

Twin graphs are particularly suitable for merging of sets of unordered dichotomies. For
any set of unordered dichotomies, a twin graph can be built with a couple of twin nodes
for each of the dichotomies. Each of the twins corresponds to one of the two possible or-
derings of the unordered dichotomy. For instance, the unordered dichotomy ab/cd gen-
erates a pair of twin nodes with associated ordered dichotomies ab//cd and cd//ab. Then,

ba

c d

e f

(a) Twin graph

a

d

e

(b) Instance graph

e

c

b

(c) Minimum coloring

Figure 5.12. Twin graph example

134 5. EFFECTIVE AND EFFICIENT STATE ASSIGNMENT FOR LUT-FPGAS

a regular edge between the nodes indicates incompatibility of the ordered dichotomies
associated with the nodes connected by the edge. The minimum coloring of the twin
graph constructed in this way gives the minimum number of dichotomies that the ini-
tial dichotomies can be merged to. The resulting merged dichotomies are obtained by
merging together all ordered dichotomies associated with the nodes colored to the same
color.

Consider, for example, the set of unordered dichotomies {ae/bd, a/c, b/c, c/de}. The
twin graph for this set is shown in Fig. 5.13(a). The colored instance graph is given
in Fig. 5.13(b). The dichotomies ae/bd and a/c were selected in the positive polarity
(i.e. ae//bd and a//c) and given the same color. They are therefore merged to form the
dichotomy ae//bcd. Note that due to the symmetry of the dichotomy merging problem,
any instance graph G \ V ′ has the same cardinality coloring as the instance graph V ′. In
other words, given a colored instance graph, same cardinality coloring can be obtained for
the instance graph created by replacing each node by its removed twin. In this example,
in such inverse graph, the dichotomies ae/bd and a/c would be both present in negative
polarity (bd//ae and c//a), colored to the same color and merged to dichotomy bcd//ae.
Since merging in both polarities is possible, the result is an unordered dichotomy ae/bcd.
The same reasoning applies to the dichotomies b/c and c/de, which can be merged in
negative-positive polarity (c//b, c//de) or positive-negative (b//c, de//c), so the result is
the dichotomy c/bde.

Heuristics for twin graph coloring

The problem of graph coloring is known to be NP-complete. Therefore, efficient heuris-
tics are necessary to solve it in reasonable time. In the case of twin graph coloring, the

c//de

b//c

a//c

ae//bd bd//ae

c//a

c//b

de//c

(a) Twin graph representation

a//c

ae//bd

c//b

c//de

(b) Coloring

Figure 5.13. Dichotomy merging with twin graph

5.4. STRUCTURES AND ALGORITHMS 135

process is additionally complicated by the necessity to select one vertex out of each twin
couple.

The basic heuristic is derived from the well-known DSATUR [5] graph coloring heuris-
tic. It is based on sequential selection of the “most difficult to color” vertices and coloring
them to the first available color. This way, the most constrained vertices are dealt with in
the early stages of coloring, when the freedom of color’s choice is not yet limited by the
previous choices. In this context, the most difficult vertices are the ones that already have
many colored neighbors (they have high saturation), so the number of colors allowed for
these vertices is small. As a tie breaker, the number of edges incident to the vertex is
used. This follows the rationale that vertices that impose many constraints should be
colored early on, so that the imposed constraints can be addressed in the early stages of
the coloring procedure.

On top of that, the heuristic for twin representative selection needs to introduced. In
this case, the obvious choice is the selection of the less constrained of the two twins (i.e.
the twin with a lower DSATUR-score).

These two heuristics are intertwined in the framework of the coloring method. The
strategy that proves to work well is the selection at each step of the most constrained
twin couple (i.e. the couple for which the representative is more constrained than rep-
resentatives for other couples), removing the more constrained twin, and coloring of the
remaining representative.

Consider the initial score values for the twin graph in Fig. 5.13(a) (scores for partic-
ular nodes are given in Fig. 5.14(a) in form saturation, number of neighbors). The most
constrained twin pairs are the pairs associated with dichotomies ae/bd and c/de. Both
twin vertices in each of these pairs can be considered a representative with no colored
neighbors (saturation = 0) and four incident regular edges. Let us select the pair ae/bd
and the vertex ae//bd to be the representative of the pair. The twin bd//ae is then re-
moved and ae//bd is colored to the first color (gray). The resulting saturations are shown
in Fig. 5.14(b). Now, both pairs a/c and b/c have a representative with score (0,2). In the
pair c/de, on the other hand, both vertices have score (1,3), so this pair is selected as the
most constrained, the vertex c//de is arbitrarily selected as the representative and colored
to the second color (black). Further, the pair a/c has two representatives with score (1,2)
and the pair b/c a representative with score (0,1). a//c is selected as the representative
of the more constrained pair and colored to the first color. Finally, c//b is the representa-
tive of the remaining pair, and is colored to the second color, resulting in the coloring in
Fig. 5.13(b).

Heuristics specific to dichotomy merging

As illustrated by the above example, even with multiple constraints, the choice of equally
constrained vertices to color can be quite large. Furthermore, in some cases a choice of
colors can be available for a selected vertex. For instance, when coloring the pair a/c in
the above example, both twin vertices were equally constrained with the score of (1,2),
but the vertex a//c could only be colored to the first color if selected as representative,
while the vertex c//a could only be colored to the second color. Also, if there were more
than two colors currently used in the graph, both of the vertices would have additional
color to choose from. In situations like that, additional criteria associated with particular
problem can be used to break the ties.

136 5. EFFECTIVE AND EFFICIENT STATE ASSIGNMENT FOR LUT-FPGAS

c//de

b//c

a//c

ae//bd bd//ae

c//a

c//b

de//c

0,3 0,3

0,30,3

0,4 0,4

0,40,4

(a) Initial score values

c//a

c//b

de//cc//de

b//c

a//c

ae//bd

1,31,3

1,3 0,2

1,30,2

(b) Coloring of ae//bd

c//a

c//bb//c

a//c

ae//bd

c//de

2,3 0,1

1,21,2

(c) Coloring of c//de

c//bb//c

ae//bd

a//c

c//de

1,12,2

(d) Coloring of a//c

Figure 5.14. Twin graph coloring process

5.4. STRUCTURES AND ALGORITHMS 137

In the case of dichotomy merging, one of such criteria can be the preference of par-
ticular dichotomies to be merged together. This preference is given as an affinity matrix,
where the pairwise preferences for all pairs of dichotomies are recorded. For instance,
the choice of coloring a//c to the first color over coloring c//a to the second color could
be dictated by the fact that the dichotomy a/c has more preferences towards merging
with ae/bd rather than with c/de. Even more detail is introduced by analyzing atomic
dichotomies resulting from coloring a particular vertex (i.e. merging it with other di-
chotomies already colored to the same color). Returning to the previous example, it
might be the case that the atomic dichotomy a/c has more affinity towards the atomic
dichotomies a/b, a/d, b/e, and d/e represented by ae/bd, than towards c/d and c/e rep-
resented by c/de.

Another criterion for the selection of colors can be the atomic dichotomies implied
and forbidden by the choice of particular coloring. In general, the goal of dichotomy
merging is to determine as few as possible dichotomies that cover all the initial di-
chotomies. In some cases, it may additionally be desirable that the merged dichotomies
cover as few as possible atomic dichotomies outside of the initial set, provided that the
minimum cardinality of the coloring is still preserved. An example of such case is the
encoding construction, where a number of atomic dichotomies is selected to be merged
together on as few as possible encoding dichotomies, and the preference is that only these
atomic dichotomies are present on the resulting encoding dichotomies. Consider, for
example, the set of atomic dichotomies a/b, a/c, b/c and c/d, and assume that a//b and
a//cwhere both colored to color 1 and b//c to color 2. This means that d//c has a choice of
being colored to any of these colors. However, if colored to color 1, the resulting merged
dichotomy ad/bc would include additional implied atomic dichotomy b/d and would for-
bid the dichotomy a/d from being realized on the same bit. On the other hand, if d//c is
colored to color 2, the resulting merged dichotomy bd/c does not introduce any implied
or forbidden dichotomies.

Twin graph implementation

The abovementioned heuristics were implemented in TwinGraph class. The class con-
structor accepts a list of unordered dichotomies and optionally the affinity matrix for
the dichotomies. The affinity matrix can include positive affinities as well as negative
(indicating that the dichotomies should not merged if possible). The negative affinity
value INT_MIN is reserved to indicate that the two dichotomies should never be merged
together. For each unordered dichotomy, a couple of twin nodes is constructed and con-
nected with a twin edge. Then, the incompatibilities between the ordered dichotomies
represented by nodes are determined and represented as regular edges in the graph. The
coloring procedure is described in Alg. 5.1.

The procedure at each step selects the best candidate for coloring and colors it to
the best color. The candidates for coloring are selected from the group of twin couple
representatives with the highest DSATUR score (line 3). All the candidates are required
to have the same saturation value, but the number of neighbors can differ within a given
margin of the highest neighbors number in the group. Then, the candidate list is sorted
in the descending order of preference level (line 6). The preference level is a sum of
absolute values of positive and negative affinities that the candidate vertex has to other
vertices in the graph. A large value of preference level indicates that the vertex has strong

138 5. EFFECTIVE AND EFFICIENT STATE ASSIGNMENT FOR LUT-FPGAS

Algorithm 5.1 Twin graph coloring

1: while(uncolored vertices present)
{

3: candidates = list of twin representatives within a margin
of the highest DSATUR score;

6: if(preferences present) sort candidates by preference level;
else sort candidates by DSATUR score;

9: candidates = a number of candidates from the front of the list;

for each v in candidates {
12: determine colors available for v;
13: determine preferences of v for each of the available colors;

colors = select a number of colors with highest preference;
for each c in colors {

16: analyze dichotomies implied and forbidden by coloring
vertex v to color c;

18: if(better that current best) bestv, bestc = v, c
}

}

22: remove twin of bestv;
color bestv to bestc;

}

preferences in the selection of a color for it, so it should be considered first. Depending
on the size of the problem, some of the less promising candidates can be discarded to save
runtime (line 9). For each of the remaining candidates, available colors and preferences
to the vertices already colored to the available colors are determined (lines 12 and 13).
The most preferred colors are then analyzed to determine, what dichotomies would be
implied and forbidden if the vertex was colored to a particular color (line 16). The best
vertex and its best color with high preference and low implied/forbidden score is selected
(line 18), the vertex’s twin is removed and the vertex is colored (line 22).

5.4.2 Clustering

A major part of the analysis phase of SECODE is finding groups of outputs and atomic
dichotomies that are related as far as consumed and produced information is concerned.
To find these groups, we employ clustering techniques. Clustering of data is a well known
and much studied problem used in diverse fields, such as statistics, social sciences, mar-
keting, geography, biology and many others. An extensive overview of clustering clas-
sification and techniques can be found in [29] and some practical implementations of
clustering are discussed in [53].

In our problem, we applied two different clustering strategies. First of them is a
variation of hierarchical clustering, modified to handle cases of non-disjoint clusters. The
other one is a partitional (disjoint) clustering method based on growing clusters around

5.4. STRUCTURES AND ALGORITHMS 139

initialy selected “seed” elements. Both algorithms were designed in a flexible manner to
be able to apply various affinity measures, and selection criteria.

Hierarchical clustering

The hierarchical clustering algorithm accepts as input initial clusters (usually, one-element
clusters) and merges them into larger ones. The resulting clusters constitute the input
to the next level of clustering. The clustering stops when no merging is possible. The
criteria for merging are based on similarity measure between clusters. At each level, sim-
ilarities between all pairs of clusters are calculated. The similarity-measuring-function
is a parameter to the clustering algorithm. The resulting similarities are presented as a
graph (clusters are nodes, similarities are the weights of the edges). Then, the criterion-
function, which also is a parameter to the algorithm, is applied to eliminate some of the
edges. This way, a sort of threshold graph is constructed. However, the application of
criterion-function rather than a fixed threshold makes the selection much more flexible
and capable of dynamic adjustment of thresholds, depending on the characteristics of the
problem or on how advanced the solution is. In the resulting graph the cliques (complete
sub-graphs) are identified, and the clusters in the cliques are merged together.

Seed clustering

The seed clustering algorithm identifies (based on similarity matrix) seeds of the clusters
(single objects, mutually distant and with strong connections to other objects). The seeds
form initial (one-element) clusters. Then, each of the objects left (one at a time) is as-
signed to one of the existing clusters. If for an object no cluster exists to which the object
could be added, a new cluster is created, with the object as an element. The seed se-
lection procedure starts with identification of the object with strongest relations (largest
average affinity to its neighbors). Then, one-by-one, the remaining seeds are selected as
the objects with lowest summary affinity to the current seed set (with 20% tolerance)
and (tie-breaker) strongest relations. In the object assignment phase, an object with the
strongest relations is selected. Its affinity to current clusters is determined as average
affinity to the cluster’s elements. If the affinity to a cluster is larger than affinity to re-
maining neighbors of the object, the object is placed in the cluster. Otherwise, a new
cluster is created, with the object as a seed.

5.4.3 Code improvement with simulated annealing

In many problems with complicated characteristics, after a solution has been found, it is
often a good idea to perform a local search around the solution to determine if no better
solutions similar to the original one are present. Since the concerned neighborhood is
much smaller than the entire solution space, more detailed and more time-consuming
criteria can be applied to search for an improved solution, without a prohibitive perfor-
mance penalty.

Simulated annealing

Simulated annealing is an optimization technique based on the analogy to the physical
process of metal recrystallization [54]. In this process, a metal is heated to high tempera-

140 5. EFFECTIVE AND EFFICIENT STATE ASSIGNMENT FOR LUT-FPGAS

ture, at which it enters a highly disordered, high energy state. At any given temperature,
the melt is allowed to stabilize, i.e. to achieve the lowest possible energy state at this tem-
perature. Due to the nature of the process, the route to the stable low energy state may
lead via some higher energy states. Once the equilibrium is achieved, the temperature is
lowered and the melt is allowed to reach equilibrium at the new temperature. As cool-
ing proceeds, the system becomes more ordered and approaches a "frozen", cristalline
minimum energy state.

Optimization methods based on simulated annealing draw the analogy between the
state of the thermodynamic system and the solution of the optimization problem at hand.
The energy of the system is reflected by the cost of the solution. Following the analogy,
at each temperature the solution is perturbed to form a new candidate solution. If the
candidate solution is better (has a lower energy, i.e. lower cost), it is accepted. However,
even if it is worse, it can still be accepted with the probability given by the Boltzman
factor exp(−∆E/T), where ∆E denotes the energy (cost) increase and T is current tem-
perature. Note that, faithful to the physical analogy, the procedure will allow higher cost
solutions to be accepted at higher temperatures, but with cooling the probability of such
an event decreases. The outline of a typical simulated annealing algorithm is presented
in Alg. 5.2.

Algorithm 5.2 Simulated annealing

determine initial solution S;
T = T_0;
repeat {

while (not an equilibrium)
{
perturb S to get a new solution S’;
deltaE = E(S’) - E(S);
if (deltaE < 0)

replace S with S’;
else

replace S with S’ with probability exp(-deltaE/T);
}
T = T * alpha; // 0 < alpha < 1

} until (freeze);

A number of variations on this general scheme is possible. Some approaches use a
fixed number of perturbations at each temperature, without the requirement for equi-
librium. This saves significant amount of runtime, especially in the early stages of the
algorithm, when the system is unstable due to high temperature. This savings come
naturally at the expense of good statistical properties of the solution, but these may have
small effect on the quality, especially if the initial solution was already a good one, so
no large perturbations and no extensive search of the search space is required. It is also
possible to dynamically adjust the number of perturbations at a given temperature, de-
pending on the current conditions. In the early stages, it is also possible to use less
precise cost functions, as the high temperature and the resulting high acceptance rate
introduce an element of error that may offset small errors in the cost function [17].

One of the most important aspects of the algorithm is so called “annealing schedule”,

5.4. STRUCTURES AND ALGORITHMS 141

that is the choice of initial temperature and the method to decrease it in the subsequent
steps of the algorithm. The simple-minded approach is the linear decrease of tempera-
ture by a factor α ∈ (0, 1) (as in Alg.5.2). More elaborate schedules are also possible. The
most popular is the schedule that saves the runtime of the algorithm by quick cooling at
the initial temperatures (e.g. by a factor of α2) and slower cooling in the finishing stages
(e.g. by α).

Code improvement

The code improvement procedure was implemented as simulated annealing in the scheme
presented in Alg. 5.2. The solution is a given encoding, with the initial solution being
a result of the code construction stage of SECODE. The initial temperature is selected in
such way that a solution with the quality 10% worse that the initial solution is accepted
with probability of 50%. This value is given by equation

T0 = initial_cost ·
0.1

ln(2)

A current encoding is perturbed in a random manner by adding or removing a symbol
from a block of one of the encoding dichotomies. If a symbol is removed, the atomic di-
chotomies lost by removing this symbol and not realized by other encoding dichotomies
are recovered by adding appropriate symbols to the other encoding dichotomies. At each
temperature, a limited number of perturbations is generated. This number increases log-
arithmically from the number of perturbations equal to the length of the encoding at the
highest temperature (i.e. statistically, each bit is perturbed once) to 10 times the length of
the encoding at the temperature 1. The number of perturbations at a given temperature
is therefore given by

num_perturbations(T) = encoding_length ·

(

10 − 9 ·
ln(T)

ln(T0)

)

The new solution is then evaluated by a cost function. The cost function is a pa-
rameter to the annealing procedure. We implemented two basic cost functions: the
dichotomy-affinity-cost-function and the input-support-cost-function. The dichotomy-
affinity-cost-function evaluates a solution based on a dichotomy affinity matrix, which
reflects pairwise affinities of atomic dichotomies to be merged together. A solution is
evaluated by enumeration of atomic dichotomies realized by the encoding dichotomies
and summing up pairwise affinities of the atomic dichotomies realized on the same en-
coding dichotomy. The input-support-cost-function performs more precise evaluation of
the solution by determining input supports of the output and next-state functions result-
ing from encoding the FSMwith the encoding represented by the evaluated solution. The
cost is then determined as the sum of sizes of input support of the functions. This pro-
cedure in general can be time consuming. However, taking into account that subsequent
solutions are produced by small perturbations of the previous solutions, caching is ex-
tensively used to only recalculate the input supports actually affected by the perturbation,
and to cache the unchanged rest.

142 5. EFFECTIVE AND EFFICIENT STATE ASSIGNMENT FOR LUT-FPGAS

5.5 Special encodings

When designing any computer optimization method it is usually desirable to make the
method as general as possible, with few assumptions about the character of the sought
solution. Any assumptions inevitably limit the explored solution space and may there-
fore preclude some very good, but “unexpected” solutions. To avoid this effect, a method
should strive to search the solutions that optimize objective quality criteria, rather than
the ones that follow a presumed pattern. On the other hand, such general, unconstrained
methods usually have trouble finding some very specific, characteristic solutions that
may be good in the particular domain. Naturally, when exploring a huge and irregular,
discrete solution space, chance of finding one very specific, isolated point in it is small,
however sophisticated the method. Therefore, practical methods often implement a gen-
eral search algorithm coupled with a separate analysis of some few specific, well known
solutions.

This is unfortunately not the case in state encoding methods implemented in most
of the current commercial FPGA synthesis tools. They essential limit themselves to the
analysis of only some specific encodings, namely: one-hot, sequential (natural binary),
and Gray code, or even leave the choice entirely to the user. No general search for a good
encoding is performed. Undoubtedly, this choice was dictated by the difficulty of the
encoding problem and the perception that finding a good code is too great a burden on
the runtime of the tool. However, a quick but naive choice of state assignment may result
in a circuit which is not onlymuch larger and slower, but also, due to its complexity, much
harder to synthesize. The additional effort required from the combinational synthesis
method may in this case exceed the effort required to find a more suitable encoding.

However limited this simplistic approach to encoding is, it stems from a valid obser-
vation that a certain limited number of practical, industrial benchmarks have good im-
plementations when encoded with one of these specific encodings. This is particularly
true for one-hot encoding, which is known to result in combinational logic described
by very simple sum-of-product (SOP) expressions. While usually sum-of-product form
is not the best indicator of the complexity of FPGA implementation, the specific form
of the one-hot-induced functions makes them more often good candidates for an effi-
cient implementation. In particular, the SOPs resulting from one-hot encoding often
depend on less than all state variables and take form of a sum of very small (sometimes
single-literal) product terms, with little overlap between the terms. This may result in
the Boolean functions that are unate in some of their input variables and possess good
disjoint decompositions. Both of these traits simplify logic synthesis of the Boolean func-
tions and may result in effective circuit implementations. On the other hand, in many
cases the sheer number of functions and memory elements required to implement a
one-hot encoded machine is so large that the resulting realization is very large, however
simple the particular functions are. Also, even the simplest functions with very wide
supports still require a large number of LUTs to realize, as the LUTs are limited by the
maximum number of inputs. As a result, one-hot encoding can only be applied to a small
subset of all finite state machines and is not a universal method.

In this section we will describe a method of determining good candidates for one-hot
encoding before the actual encoding. With this method we are able to efficiently analyze
if a machine has a potential for good one-hot realization and if so, encode it without the
relatively costly general encoding procedure, yielding good results in a fraction of the

5.5. SPECIAL ENCODINGS 143

runtime.

5.5.1 One-hot encoding

Our method is based on the prediction of the number of look-up-tables required for real-
ization of the machine encoded with one-hot encoding and with some minimum-length
encoding. Since our general encoding method results in close-to-minimum encoding
length, it is a reasonable approximation of the possible state assignment result. The es-
timation of the number of LUTs is based on the number of inputs required to compute
each function.

One-hot encoding cost

In the case of one-hot encoding, the inputs required to calculate each particular output
and state bit are easy to estimate by analyzing the state transition table. Since each state
will be represented in the one-hot encoded machine by a separate bit, the state bit sup-
port for a primary output bit consists of state bits corresponding to the states, in which
the particular output is active. Also, for a next-state-bit, the previous states of the state
corresponding to this particular bit will form it its state-bit-support. In the cases where
thus assessed state bit support is very large, it should be reduced to account for the pos-
sibility of expressing the state conditions in a complementary fashion. For instance, for a
5-state machine the output that is active for the states 1 through 4 (and therefore depends
on the first four state bits) can be expressed as an output active when the state is not 5,
and therefore depends solely on the fifth state bit.

To estimate the primary inputs involved in the computation of a particular output,
the primary input cubes for which the output is active can be analyzed to identify the
active inputs. Of course, due to possible redundancy of representation in state transition
table some of the seemingly active inputs may be not actually used by the output. For
instance, an output active for input cubes 111 and 110 really only depends on the first
two input bits, as the value of the third bit does not influence the value of the output. To
identify such situation, a quick distance-1 merge can be performed among the primary
input cubes. For more precision, actual input supports of the output functions can also
be computed using a simple minimum input support algorithm (e.g. best first search).

Once the number of inputs used by an output is determined, the expected realization
size is estimated by the expression

lut_count_hot(in) =

0 in ≤ 1

1 2 ≤ in ≤ 5

2 + in−6
2 in ≥ 6

Note that the expression introduces linear dependency between the support size and the
size of the realization. While in general it is far from true, the specific form of the Boolean
functions resulting from one-hot encoding is such that their realization is very simple and
requires little logic. In particular, one-hot encoded Boolean functions have very often very
good disjoint decompositions, which simplifies functional decomposition of the circuit
performed in the combinational synthesis and results in compact realization.

144 5. EFFECTIVE AND EFFICIENT STATE ASSIGNMENT FOR LUT-FPGAS

Minimum length encoding cost

The estimation of realization size for the machine encoded with a minimum length en-
coding is much more difficult. Naturally, the realizations for different encodings of the
same length differ very considerably, which is exactly the reason that fuels state assign-
ment research. Therefore, any estimations dealing with the precise size of the realization
have to be wildly inaccurate.

However, in this case we are not interested in the exact size of the realization, but
rather with the relation between the size of one-hot and some min-length realization. We
are looking for a verdict that will indicate whether one of the realizations is clearly better,
or the difference is too small to determine by such an inaccurate method. This approach
calls for much smaller precision and, as we found out in our experiments, the rough
estimation based on input support size is in most cases sufficient.

As in the case of one-hot realization, the min-length realization size is estimated
based on predicted input supports of the binary next state and output functions. When
determining the supports, we assume that a primary output function will use the same
primary inputs it used in one-hot realization plus all encoded state bits. The next state
functions have all the same support consisting of all primary inputs used by the state
logic in one-hot encoding plus all the encoded state bits.

Once the predicted input supports of the output functions are determined, the size of
realization is estimated by the sum of realizations of particular primary output and next
state functions. The realization cost of a single output function is a function of its input
support size and is given by the expression

lut_count_minlen(in) =

0 in ≤ 1

1 2 ≤ in ≤ 5

(2 + in−6
2) · in

6 in ≥ 6

As can be observed, this expression has an additional factor of in
6 when compared

with the expression used for evaluation of the size of one-hot realization. This factor
introduces non-linear dependency of realization size on the number of inputs. This is
necessary for functions resulting frommin-length encoding, as they aremuchmore com-
plicated to realize than the one-hot functions. This is due to the fact that the information
about states is encoded on the state bits in a more complicated fashion than in one-hot
encoding, so additional circuitry is necessary to decode the information necessary to cal-
culate the output functions.

5.6 Conclusions

In this chapter, we have discussed the state assignment method implemented in software
tool SECODE. The method builds upon the general set-system-based encoding procedure
proposed in Chapter 4. It uses the information relationships and measures apparatus to
analyze relationships between information flows within the encoded machine and con-
structs the final encoding in such manner, as to optimize the information flows. To this
end, it considers production and consumption of state and primary input information by
the next-state and primary output functions. It then identifies groups of items of elemen-
tary state information that should be conveyed by the same binary encoding bits because

5.6. CONCLUSIONS 145

of the common source or destination of the elementary state information. Finally, it cre-
ates an encoding by explicitly constructing binary encoding bits conveying the desired
elementary state information.

The information flow optimization implemented in SECODE realizes a general goal
of finding a “natural” decomposition structure of the realization circuit, with separate,
relatively independent, coherent sub-circuits. The optimized information flows deliver
to these sub-circuits compressed, relevant information that can be efficiently processed.
This approach is beneficial to any logic synthesis method or target implementation plat-
form, but it addresses particularly the characteristics of LUT-based FPGAs and IRMA2FPGA

as a logic synthesis method. In LUT-FPGAs, limits are placed on the number of inputs
to a logic block and on the interconnection structure. Compression of relevant infor-
mation results in Boolean functions with few inputs and the separation of independent
sub-systems reduces the inter-system communication and, thus, the non-local intercon-
nections. This approach is also compatible with the logic synthesis method implemented
in IRMA2FPGA. As discussed in Section 4.2, this functional decomposition method is
based on analysis of information delivered by particular inputs of a Boolean function and
required by the output of the function. The method builds a network that removes the
redundant input information and reorganizes it to form the desired output information.
If the inputs deliver mostly relevant information, the process of removing the redundant
information is greatly simplified, and smaller realization circuits can be found.

In this way, SECODE and IRMA2FPGA form a coherent synthesis chain for FPGA
implementations of sequential circuits. In the next chapter, we will present experimental
results testifying to the effectiveness of this approach.

146 5. EFFECTIVE AND EFFICIENT STATE ASSIGNMENT FOR LUT-FPGAS

Chapter 6

Experiments

In the previous chapters, we described the state assignment method based on set system
(or dichotomy) representation of encoding and the heuristics that are used in the frame-
work of this method to find encodings resulting in effective state assignment. To test the
effectiveness of the proposed approach, we implemented this encoding method in the
experimental EDA software tool SECODE. In this chapter, we will present and discuss
the results of encoding experiments that we performed with the tool using a large set of
benchmarks.

6.1 Comparison of one-hot and min-length encodings

In Section 5.5.1, we indicated that while generality is a very desired quality of a synthesis
method, it comes at an expense of having to deal with a large solution space. In this
huge space, a general synthesis method being guided only by some general heuristics
may have a difficulty to reach some very specific solution points, even if they are known
to often result in high quality circuits. Therefore, we proposed to accompany our general
encoding method by a dedicated procedure to test in relation to a given FSM for high
quality of some specific encodings, and in particular of the one-hot encoding. We pro-
posed the method of evaluating the size of implementation of a one-hot-encoded FSM as
compared to the FSM encoded with a minimum length encoding. This method enables
us to predict with a reasonably high accuracy, which sort of encoding will be better for a
given FSM: the specific one-hot encoding or the general encoding.

In Tab. 6.1 we present experimental results of the proposed method on the standard
set of IWLS benchmarks [62]. In these experiments, we confronted the predictions of
the method with the actual synthesis results of machines encoded both with the one-hot
and min-length encodings. For min-length encoding we used JEDI, which is known to
produce high-quality minimum length encodings. The encoded FSMs were synthesized
with IRMA2FPGA, the synthesis method targeting LUT-FPGAs and based on functional
decomposition [41]. IRMA2FPGA produces on average much better circuits than any other
available academic or commercial combinational synthesis method [41]. In our experi-
ments with IWLS benchmarks, it outperformed the popular academic logic synthesis
tool, SIS [71], on average by 25% in terms of area of the synthesized circuits and by 30%
in terms of delay measured by the number of levels.

147

148 6. EXPERIMENTS

fsm jedi hot ind real fsm jedi hot ind real
a02 22 32 − 45% opus2 26 21 − −19%
a03 15 16 ? 7% patgen 29 36 − 24%
a04 43 53 + 23% patrec 49 46 − −6%
a05 11 16 + 45% percent 15 20 + 33%
bbara 15 20 + 33% planet 119 88 − −26%
bbsse 29 31 ? 7% pma 43 47 + 9%
bbtas 5 8 + 60% s1 33 94 ? 185%
beecnt 9 13 + 44% s1488 164 119 − −27%
coffee 23 20 − −13% s1494 165 120 − −27%
cse 53 56 ? 6% s208 20 25 + 25%
dk14 21 29 + 38% s27 4 15 + 275%
dk15 7 15 + 114% s386 41 29 − −29%
dk17 6 16 + 167% s420 19 26 + 37%
dk27 5 8 + 60% s510 64 67 − 5%
dk512 7 19 + 171% s8 5 8 + 60%
ex1 84 71 ? −15% s820 114 65 − −43%
ex4 15 20 ? 33% s832 107 71 − −34%
ex5 11 15 + 36% sand 191 174 ? −9%
ex6 24 25 + 4% shiftreg 4 9 + 125%

example 9 11 ? 22% sse 29 31 ? 7%
keyb 50 67 + 34% tav 7 4 − −43%
lion 3 5 + 67% tbk 58 207 + 257%
lion9 5 10 + 100% tma 21 32 + 52%
mark1 22 25 − 14% train11 6 13 + 117%
mc 7 7 ? 0% vtiidec 53 56 − 6%
opus 23 18 − −22% vtiuar 71 66 − −7%

Table 6.1. Realization cost of one-hot vs min-length encoding

The parameters of the synthesized circuits are given in Tab. 6.1. The columns jedi and
hot give size (in 5-input LUTs) of the implementation of FSMs encoded with JEDI and 1-
hot, respectively. The column ind shows the results of our cost estimation analysis. ’+’
stands for predicted increase of size in one-hot implementation, ’–’ for decrease in size
and ’?’ for uncertain. The uncertain status was assigned to cases where the predicted
difference in implementation size was under 15%. The real column shows real increase
in the size of the realization when one-hot encoding is used instead of min-length.

We can observe that in over 80% of the cases the relationship between the size of
one-hot and min-length realization is evaluated correctly. Especially for larger machines,
the estimations agree with reality (e.g. planet, s1488 or s820).

In most cases where the estimation is wrong, it overestimates the size of min-length
realization and thus incorrectly indicates that one-hot encoding is better. In these cases,
JEDI is able to find some optimization very specific to the given machine, which is impos-
sible to predict just analyzing the input supports. This is particularly glaring in the case
of the s1 FSM. The procedure estimated the sizes of both realizations as comparable,
while in reality the one-hot realization is 185% larger than min-length. In this particular
example, however, the large area reduction is due to very large number of common sub-

6.2. SECODE 149

functions in the realization ofmin-length encoding. This type of optimization is naturally
very difficult to accurately predict with our simple, but fast, estimation method.

Our assignment cost prediction method is very fast and accurate enough to be used in
practical settings. Moreover, in the uncertain cases, we can always check both assignment
methods.

6.2 SECODE

In this section, we will discuss the results of experiments with our information-driven
state assignment method described in Chapter 5 and implemented in the software tool
SECODE. First, we will present the results for the set of standard IWLS benchmarks, fol-
lowed by the discussion of results for a large set of FSMs generated with benchmark gen-
eration tool BENGEN that we developed. BENGEN enables us to generate diverse FSMs
having characteristics typical to circuits encountered in various industrial applications.

6.2.1 Standard benchmarks

For comparison of the encoding effectiveness, we used JEDI state assignment tool, as in
our experiments it consistently produced better results than other available tools, such as
NOVA or MUSTANG. Again, as in the case of one-hot experiments described in the previ-
ous section, we used IRMA2FPGA for combinational synthesis. The results of synthesis
of the IWLS FSMs encoded with SECODE and JEDI are presented in Tab. 6.2. For each
method, we give the number of 5-LUTs in the realization (column a) and the depth of the
circuit (column d). Additionally, the percentage of difference with JEDI in area and depth
is given in columns a% and d%, respectively.

fsm JEDI SECODE SECODE’
a d a d a% d% a d a% d%

a02 22 3 20 2 -9 -33 32 3 45 0

a03 15 2 14 2 -7 0 14 2 -7 0

a04 43 3 44 3 2 0 44 3 2 0

a05 11 2 8 2 -27 0 8 2 -27 0

bbara 15 2 12 2 -20 0 12 2 -20 0

bbsse 29 3 26 2 -10 -33 26 2 -10 -33
bbtas 5 1 5 1 0 0 5 1 0 0

beecnt 9 2 6 1 -33 -50 6 1 -33 -50
coffee 23 2 18 2 -22 0 20 2 -13 0

cse 53 3 49 3 -8 0 49 3 -8 0

dk14 21 2 18 2 -14 0 18 2 -14 0

dk15 7 1 7 1 0 0 7 1 0 0

dk17 6 1 6 1 0 0 6 1 0 0

dk27 5 1 5 1 0 0 5 1 0 0

dk512 7 1 7 1 0 0 7 1 0 0

ex1 84 3 50 2 -40 -33 50 2 -40 -33
ex4 15 2 14 2 -7 0 14 2 -7 0

ex5 11 2 7 2 -36 0 7 2 -36 0

ex6 24 2 21 2 -13 0 21 2 -13 0

150 6. EXPERIMENTS

example 9 2 7 1 -22 -50 7 1 -22 -50
keyb 50 4 41 5 -18 25 41 5 -18 25

lion 3 1 3 1 0 0 3 1 0 0

lion9 5 1 3 1 -40 0 3 1 -40 0

mark1 22 2 23 2 5 0 25 2 14 0

mc 7 1 7 1 0 0 7 1 0 0

opus 23 2 14 2 -39 0 18 2 -22 0

opus2 26 3 19 2 -27 -33 21 2 -19 -33
patgen 29 3 33 3 14 0 36 2 24 -33
patrec 49 3 51 3 4 0 46 2 -6 -33
percent 15 2 7 2 -53 0 7 2 -53 0

planet 119 4 155 6 30 50 88 3 -26 -25
pma 43 3 37 3 -14 0 37 3 -14 0

s1 33 3 26 3 -21 0 26 3 -21 0

s1488 164 5 176 5 7 0 119 3 -27 -40
s1494 165 4 176 6 7 50 120 4 -27 0

s208 20 3 16 2 -20 -33 16 2 -20 -33
s27 4 2 4 2 0 0 4 2 0 0

s386 41 3 24 3 -41 0 29 2 -29 -33
s420 19 3 17 3 -11 0 17 3 -11 0

s510 64 5 83 4 30 -20 67 3 5 -40
s8 5 2 1 1 -80 -50 1 1 -80 -50
s820 114 5 75 3 -34 -40 65 3 -43 -40
s832 107 6 71 3 -34 -50 71 3 -34 -50
sand 191 8 201 8 5 0 201 8 5 0

shiftreg 4 1 4 1 0 0 4 1 0 0

sse 29 3 26 2 -10 -33 26 2 -10 -33
tav 7 2 6 1 -14 -50 4 1 -43 -50
tbk 58 4 55 4 -5 0 55 4 -5 0

tma 21 2 20 2 -5 0 20 2 -5 0

train11 6 2 3 1 -50 -50 3 1 -50 -50
vtiidec 53 3 51 3 -4 0 56 3 6 0

vtiuar 71 4 44 2 -38 -50 66 3 -7 -25

Σ 1981 139 1816 125 1660 116

∆% -8 -10 -14 -9 -16 -17 -15 -14

Table 6.2. Comparison JEDI with SECODE

As we can see in the table, in 65% of cases, SECODE manages to find encodings that
result in smaller circuits than JEDI and for further 20% the results are the same. The
identical results occur in most cases for the FSMs so small that no further improvement
is possible. In some non-trivial examples, such as ex1, s386, s820, s832 or vtiuar, the
improvement of area reaches and exceeds one-third. Crucially, the area improvement
does not come at a cost of delay increase. In fact, in the case of s832 and vtiuar the 35%
area improvement is accompanied by 50% delay improvement. The global improvement
(summary over all machines) delivered by SECODE is equal to 8% for area and 10% for
delay. On average (average percentage improvement per machine), the area of the imple-
mentations of FSMs encoded with SECODE is 14% smaller and the delay 9% smaller than
of those encoded with JEDI.

Careful consideration of the results indicates that the global improvement is adversely

6.2. SECODE 151

affected by just a few relatively large FSMs (such as planet, s1488 or s1494), for which SEC-
ODE encoding is worse than JEDI. Further analysis of the results reveals that these are the
machines that have a good one-hot encoding. It turns out that SECODE performs encod-
ing that heads towards one-hot, however, in the process it is discouraged by the rapidly
growing encoding length and applies more aggressive merging strategy that limits the
further growth of the number of state bits. The result is the encoding that offers neither
the simplicity of functions in one-hot encoding, nor the small number of functions of
near-minimum-length encoding.

While we could change the heuristic to account for this effect, this was not necessary,
as the functions with good one-hot realizations can be efficiently detected by the proce-
dure described in the previous section. In the experiments reported in the third column
of Tab. 6.2 (secode’), we integrated the one-hot analysis with the SECODE tool. If the anal-
ysis indicated strong preference for one-hot realization (’–’ in Tab. 6.1), one-hot encoding
was performed. Otherwise, the FSM was encoded with the general SECODE procedure.
As discussed in Section 6.1, in some cases the one-hot analysis method incorrectly identi-
fies good one-hot candidates. For instance, for a02, it indicated good one-hot realization,
which is fact is 45% worse in terms of area. However, on the majority of benchmarks, the

fsm JEDI bin Gray
a d a d a% d% a d a% d%

a02 22 3 22 3 0 0 26 3 18 0

a03 15 2 15 2 0 0 15 2 0 0

a04 43 3 50 3 16 0 48 3 12 0

a05 11 2 13 2 18 0 12 2 9 0

bbara 15 2 15 2 0 0 11 2 -27 0

bbsse 29 3 39 3 34 0 41 3 41 0

bbtas 5 1 5 1 0 0 5 1 0 0

beecnt 9 2 10 2 11 0 8 2 -11 0

coffee 23 2 21 3 -9 50 22 3 -4 50

cse 53 3 48 4 -9 33 53 3 0 0

dk14 21 2 26 2 24 0 27 2 29 0

dk15 7 1 7 1 0 0 7 1 0 0

dk17 6 1 6 1 0 0 6 1 0 0

dk27 5 1 5 1 0 0 5 1 0 0

dk512 7 1 7 1 0 0 7 1 0 0

ex1 84 3 76 4 -10 33 72 3 -14 0

ex4 15 2 16 2 7 0 18 2 20 0

ex5 11 2 10 2 -9 0 8 2 -27 0

ex6 24 2 29 2 21 0 29 2 21 0

example 9 2 10 2 11 0 9 2 0 0

keyb 50 4 51 5 2 25 59 4 18 0

lion 3 1 3 1 0 0 3 1 0 0

lion9 5 1 4 1 -20 0 4 1 -20 0

mark1 22 2 24 2 9 0 23 2 5 0

mc 7 1 7 1 0 0 7 1 0 0

opus 23 2 30 2 30 0 23 3 0 50

opus2 26 3 25 3 -4 0 21 2 -19 -33
patgen 29 3 50 6 72 100 33 3 14 0

patrec 49 3 65 4 33 33 53 4 8 33

152 6. EXPERIMENTS

percent 15 2 13 2 -13 0 13 2 -13 0

planet 119 4 148 6 24 50 134 5 13 25

pma 43 3 47 4 9 33 42 3 -2 0

s1 33 3 154 7 367 133 172 8 421 167

s1488 164 5 168 6 2 20 174 6 6 20

s1494 165 4 164 5 -1 25 169 6 2 50

s208 20 3 12 2 -40 -33 18 3 -10 0

s27 4 2 7 2 75 0 5 2 25 0

s386 41 3 41 3 0 0 37 3 -10 0

s420 19 3 13 3 -32 0 18 3 -5 0

s510 64 5 83 6 30 20 53 5 -17 0

s8 5 2 5 2 0 0 6 2 20 0

s820 114 5 122 8 7 60 130 8 14 60

s832 107 6 134 8 25 33 129 7 21 17

sand 191 8 206 8 8 0 215 8 13 0

shiftreg 4 1 4 1 0 0 4 1 0 0

sse 29 3 39 3 34 0 41 3 41 0

tav 7 2 7 2 0 0 6 2 -14 0

tbk 58 4 107 6 84 50 142 7 145 75

tma 21 2 24 2 14 0 20 2 -5 0

train11 6 2 7 2 17 0 7 2 17 0

vtiidec 53 3 59 3 11 0 55 3 4 0

vtiuar 71 4 76 4 7 0 65 4 -8 0

Σ 1981 139 2329 163 2310 157

∆% 18 17 17 13 17 13 14 10

Table 6.3. Comparison JEDI with binary encoding

indications of the one-hot analysis method are correct. Therefore, it complements very
well the general method and the combined procedures achieve global 16% area reduction
and 17% delay reduction on the IWLS benchmarks.

In the next series of experiments reported in Tab. 6.3 we evaluated two encoding
strategies prevalent in commercial synthesis tools: sequential binary encoding that as-
signs to states successive minimum length binary vectors representing natural numbers,
and Gray encoding – another min-length encoding that assigns to subsequent states
codes that differ on exactly one bit. Together with the earlier discussed one-hot encod-
ing, these two approaches give the comparison of our method to the state assignment
methods currently used in industrial synthesis tools.

As we can see from the results, sequential and Gray encodings are clearly inferior to
all other presented methods. On average, sequential encoding results in circuits that are
17% larger and 13% slower that those encoded with JEDI, and over 40% larger and slower
than encoded with our method. For Gray, the respective numbers are: 14% area increase
w.r.t. JEDI and 46% w.r.t. SECODE, and, respectively, 10% and 35% delay increase. This
result is not surprising, as both encodings, although having some specific patterns, are
in fact random encodings for a particular FSM and can hardly be expected to produce
consistently good results. Such encoding strategies are clearly not able to identify any
optimizations of the encoded machine that the constructive methods such as JEDI and
SECODE realize. Being minimum-length encodings they also do not benefit from the
simplified output function form that in some cases favors one-hot encoding.

6.2. SECODE 153

6.2.2 Interconnections

The results presented in the previous section evaluate the quality of implementation
based on the number of blocks and the depth of the realization network for the encoded
machine. While the number of blocks is very good indicator of the area of the circuit
(there is a direct correspondence with FPGA slices), the depth of the circuit does not nec-
essarily reflect the actual delay of the circuit once it is implemented in FPGA. This is due
to the fact that in many circuits implemented in the modern FPGA devices interconnec-
tions become the dominant contributor to the overall delay of the circuit, instead of the
logic. This is caused, among others, by the delay introduced by switches that the longer,
programmable interconnections have to pass through. This switch delay is comparable
to the LUT delay.

For this reason we indicated in Section 5.2.1 that one of the targets of our encoding
heuristic is minimization of interconnections in the circuit, and particularly – long inter-
connections. In this section we discuss the results of the comparison of interconnection
complexity encountered in circuits encoded with SECODE and JEDI.

Table 6.4 shows the results of analysis of interconnection structure in the circuits

sweep
xl_part_coll -m -g 2
xl_coll_ck
xl_partition -m
simplify
xl_imp
xl_partition -t
xl_cover -e 30 -u 200
xl_coll_ck -k
xl_merge -u 8 -o doc -l

Figure 6.1. SIS script

fsm jedi+irma secode+irma jedi+sis

c lc c lc c lc

a02 99 7 146 2 290 7

a03 69 0 66 0 172 4

a04 200 3 208 4 301 52

a05 52 0 41 0 94 6

bbara 73 0 57 0 96 4

bbsse 139 0 126 0 183 4

bbtas 30 0 26 0 28 0

beecnt 42 0 36 0 71 0

coffee 110 0 100 0 132 5

cse 252 4 231 3 262 14

dk14 94 0 86 0 103 0

dk15 42 0 42 0 42 0

dk17 36 0 36 0 35 0

dk27 25 0 25 0 24 0

dk512 42 0 42 0 41 0

154 6. EXPERIMENTS

ex1 382 10 234 0 526 21

ex4 78 0 76 0 104 1

ex5 52 0 34 0 66 0

ex6 117 0 95 0 146 11

example 39 0 31 0 80 0

keyb 214 16 180 15 274 19

lion 15 0 15 0 14 0

lion9 20 0 18 0 49 3

mark1 93 0 117 0 113 0

mc 42 0 42 0 24 0

opus 105 0 94 0 118 0

opus2 104 8 99 0 159 5

patgen 139 1 166 0 168 7

patrec 236 6 229 0 306 15

percent 73 0 37 0 96 4

planet 533 29 414 6 843 60

pma 204 5 170 1 702 63

s1 138 14 123 4 193 9

s1488 734 42 511 10 909 89

s1494 731 46 512 14 820 62

s208 86 1 72 0 118 4

s27 19 0 19 0 29 0

s386 175 7 133 0 184 7

s420 89 0 75 2 140 7

s510 273 18 271 2 345 23

s8 21 0 5 0 45 13

s820 531 23 297 2 463 16

s832 482 35 320 2 483 20

sand 752 137 820 110 692 49

shiftreg 20 0 20 0 10 0

sse 139 0 126 0 183 4

tav 29 0 32 0 43 0

tbk 271 17 246 14 305 18

tma 108 0 107 0 314 14

train11 25 0 15 0 52 0

vtiidec 250 10 268 5 358 3

vtiuar 347 8 320 8 442 13

Σ 8971 447 7611 204 11790 656

j+i∆% −15 −54 31 47

s+i∆% 55 222

Table 6.4. Interconnection complexity for different encoding methods

encoded and synthesized with different encoding and synthesis methods. For each en-
coding/synthesis combination we give the number of resulting short and long intercon-
nections between LUTs in the network (columns c and lc, respectively). For the purposes
of this comparison, we define a connection as a single path from an output of a LUT to
an input of another LUT. To evaluate the length of connections, we adopted a simplifying
assumption that a short interconnection is a connection between two LUTs on neighbor-
ing levels of the network (produced output is consumed directly on the next level), while

6.2. SECODE 155

a long interconnection has to travel over more than one level. In the comparison we used
IRMA2FPGA and the popular division-based combinational synthesis tool SIS [71]. The
SIS script used for FPGA synthesis was the “good” script proposed in [71], and repeated
in Figure 6.1.

The results indicate that our encoding method indeed reduces number of intercon-
nections, in particular the long ones. As we can see in the table, number of short in-
terconnections is 15% smaller in SECODE-encoded circuits than in circuits encoded by
JEDI, when both circuits are synthesized with IRMA2FPGA. For long interconnections,
this reduction increases to 54%.

At the same time, we can see that the overall number of long interconnections re-
sulting from synthesis with IRMA2FPGA is very small. This is an expected result, as
interconnection reduction is one of the fundamental targets of the functional decompo-
sition method implemented in IRMA2FPGA. Comparing the results of synthesis of the
same JEDI encoding with IRMA2FPGA versus SIS, we can see that the synthesis method
implemented in SIS introduced 31% more short interconnections, and 47% more long
interconnections.

The combination of interconnection reduction introduced by the whole decomposi-
tion-based synthesis chain (SECODE + IRMA2FPGA) is clearly visible in comparison with
the results of the division-based synthesis chain (JEDI + SIS). The achieved reduction
reaches 55% percent for short and as much as 222% for long interconnections. This
result is the testimony to the effectiveness, with which the information-driven, decom-
position-based sequential synthesis chain addresses interconnections - the crucial aspect
of modern digital circuits.

6.2.3 Layout results

In the previous sections we showed that SECODE generates encodings that result in cir-
cuits with smaller number of LUTs, smaller depth and less interconnections (particularly,
long interconnections) in comparison with JEDI. However, to conclusively evaluate the
quality of the synthesized circuits, we need to consider the area and the delay of the cir-
cuits after placement and routing on the target FPGA device. Only then are the final place-
ment of the logic blocks and the resulting interconnections between them fully known.

To perform this comparison, we generated layouts for the finite state machines from
the IWLS benchmark, encoded with JEDI and SECODE and synthesized with IRMA2FPGA.

fsm JEDI SECODE SECODE’
a d a d a% d% a d a% d%

a02 18 4, 4 16 3, 8 -11 -13 25 4, 3 39 -2
a03 10 3, 1 10 2, 8 0 -9 10 2, 8 0 -9
a04 34 5, 8 39 5, 7 15 -3 39 5, 7 15 -3
a05 8 3, 0 7 3, 5 -13 17 7 3, 5 -13 17

bbara 12 4, 3 9 3, 6 -25 -17 9 3, 6 -25 -17
bbsse 23 5, 1 22 4, 0 -4 -22 22 4, 0 -4 -22
bbtas 5 3, 2 4 3, 2 -20 -0 4 3, 2 -20 -0
beecnt 6 2, 8 6 2, 6 0 -7 6 2, 6 0 -7
coffee 18 5, 4 14 4, 4 -22 -19 13 4, 1 -28 -24
cse 46 6, 4 42 6, 3 -9 -2 42 6, 3 -9 -2

156 6. EXPERIMENTS

dk14 13 3, 2 12 3, 4 -8 7 12 3, 4 -8 7

dk15 7 3, 3 7 2, 6 0 -19 7 2, 6 0 -19
dk17 6 3, 2 6 3, 2 0 0 6 3, 2 0 0

dk27 3 2, 0 3 2, 0 0 0 3 2, 0 0 0

dk512 7 3, 2 7 3, 2 0 -0 7 3, 2 0 -0
ex1 64 6, 9 37 6, 3 -42 -8 37 6, 3 -42 -8
ex4 11 4, 3 12 4, 4 9 1 12 4, 4 9 1

ex5 8 3, 1 5 3, 0 -38 -4 5 3, 0 -38 -4
ex6 20 4, 3 16 5, 4 -20 25 16 5, 4 -20 25

example 6 4, 0 5 2, 6 -17 -34 5 2, 6 -17 -34
keyb 41 8, 2 35 9, 3 -15 14 35 9, 3 -15 14

lion 2 1, 9 2 1, 9 0 0 2 1, 9 0 0

lion9 3 2, 6 3 3, 2 0 23 3 3, 2 0 23

mark1 11 3, 2 16 5, 2 45 62 14 3, 5 27 10

mc 7 3, 2 7 2, 7 0 -17 7 2, 7 0 -17
opus 16 4, 2 10 4, 4 -38 3 12 3, 4 -25 -20
opus2 18 4, 8 15 5, 0 -17 5 14 3, 9 -22 -18
patgen 22 5, 0 29 9, 4 32 89 23 4, 6 5 -8
patrec 42 8, 6 38 6, 6 -10 -23 32 4, 4 -24 -49
percent 12 4, 3 6 3, 2 -50 -25 6 3, 2 -50 -25
planet 97 9, 1 124 12, 3 28 36 62 4, 1 -36 -55
pma 35 9, 8 30 6, 5 -14 -34 30 6, 5 -14 -34
s1 25 6, 1 20 6, 3 -20 3 20 6, 3 -20 3

s1488 137 13, 9 141 12, 2 3 -12 78 5, 0 -43 -64
s1494 138 8, 3 135 14, 0 -2 70 79 4, 3 -43 -48
s208 15 4, 2 11 3, 2 -27 -23 11 3, 2 -27 -23
s27 2 2, 7 3 2, 6 50 -3 3 2, 6 50 -3
s386 29 6, 1 20 3, 7 -31 -39 19 3, 9 -34 -36
s420 14 4, 2 12 2, 3 -14 -44 12 2, 3 -14 -44
s510 49 12, 1 66 9, 2 35 -24 41 3, 2 -16 -73
s8 3 3, 2 1 0, 0 -67 -100 1 0, 0 -67 -100
s820 99 11, 3 56 6, 1 -43 -46 44 4, 8 -56 -57
s832 93 11, 6 50 7, 1 -46 -38 49 5, 7 -47 -51
sand 164 16, 5 163 13, 0 -1 -21 163 13, 0 -1 -21
shiftreg 2 1, 9 1 1, 9 -50 -0 1 1, 9 -50 -0
sse 23 5, 1 22 4, 0 -4 -22 22 4, 0 -4 -22
tav 5 1, 9 6 2, 2 20 14 6 2, 2 20 14

tbk 54 7, 1 47 6, 5 -13 -9 47 6, 5 -13 -9
tma 18 5, 0 18 4, 1 0 -18 18 4, 1 0 -18
train11 3 3, 8 2 1, 9 -33 -48 2 1, 9 -33 -48
vtiidec 40 4, 1 40 4, 8 0 17 41 4, 1 2 -1
vtiuar 57 8, 8 33 4, 9 -42 -44 46 5, 8 -19 -34

Σ 1601 283, 7 1441 256, 0 1230 211, 8

∆% -10 -10 -10 -7 -23 -25 -14 -18

Table 6.5. Results of experiments after layout

The output networks of 5-LUTs synthesized by IRMA2FPGA were converted to the net-
works of FPGA primitives in EDIF format and fed to Xilinx ISE 5.2 synthesis system for
placement and routing on the VirtexII FPGA (device 2V1000FG256-4). The resulting

6.2. SECODE 157

area of the circuit (in slices) and the clock period (in nanoseconds) are given in Tab. 6.5.

As we can see, the layout results confirm the improvements achieved using SECODE

encoding instead of JEDI. The average improvements of 15% and 14% for area and de-
lay remained after layout essentially the same at 14% and 18%. Of course, calculation
of improvement as an average of per-machine improvements increases the influence of
smaller machines, which form the majority of IWLS benchmark. In the average, reduc-
tion of 1 block in a 10-block machine will weigh the same as reduction of 10 blocks in a
100-block machine (both represent 10% improvement). Meanwhile, we can see that for
many of the small machines no further reduction is possible. On the other hand, SEC-
ODE manages to achieve significant improvements primarily for larger machines, where
the optimization potential is the greatest. These improvements are more clearly visible
in the summary numbers over all machines, where each machines weighs according to
its size. In terms of summary area and delay, the improvement introduced by SECODE

reached 23% and 25%, respectively.

We can also observe that after layout the summary improvements have increased both
for area and for delay when compared to the results after synthesis only. The additional
area improvements stem from the difference between a 5-input LUT and a slice. While a
slice (see Section 1.2.2) is usually treated as a single 5-input LUT, in fact it is composed of
two 4-input LUTs, which can be configured to use separately. As we can see in Tab. 6.5,
using number of slices as an area measure, SECODE outperforms JEDI by 23%, compared
to 16% improvement in terms of 5-LUTs (Tab. 6.2). This indicates that the function blocks
in synthesized JEDI circuits often use all 5 inputs, so they use a whole slice to implement.
Meanwhile, blocks in SECODE circuits are not only fewer, but also smaller and use more
often functions of 4 and less inputs. This enables implementation of more than one
function in a single slice, and constitutes an additional advantage of SECODE.

We can also see that the summary delay improvement of 17% that SECODE achieves
versus JEDI after logic synthesis, improves to 25% after layout. This can be contributed
to the fact that the SECODE-encoded circuits have not only less levels, but also less inter-
connections.

6.2.4 Comparison of synthesis chains

In the previous sections we focused on the comparison of various state assignment tech-
niques — the main subject of this thesis. To obtain a full picture of the synthesis, we
performed additional evaluation of the complete synthesis chains — from FSM transi-
tion table to mapped LUT network.

As we indicated in Section 5.1, good cooperation between state assignment and com-
binational synthesis is essential to obtaining good quality results. Both steps of the syn-
thesis trajectory need to have similar objectives and follow compatible heuristics. Oth-
erwise, state assignment may produce functions difficult for synthesis and the combi-
national synthesis may not fully realize optimization potential introduced by the state
assignment. Therefore, in this section we present the results of the experiments with
complete synthesis chains, i.e. state assignment and combinational synthesis methods
implemented in the same packages or following the same heuristics.

In Table 6.6 we present the results of comparison of four synthesis chains: informa-
tion-driven, decomposition-based flow represented by SECODE and IRMA2FPGA; division-
based flow represented by JEDI and SIS; and two popular commercial FPGA synthesis

158 6. EXPERIMENTS

tools, denoted A and B. In all cases, the input to the flow was transition table of the
FSM expressed in KISS format or equivalent Verilog description (for commercial tools).
All four synthesis chains were then used to perform state assignment (commercial tools
were setup to automatically determine the best state assignment) and synthesize and
map the network. Synthesis setup was as follows: for SIS we used script described in
Figure 6.1; since the main target objective of IRMA2FPGA is the delay reduction, for com-
mercial tools we used the highest available effort settings for speed-driven optimization
and the target clock speed of 1 GHz. The resulting networks were placed and routed on
VirtexII-1000-fg256-4 device with Xilinx ISE 5.2. The results are reported as the number
of slices (column sl) and clock period (column clk) in the resulting circuit.

As we can see, the uniform, information-driven sequential synthesis chain signifi-
cantly outperforms all other synthesis flows. In particular, division-based approach pro-
duced circuits in total 60% larger and slower than our methods. The comparison is more
favorable for the evaluated commercial methods. Tool A produced circuits 15% larger
and 7% slower than the decompositional methods. Tool B managed to produce circuits
fraction faster than our methods, but at the expense of 50% area increase.

We should note, however, that the actual performance of state assignment and logic
synthesis alone are difficult to evaluate in case of commercial tools. Their closed architec-
ture does not allow to precisely determine what steps are performed to produce the final
network. These tools utilize additional optimization steps at the network level, such as
retiming, and the intimate knowledge of the target architecture, to produce best circuits.
In particular, they are able to produce networks composed not only of LUTs, but also
of specific dedicated resources available at the target FPGA device (e.g. additional logic
gates, carry chains, special fast local interconnections, etc.). In comparison, IRMA2FPGA,
or SIS produce very simple networks composed of basic building blocks alone. It is very
likely that if our synthesis methods were better integrated in the mapping process and
thus were able to additionally benefit from device-dependent optimizations performed by
commercial tools, the results would significantly improve.

secode+irma jedi+sis A B
sl clk sl clk sl clk sl clk

a02 25 4, 274 37 6, 914 42 5, 414 45 5, 394
a03 10 2, 818 23 8, 255 12 3, 138 32 4, 997
a04 39 5, 668 69 11, 076 56 7, 791 42 4, 248
a05 7 3, 525 13 4, 932 21 3, 549 19 3, 129
bbara 9 3, 569 14 5, 798 8 3, 285 13 4, 136
bbsse 22 3, 971 30 7, 06 25 4, 362 19 4, 07
bbtas 4 3, 201 4 3, 207 3 1, 93 5 2, 146
beecnt 6 2, 647 7 3, 957 10 3, 227 12 3, 397
coffee 13 4, 111 19 6, 543 12 4, 285 11 3, 653
cse 42 6, 305 47 7, 96 41 5, 815 34 4, 21
dk14 12 3, 361 19 3, 67 24 3, 856 25 3, 961
dk15 7 2, 633 7 3, 254 7 2, 389 17 3, 801
dk17 6 3, 215 6 2, 674 10 3, 333 12 3, 399
dk27 3 1, 967 3 2, 423 3 2, 184 4 2, 815
dk512 7 3, 215 6 3, 207 7 2, 593 9 2, 852

6.3. GENERATED BENCHMARKS 159

ex1 37 6, 323 82 8, 099 52 5, 294 44 5, 126
ex4 12 4, 362 11 3, 715 16 4, 46 14 2, 474
ex5 5 3, 031 8 4, 304 10 3, 624 11 4, 113
ex6 16 5, 4 28 6, 554 25 4, 766 20 4, 171
example 5 2, 609 6 3, 358 9 3, 667 2 1, 864
keyb 35 9, 338 56 9, 934 37 7, 493 56 7, 204
lion 2 1, 947 2 2, 41 2 1, 947 4 2, 951
lion9 3 3, 205 3 3, 211 10 3, 073 8 2, 485
mark1 14 3, 515 16 4, 67 12 4, 406 18 3, 182
mc 7 2, 664 3 1, 951 4 2, 732 7 2, 048
opus 12 3, 39 19 5, 715 15 3, 834 15 2, 869
opus2 14 3, 922 23 5, 989 16 4, 172 20 4, 613
patgen 23 4, 582 28 7, 489 21 2, 942 27 2, 868
patrec 32 4, 381 48 9, 873 33 6, 323 33 5, 23
percent 6 3, 198 14 5, 651 8 3, 285 13 4, 136
planet 62 4, 077 155 11, 068 64 3, 697 79 3, 819
pma 30 6, 453 42 7, 404 42 6, 429 40 4, 498
s1 20 6, 291 76 12, 857 56 4, 341 56 5, 331
s1488 78 5, 039 164 10, 894 89 6, 252 159 6, 001
s1494 79 4, 254 160 10, 796 90 6, 04 197 5, 039
s208 11 3, 209 15 5, 024 26 3, 399 33 5, 641
s27 3 2, 605 4 3, 073 10 4, 936 11 3, 059
s386 19 3, 933 30 6, 06 26 3, 889 22 4, 015
s420 12 2, 315 17 5, 171 10 3, 723 18 5, 102
s510 41 3, 209 69 12, 643 34 11, 653 47 3, 208
s8 1 0 8 4, 352 3 3, 012 9 2, 848
s820 44 4, 845 83 14, 031 51 7, 144 67 6, 172
s832 49 5, 682 89 13, 325 49 5, 38 66 6, 8
sand 163 12, 962 142 10, 766 92 6, 028 113 5, 952
shiftreg 1 1, 948 2 2, 388 1 1, 913 5 1, 973
sse 22 3, 971 30 7, 06 24 4, 454 19 5, 131
tav 6 2, 211 6 2, 3 5 2, 232 8 2, 217
tbk 47 6, 468 62 10, 574 73 7, 354 196 8, 886
tma 18 4, 111 29 5, 913 31 5, 336 30 3, 528
train11 2 1, 947 4 0 8 3, 214 8 2, 472
vtiidec 41 4, 089 56 6, 078 44 3, 78 37 2, 83
vtiuar 46 5, 848 87 11, 945 30 3, 778 39 4, 904
Σ 1230 211, 814 1981 337, 575 1409 227, 153 1850 210, 968
∆% 61, 1 59, 4 14, 6 7, 2 50, 4 −0, 4

Table 6.6. Comparison of synthesis chains

6.3 Generated benchmarks

In the previous sections, we performed various comparisons of sequential and combina-
tional synthesis methods on the set of standard IWLS benchmarks. To further evaluate

160 6. EXPERIMENTS

the effectiveness of our encoding method on a larger set of benchmarks with various
characteristics, we developed together with Lech Jóźwiak and Dominik Gawlowski the
benchmark generation software BENGEN. With this tool, we generated 350 FSMs exhibit-
ing characteristics typical to the circuits encountered in various industrial applications,
and compared the different encoding results for these machines.

In the following, we will shortly introduce the benchmark generator BENGEN. The
more detailed discussion of the tool can be found in [42]. Further, we will discuss the
characteristics of the generated benchmarks and analyze the results of encoding of the
machines with various encoding methods.

6.3.1 BENGEN benchmark generator

The benchmark generator was developed in response to the shortage of typical industrial
benchmarks. Such benchmarks are necessary to evaluate the effectiveness of the state
assignment method on relevant machines commonly encountered in real-life systems.
Furthermore, to assess robustness of a method, it is necessary to have access to a large
number of benchmarks. Unfortunately for the EDA research community, such bench-
marks are guarded by the designers of the systems, as well as by the vendors of EDA tools
that usually have access to the circuit libraries of their clients.

To address this issue, we developed the benchmark generator BENGEN that enables
us to generate large sets of FSMs with various characteristics. These include:

• FSMs with different number of states and various transition patterns between the
states (e.g. chains of states with forward and/or backward transitions, loops, con-
ditional "case" structures etc. and their combinations);

• FSMs with different numbers of inputs and outputs, and different proportions be-
tween the next-state and output logic (state-dominated, balanced or output-dominated),
as well as, between the primary-input and state-input (input-dominated, balanced,
state-dominated), and their mixtures;

• FSMs with various dependence of particular transitions and output variables on
the number of inputs and input conditions;

• completely, incompletely and weakly specified FSMs.

This also includes FSMs representative to various typical industrial application areas, as
for instance, having typical structure of controllers from various application areas, or
representing various sequential data-path circuits (e.g. counters).

BENGEN enables us to efficiently construct FSMs, but also to modify the constructed
or industrial FSMs, and to very precisely "fine-tune" the benchmarks. This last feature
is extremely useful in sensitivity analysis of state assignment to the changes in the input
data, i.e. small changes in the FSM characteristics.

The generation process is based on guided random generation of branches of an FSM.
A branch is a series of states following one another, with possible backward transitions
from next states back to the previous, and state self-loops indicating that FSM stays in
the same state. By choosing the first and the last state of different loops, their length
and patterns of backward- and self-transitions, arbitrary FSM state transition structures

6.3. GENERATED BENCHMARKS 161

can be constructed. The primary input values that trigger particular transitions are also
generated according to user preferences.

BENGEN has two work modes: batch and interactive mode. In the batch mode, the pa-
rameters of the FSM to generate are supplied in a script file. These parameters include:
the number of inputs and outputs of the FSM; the number and length of the FSM’s
branches; the characteristics of a branch, such as the number of backward transitions or
loops; the number of inputs and outputs active for a given branch, etc. Most of these
parameters can be specified in the form of a probability distribution to randomize their
values in the specific instances of the generated FSMs. As a result, in the batch mode
BenGen can be used to easily generate large sets of FSM benchmarks with certain char-
acteristics using the same script file. The script file can be easily modified to generate a
next batch of somewhat different FSMs.

The interactive mode of BenGen provides more control over the generation process.
The user can interactively enter any of the parameters available in the batch mode. In
addition to that, operations allowing modifications of single branches, or transitions are
provided. This makes BENGEN in interactive mode an ideal tool for fine-tuning of the
generated or industrial FSMs for the specific characteristics, required for instance to
check the behavior or sensitivity of a method or tool in relation to a certain aspect.

In both modes, BENGEN takes away the burden of tedious specification of single tran-
sitions, or checking the consistency of the constructed FSM. Instead, the user can focus
on specifying high-level characteristics of the machine. Given the global machine’s char-
acteristics, BENGEN generates the required number of state chains, with the requested
number of states, and appropriate backward transitions between and self-loops in the
states, if needed. Given the state-transition behaviour defined in abstract terms, BENGEN

generates the input conditions for particular transitions, etc. In this process not only does
it consider user’s requirements concerning the active inputs for a given branch, but also
ascertains that the machine is consistent, i.e. distinct transitions have disjoint input con-
ditions and all possible input conditions are specified (for completely specified FSMs).
The generator also determines the output values for the transitions, taking into account
the outputs active for a given branch.

With the above characteristics, BENGEN is a very useful tool enabling efficient gen-
eration of an arbitrary number of various sorts of well-characterized FSM benchmarks,
with the minimum effort of the user. On the other hand, it also enables fine-grained
control over the generation process and editing of the generated or industrial FSMs. Ap-
propriately used, BENGEN enables generation of FSMs representative to many practical
applications. Examples of such machines are discussed in the following section.

6.3.2 Experimental results for generated benchmarks

To evaluate the effectiveness of the proposed state assignment method, we used BENGEN

to generate 350 FSMs that exhibit characteristics typical to FSMs encountered in various
real-life industrial applications. We identified a number of typical schemes of sequential
behavior and for each scheme generated a set of benchmarks of different sizes and with
differing proportions of input, state and output logic. For instance, the sequential behav-
ior schemes included: a single loop of states (typical for a counter or simple sequencer);
a number of loops starting from a common initial state (typical for a controller realiz-
ing a few different control programs for different operation modes); a single loop with

162 6. EXPERIMENTS

sub-loops attached to states along the main loop (a main control "program" with "sub-
routines" - the subroutine loops may have their own sub-subroutine loops); and more
complicated cases of sequential behavior. Within each scheme, we varied proportions of
backward transitions and state self-loops within loops and branches generated.

The generated machines were encoded with four encoding methods: JEDI, SECODE,
one-hot and sequential binary encoding. The results of logic synthesis of the encoded
machines with IRMA2FPGA are presented in detail in Appendix A. For clarity of presen-
tation in this section, we categorized the generated machines according to three criteria:
the size, the proportion of the number of primary input bits to the number of state bits,
and the proportion the number of primary output bits to the number of state bits. The
size criterion divides FSMs into small (max. 8 states), medium (9 to 32 states) and large
(more than 32 states). The proportion of the number of primary input/output bits to state
bits categorizes the FSMs as input/output dominated if the number of input/output bits
is 50% larger than the number of state bits, state dominated if the number of state bits
is larger than the number of input/output bits and balanced otherwise. In the generated
benchmark, we made sure that each category is well represented, with some discrepan-
cies between the number of machines in each category consistent with the occurrence
frequency in real-life applications. Numbers of machines in each category are summa-
rized in Table 6.7, in the row marked with #.

The overall picture of efficiency of SECODE encoding is consistent with the results
achieved for standard IWLS benchmarks. Out of 350 generated benchmarks, SECODE

produced encodings resulting in smaller realization circuits than JEDI in 278 cases (80%),
153 of these with the improvement of over 10%. In 44 cases, the results for both encoding
methods were equal, and only for 28 machines (8%), JEDI outperformed SECODE. The
circuits encoded with SECODE achieved area results between the reduction of 40% and
15% area increase. Globally, the circuits encoded with SECODE were 7% smaller and 4%
faster than those encoded with JEDI.

size small medium large
87 219 44
∆ −10.3% −4.9% −9.2% −3.3% −4.4% −5.2%

input input dom. balanced state dom.
105 156 89
∆ −9.3% −6.1% −5.9% −1.6% −5.3% −4.2%

output output dom. balanced state dom.
125 149 76
∆ −5.4% −5.0% −9.4% −3.8% −8.2% −2.4%

Table 6.7. Summary results for generated benchmarks

Table 6.7 summarizes the comparison between the results achieved with SECODE and
JEDI encodings in each of the identified FSM categories — with respect to size, input and
output characteristics. For each category, in the row marked with ∆, two numbers indi-
cate the difference within the category between the size and the depth of the circuits for
FSMs encoded with JEDI and SECODE. The analysis of the results confirms that SECODE

is a stable method achieving good results regardless of the characteristics of the encoded
FSM. The overall area improvement of 7% fluctuated between the categories from 4.4%

6.3. GENERATED BENCHMARKS 163

to 10.3%. However, SECODE still produced better results that JEDI in all categories. Also
the delay improvement remained in all categories in the region of overall improvement
of 4%, ranging from 2.6% to 6.1%.

In another comparison, we augmented our encoding approach with the method for
identifying efficient one-hot encodings described in Section 5.5.1. The FSMs identified
by the method as having potentially efficient one-hot encoding are marked in the table in
Appendix A with “+” in the last column (h+). As we can see in the table, the method has
correctly predicted efficiency of one-hot encoding in 301 out of 350 of the cases (86%).
When the FSMs identified as having good one-hot encoding are encoded with one-hot
instead of SECODE, the improvement of the area over JEDI grows from 7% for SECODE

alone to 8% for the combined SECODE/one-hot. Unfortunately, this 1% of area reduction
is accompanied by 1% delay increase — from 4% reduction to 3% reduction.

The relatively small improvement achieved by introduction of one-hot results is the
consequence of the overall poor performance of one-hot encoding. On the generated
benchmarks, only for 38 machines one-hot produced better circuit than SECODE. In
total, one-hot encoding increased the area by over 9% when compared with JEDI and over
17% when compared with SECODE. The delay was also only marginally (under 1%) better
when compared with JEDI, but clearly worse (4%) when compared with SECODE. These
results confirm our observation that one-hot encoding is in general not effective for a
wide variety of FSM types. As discussed earlier and confirmed by these results, only a
small proportion of specific FSMs can benefit from simplified function form achieved
in one-hot encoding sufficiently to offset the increased number of output functions and
inputs to the functions introduced by this encoding.

Not surprisingly, even worse results were recorded for sequential binary encoding.
Consistently with the results for IWLS benchmarks, binary encoding produced circuits
21% larger and 15% slower than JEDI and 30% larger and 20% slower than SECODE. An
aspect that deserves a comment here is the difference between improvement achieved by
our method with respect to essentially random binary encoding in the case of industrial
IWLS benchmarks and the generated benchmarks (40% versus 30%). This discrepancy
is the result of special characteristics and additional optimization opportunities encoun-
tered in real-life FSMs that are very difficult to emulate in partially random machines.
However, the fact that the overall trend remains the same for IWLS and generated bench-
marks supports our claim that the machines generated with BENGEN reflect well the
characteristics of real-life industrial circuits.

Even assuming that for each machine full synthesis is performed for the one-hot
and binary encodings and the better result is chosen (even though that would double
the synthesis time), the combined methods are still inferior to SECODE. The combined
results of the one-hot and binary encoding are on average 10% larger and 6% slower
than the circuits resulting from SECODE encoding. In our experiments, next to the two
above methods, we also considered Gray encoding — the minimum-length encoding,
where the consecutive state codes differ on exactly one code bit. The results for this
method (not reported here) show similar picture to the sequential binary encoding. This
is consistent with our expectations, as Gray encoding is in fact also a random encoding
method that cannot be expected to consistently deliver effective results with respect to
area and speed of the synthesized circuits. It is, on the other hand, known to reduce the
power consumed by the circuits, provided that the states are assigned consecutive Gray
codes in correct order.

164 6. EXPERIMENTS

Summing up the above analysis, we conclude that our encodingmethod implemented
in the prototype tool SECODE is more effective with respect to the area and speed of the
resulting circuits than the most popular current academic (represented by JEDI) and in-
dustrial (represented by one-hot, binary and Gray) encoding methods.

Chapter 7

Conclusions and future work

In this thesis we have discussed the problems of decomposition and state encoding of
Finite State Machines. In the introduction, we pointed out that FSMs are universally
accepted as a functional description of sequential digital circuits. In the face of dynamic
growth of the number and importance of digital circuit applications, the efficient synthe-
sis of FSMs in hardware became a problem of primary practical importance. Within this
domain, we are particularly interested in hardware realizations in the emerging FPGA-
based reconfigurable platforms, such as reconfigurable System-on-Chip (SoC) platforms,
and SoCs with embedded FPGAs. These platforms have recently gained much popularity
due to their low costs for short and medium production series and inherent flexibility al-
lowing virtually unlimited modifications to the already produced circuit or system. With
the logic densities and speed of new generations of reconfigurable platforms growing
rapidly, we expect that their challenge to hardwired ASICs will continue and gain mo-
mentum.

The main contributions of this work are as follows:

• Together with Jóźwiak, I formulated the final version and developed the precise
proof of the General Decomposition Theorem of incompletely specified, non-de-
terministic FSMs with multi-state behavior realization, based on the initial version
of this theorem and the outline of its proof proposed by Jóźwiak as an extension
of his General Decomposition Theorem for completely specified FSMs [35]. This
theorem states conditions for a legal decomposition of an FSM into a network of
cooperating partial FSMs and this way defines the most general known generator
of correct circuit structures (decompositions) for FSMs. It covers as special cases all
other known decomposition structures, such as serial or parallel FSM decomposi-
tion, and the decomposition of discrete functions and relations. This way, a sound
theoretical base was created for research in decomposition of FSMs and discrete
relations.

• Based on the extended GDT, we expressed the state assignment of an FSM as a
special case of the general decomposition and formulated the problem of state as-
signment in terms of finding and appropriately implementing of some specific
collections of two-block set systems, or dichotomies, to define the corresponding
partial machines and their interconnections. We have shown that the new formula-
tion allows for more flexibility in state assignment than in the previously proposed

165

166 7. CONCLUSIONS AND FUTURE WORK

methods, permitting among others explicit consideration of information flows and
their relationships and allowing for incompletely specified, overlapping codes. The
formulation enables the explicit consideration of the interconnection structure, in-
put supports of particular partial machines and sub-functions, as well as implicit
behavior-preserving optimizations, such as state minimization during the state as-
signment process.

• Based on the new formulation of the conditions for a valid state assignment, we
proposed a generic state assignment method. The method constructs a valid en-
coding by forming the encoding dichotomies as a combination of smaller “atomic”
dichotomies. In this approach, very detailed analysis of information dependencies
is possible, using simple and efficient means of input support minimization. Also,
by merging atomic dichotomies any encoding can be constructed, including en-
codings with incompletely specified, overlapping state codes. This features allows
exploitation of the encoding freedom afforded by the flexible formulation of the
conditions for valid state assignment discussed above.

• On top of the generic state assignment method, we have proposed a system of
novel heuristics that guide the encoding construction towards encoded FSMs that
have efficient implementation in FPGAs. The heuristics are based on the analysis
and optimization of the information flows within the encoded machine. This anal-
ysis is supported by the application of the apparatus of Information Relationships
and Measures. The generic state assignment method equipped with the heuristics
constitutes a complete effective and efficient FPGA-targeted FSM state encoding
method.

• I implemented the FPGA-targeted FSM state assignment method in the form of
the prototype EDA software tool – SECODE – that significantly outperforms other
popular academic and industrial state assignment approaches and tools by produc-
ing encodings resulting in smaller and faster FPGA realizations of the FSMs.

• As a result of the above developments and experimental research, we demonstrated
that the information-driven approach based on the general decomposition and the
apparatus of information relationships and measures is an effective and efficient
approach to sequential circuit synthesis.

While in this thesis we applied the theories of general decomposition and informa-
tion relationships and measures to state assignment of FSMs, the practical usefulness
of these theories extends far beyond that problem. In particular, the theories have been
successfully applied in a separate work to circuit synthesis of Boolean functions [41]. Fur-
thermore, general decomposition can be applied in any field of modern engineering and
science that deals with finite state machines, discrete functions and relations.

Other contributions of the work include:

• We have evaluated and debunked the common conviction that any particular encod-
ing method, be it one-hot, sequential binary or any other particular sort of semi-
random encoding can universally produce a high-quality encoding, especially in
relation to the FSM implementations in FPGAs, with their complex characteris-
tics. Various encodings are good for various FSMs, different implementation tech-
nologies and various optimization objectives. Even for a particular implementation

167

technology and specific objectives (as in the case of FPGA implementations con-
sidered in this thesis), a specific encoding (e.g. one-hot or Gray) is only good for a
certain specific subset of FSMs.

• The above argument notwithstanding, we recognize that for a certain class of FSMs,
one-hot encoding can lead to efficient FPGA implementation in terms of area and
speed. We have analyzed this problem and proposed a reasonably effective heuris-
tic to identify good candidates for one-hot encoding prior to performing the actual
encoding. Thus, we are able to find efficient encodings for a group of FSMs at a
fraction of the effort required to perform the full encoding.

• To address the issue of low availability of industrial FSM benchmarks, we devel-
oped together with L. Jóźwiak and D. Gawlowski the benchmark generator software
BENGEN. This software enables efficient generation of an arbitrary number of var-
ious sorts of well-characterized FSM benchmarks, with the minimum effort of the
user, while retaining fine-grained control over the generation process and editing
of the generated or industrial FSMs.

• The implementation of the prototype encoding tool SECODE resulted in the de-
velopment of a software library that efficiently implements various operations fre-
quently encountered in logic synthesis, and in particular in decomposition and
state assignment. The contents of the library ranges from basic data structures,
such as graphs or efficient vectors of Boolean and logic variables with their related
operations, to generic and extensible implementations of algorithms for problems
from graph theory, clustering, simulated annealing, etc. Within the library, a num-
ber of generic algorithms was extended with heuristics relevant to the subject field.
For instance, the twin graph coloring approach was extended with the heuristics for
efficient merging of dichotomies, while considering their mutual affinities. Also,
an incremental input support minimization routine was developed that saves sig-
nificant computing effort by evaluating input supports of a modified output func-
tion as a derivative of the original function, instead of fully recomputing the input
support.

The library can be useful for further research in this field, providing basis for rapid
development of new algorithms and enabling quick experimental evaluation of new
research ideas. Also, the SECODE software itself is a good framework for further
analysis and experiments with encoding and decomposition of FSMs.

While the theory of general decomposition, which has been developed during the past
15 years, is quite mature, the newly developed state assignment method and software is
in the prototype stage and would benefit from further development.

In particular, an important role in the analysis process is played by the input support
computation. Quite often, especially in optimized machines, there is a unique input
support for a given output function. In other cases, however, there is a choice of several
minimum or close-to-minimum input supports for the given function. In these cases,
the selection of one of the supports may have influence on further analysis and hence
on the final encoding. It would be interesting to thoroughly investigate and exploit the
influence of these choices on the results. A particularly interesting choice is between the
primary and state variables in the support. It may occur that, for instance, two primary

168 7. CONCLUSIONS AND FUTURE WORK

input variables in the minimum input support may be replaced with several atomic state
variables. In terms of decomposition, it means that the partial machine imports some
state/input information from other partial machines rather than deriving it from the
primary input information. The input support with state variables is then no longer
minimum. However, after the atomic state variables are merged, it may turn out that the
atomic state variables in the input support are merged to a single encoding variable and,
therefore, in the final input support the two primary inputs are replaced with a single
merged state variable. In this context, it is even possible to store multiple input supports
for an output function and determine its affinity to other functions based on the support
that fits best with the other function.

It would be also beneficial to continue research into predicting good specific encod-
ings, such as one-hot or Gray encoding. More sophisticated cost estimation for one-hot
encoding are certainly possible. Also, for Gray encoding, in which the consecutive codes
have Hamming distance-1, one could analyze the best order of states for a given machine.

An important issue is compatibility of the state assignment method with the com-
binational synthesis method used to synthesize the encoded FSMs. As discussed in
Chapter 5, the state assignment method has to be aware of the combinational synthe-
sis to be able to produce binary functions that will have efficient implementations when
using a particular combinational synthesis method targeting a particular implementa-
tion technology. Therefore, the encoding method would certainly benefit from further
research into the desired characteristics of Boolean functions that yield efficient FPGA
realizations. In particular, such research would be beneficial for the case of our combi-
national method of choice – the functional decomposition implemented in software tool
IRMA2FPGA. Knowing more precisely characteristics of functions that are “simple” for
IRMA2FPGA to synthesize would make it possible to favor such functions when encoding
the FSM.

Finally, there is a number of possible optimization objectives that can drive the state
assignment process. In our method we addressed the objectives that are important for
most applications – the area and the delay of the circuit implementation. As discussed
in Chapter 5, the area is addressed by limiting the interconnection and compressing the
information relevant to particular functions on as few input variables as possible, and in
this way reducing the input supports. Delivering compressed, relevant information to
functions also tends to simplify the processing of the information, thus it may reduce
the depth and hence the delay of the circuit. Delay is also reduced by limiting inter-
connections and especially avoiding long interconnections. In the further research on
the topic of state assignment, some other objectives could be considered, such as power
dissipation or testability of the circuit, even though they are perhaps more relevant to
other target implementation platforms, such as ASICs involving CMOS gate networks.
The other objectives can be reasonably easy to account for in our approach by adding
some extra constraints and heuristics to the existing FSM assignment method and tool,
and should not require any changes to the underlying theories or generic assignment
method.

Summing up, the research presented in this thesis resulted in a sound theoretical
base for research in FSM decomposition and encoding, generic information-driven FSM
state assignment method, complete heuristic FPGA-targeted state assignment method
and the prototype EDA software tool that implements the method. Using our encod-
ing tool and a large set of benchmark FSMs, we performed an extensive experimental

169

research. The results of the experimental research clearly demonstrate that our tool sig-
nificantly outperforms other popular academic and industrial FSM state assignment ap-
proaches and tools. Consequently, the research presented in this thesis demonstrates
that the information-driven approach to circuit synthesis based on the general decompo-
sition and information relationships and measures is an effective and efficient approach
to sequential circuit synthesis. This way, the aims of the research reported in this thesis
have been fully realized.

170 7. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] A. E. A. Almaini, J. F. Miller, P. Thomson, and S. Billina. State assignment of
finite state machines using a genetic algorithm. IEE Proc. on Computers and Digital
Techniques, pages 279–286, July 1995.

[2] D. B. Armstrong. On the efficient assignment of internal codes to sequential ma-
chines. IRE Trans. on Electronic Computers, pages 611–622, October 1962.

[3] D. B. Armstrong. A programmed algorithm for assigning internal codes to sequen-
tial machines. IRE Trans. on Electronic Computers, pages 466–472, August 1962.

[4] P. Ashar, S. Devadas, and A. R. Newton. Sequential Logic Synthesis. Kluwer Academic
Publishers, 1992.

[5] D. Brelaz. Newmethods to color the vertices of a graph. Communications of the ACM,
22(4):251–256, 1997.

[6] E. Bruce Lee and M. A. Perkowski. Concurrent minimization and state assignment
of finite state machines. Proc. of Int. Conf. on Systems, Man and Cybernetics, pages
248–260, October 1984.

[7] J. A. Brzozowski and J. J. Lou. To check, chapter Blanket algebra for multiple-valued
function decomposition, pages 262–276. To check, 2000?

[8] J.A. Brzozowski and T. Luba. Decomposition of Boolean Functions Specified by Cubes.
University of Waterloo Research Report, CS-97-01, Waterloo, Canada, January (re-
vised October 1998), 1997.

[9] M. Burns, M. Perkowski, and L. Jóźwiak. An efficient approach to decomposi-
tion of multi-output boolean functions with large sets of bound variables. In Proc.
EUROMICRO-98 Conference, Vasteras, Sweden, pages 16–23, 1998.

[10] S. Chattopadhyay and P. Pal Chaudhuri. Genetic algorithm based approach for inte-
grated state assignment and flipflop selection in finite state machine synthesis. Proc.
of Int. Conf. on VLSI Design, pages 522–527, 1997.

[11] M. J. Ciesielski and J. Shen. A unified approach to input-output encoding for FSM
state assignment. Proc. of 28th Design Automation Conf., pages 176–181, 1991.

[12] O. Coudert. A new paradigm for dichotomy-based constrained encoding. In Proc.
Design, Automation and Test in Europe, pages 830–834, 1998.

171

172 BIBLIOGRAPHY

[13] G. de Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli. Optimal state assign-
ment for finite state machines. IEEE Trans. on CAD, pages 269–284, 1985.

[14] S. Devadas, H. TonyMa, A. R. Newton, and A. Sangiovanni-Vincentelli. MUSTANG:
state assignment of finite state machines for optimal multi-level logic implementa-
tion. Proc. of Int. Conf. on CAD, pages 16–19, 1987.

[15] T. A. Dolotta and E. J. McCluskey. The coding of internal sates of sequential circuits.
IEEE Trans. on Electronic Computers, pages 549–562, October 1964.

[16] X. Du, G. Hachtel, B. Lin, and A. R. Newton. MUSE: a multilevel symbolic encoding
algorithm for state assignment. IEEE Trans. on CAD, pages 28–38, January 1991.

[17] M. D. Durand and S.R. White. Trading accuracy for speed in parallel simulated
annealing with simultaneous moves. Parallel Computing, 26(1):135–150, 2000.

[18] J. Ellsberger, D. Hogrefe, and A. Sarma. SDL – Formal Object-oriented Language for
Communicating Systems. Prentice-Hall, 1997.

[19] G. Files andM. Perkowski. Multi-valued functional decomposition asmachine learn-
ing method. In Proc. ISMVL’98, Fukuoka, Japan., pages 173–178, 1998.

[20] T.G.W. Gordon and P.J. Bentley. On evolvable hardware. In S. Ovaska and L. Sz-
tandera, editors, Soft Computing in Industrial Electronics, pages 279–324. Springer
Verlag, 2002.

[21] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231–274, June 1987.

[22] J. Hartmanis and R. E. Stearns. Algebraic Structure Theory of Sequential Machines.
Prentice Hall, 1966.

[23] J. Hartmanis and R.E. Stearns. Algebraic Structure Theory of Sequential Machines.
Englewood Cliffs, N.J.: Prentice-Hall., 1966.

[24] G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

[25] W. S. Humphrey. Switching Circuits with Computer Applications. McGraw-Hill, New
York, 1958.

[26] IEEE. IEEE Standard for Verilog Hardware Description Language. IEEE, 2001.

[27] IEEE. IEEE Standard VHDL Language Reference Manual. IEEE, 2002.

[28] ISO/TC97/SC21. Information processing systems – Open systems interconnection – Es-
telle – a formal description technique based on an extended state transition model. IS
9074, International Organization for Standardization, 1997.

[29] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.

[30] L. Jóźwiak. Minimal realization of sequential machines: The method of maximal ad-
jacencies, EUT-Report 88-E-209. Eindhoven Univ. of Tech., the Netherlands, 1988.
ISBN 90-6144-209-5.

BIBLIOGRAPHY 173

[31] L. Jóźwiak. Efficient suboptimal state assignment of large sequential machines. Proc.
of EDAC, pages 536–541, 1990.

[32] L. Jóźwiak. Simultaneous decomposition of sequential machines. Microprocessing
and Microprogramming, 30:305–312, 1990.

[33] L. Jóźwiak. An efficient heuristic method for state assignment of large sequential
machines. Journal of Circuits, Systems and Computers, 2(1):1–26, 1992.

[34] L. Jóźwiak. Decompositional logic synthesis: Correctness aspects. In Proc.
APCHDLSA - 93: Asian Pacific Conference on Hardware Description Languages, Stan-
darts and Applications, Brisbane, Australia, 1993.

[35] L. Jóźwiak. General decomposition and its use in digital circuit synthesis. VLSI
Design, 3(3):225–248, 1995.

[36] L. Jóźwiak. Information relationships and measures - an analysis apparatus for
efficient information system synthesis. In Proc. of the 23rd EUROMICRO Conference,
Budapest, Hungary, pages 13–23, 1997.

[37] L. Jóźwiak. Information relationship measures in application to logic design. In
Proc. IEEE International Symposium on Multiple-Valued Logic, Freiburg Im Breisgan,
Germany, 1998.

[38] L. Jóźwiak and S. Biegański. Information-driven library-based circuit synthesis. In
Proc. Euromicro Symposium on Digital Systems Design, pages 148–155, 2003.

[39] L. Jóźwiak and A. Chojnacki. Effective and efficient FPGA synthesis through func-
tional decomposition based on information relationship measures. In Proc. DSD’-
Euromicro Symposium on Digital System Design, pages 30–37, 2001.

[40] L. Jóźwiak and A. Chojnacki. High-quality sub-function construction in functional
decomposition based on information relationship measures. In Proc. DATE’- Design,
Automation, and Test in Europe Conference, Munich, Germany, pages 383–390, 2001.

[41] L. Jóźwiak and A. Chojnacki. Effective and efficient combinational circuit synthe-
sis for the FPGA-based reconfigurable systems. Special Issue of Journal of Systems
Architecture on Reconfigurable Computing, 49(4-6):247–265, 2003.

[42] L. Jóźwiak, D. Gawlowski, and A. Ślusarczyk. An effective solution of benchmark-
ing problem fsm benchmark generator and its application to analysis of state as-
signment methods. In accepted for Euromicro Symposium on Digital System Design,
2004.

[43] L. Jóźwiak and J.C. Kolsteren. An efficient method for the sequential decomposition
of sequential machines. Microprocessing and Microprogramming, 32:657–664, 1991.

[44] L. Jóźwiak and P. Konieczny. Input support minimization for efficient PLD and
FPGA synthesis. In Proc. International Workshop on Logic and Architecture Synthesis,
pages 30–32, 1996.

[45] L. Jóźwiak and P. Konieczny. Input support minimization for efficient PLD and
FPGA synthesis. In Proc. IWLAS, pages 30–37, 1996.

174 BIBLIOGRAPHY

[46] L. Jóźwiak and A. Postula. Genetic engineering versus natural evolution: Genetic
algorithms with deterministic operators. Proc. of Int. Conf. on Artificial Inteligence
IGAI’99, pages 58–64, 1999.

[47] L. Jóźwiak and A. Ślusarczyk. A new state assignment method targeting FPGA
implementations. In Proc. EUROMICRO Symposium on Digital System Design DSD,
Maastricht, the Netherlands, pages 50–59, 2000.

[48] L. Jóźwiak and A. Ślusarczyk. General decomposition of incompletely specified se-
quential machines with multi-state behavior realization. to be published in Journal of
Systems Architecture on Reconfigurable Computing, 2004.

[49] L. Jóźwiak, A. Ślusarczyk, and A. Chojnacki. Fast and compact sequential circuits
through the information-driven circuit synthesis. In Proc. DSD’01- Euromicro Sym-
posium on Digital System Design, Warsaw, Poland, pages 46–53, 2001.

[50] L. Jóźwiak, A. Ślusarczyk, and A. Chojnacki. Fast and compact sequential circuits
for the FPGA-based reconfigurable systems. Special Issue of Journal of Systems Archi-
tecture on Reconfigurable Computing, 49(4-6):227–246, 2003.

[51] L. Jóźwiak and F. Vankan. Bit full decomposition of sequential machines: Algo-
rithms and results. In Proc. of the Canadian Conference on Electrical and Computer
Engineering, Montreal, 1989.

[52] L. Jóźwiak and F. Volf. An efficient method for decomposition of multiple output
boolean functions and assigned sequential machines. In Proc. EDAC - The European
Conference on Design Automation, Brussels, Belgium, pages 114–122, 1992.

[53] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data. Wiley, 1990.

[54] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

[55] L. Lavagno, S. Malik, R. K. Brayton, and A. Sangiovanni-Vincentelli. MIS-MV: opti-
mization of multi-level logic with multiple-valued inputs. Proc. of Int. Conf. on CAD
ICCAD’92, pages 560–563, 1992.

[56] I. Lemberski. Modified approach to automata state encoding for LUT-FPGA imple-
mentation. Proc. of of 24th Euromicro Conf., pages 196–199, 1998.

[57] B. Lin and A. R. Newton. Synthesis of multiple level logic from symbolic high-level
description languages. Proc. of IFIP Int. Conf. on VLSI, pages 187–196, 1989.

[58] T.Y. Lin and N. Cercone(Eds.). Rough Sets and Data Mining - Analysis of Impresise
Data. Kluwer, 1997.

[59] T. Luba. Decomposition of multiple-valued functions. In Proc. IEEE ISMVL’95,
Bloomington, Indiana, USA, 1995.

[60] T. Luba and J. Rybnik. Rough Sets and Some Aspects of Logic Synthesis. in R. Slowinski
(Ed.): Intelligent Decision Support - Handbook of Applications and Advances of the
Rough Sets Theory, Kluwer., 1993.

BIBLIOGRAPHY 175

[61] M. Martinez, M. J. Avedillo, J. M. Quintana, and J. L. Huertas. A dynamic model for
the state assignment problem. Proc. of DATE Conf., pages 835–839, 1998.

[62] K. McElvain. IWLS’93 Benchmark Set: Version 4.0. Distributed as a part of IWLS’93
benchmark set, 1993.

[63] J. Monteiro, J. Kukula, S. Devadas, and H. Neto. Bitwise encoding of finite state
machines. Proc. of 7th Conf. on VLSI Design, pages 379–382, 1994.

[64] M. Perkowski, M. Marek-Sadowska, L. Jóźwiak, T. Luba, S. Grygiel, M. Nowicka.,
R. Malvi., Z. Wang, and S. Zhang. Decomposition of multiple-valued relations. In
Proc. International Symposium on Multiple-Valued Logic, pages 13–18, 1997.

[65] M. Rawski, L. Jóźwiak, and T. Luba. The influence of the number of values in sub-
functions on the effectiveness and efficiency of the functional decomposition. In
Proceedings of the 25th EUROMICRO Conference, September 8-10 1999. Milan, Italy.

[66] M. Rawski, L. Jóźwiak, and T. Luba. Functional decomposition with an efficient in-
put support selection for sub-functions based on information relationship measures.
Journal of Systems Architecture, 2(47):137–155, 2001.

[67] M. Rawski, L. Jóźwiak, M. Nowicka, and T. Luba. Non-disjoint decomposition of
boolean functions and its application in FPGA-oriented technology mapping. In
Proc. of the EUROMICRO’97 Conference, Budapest, Hungary, pages 24–30, 1997.

[68] T. Ross, M. Noviskey, T. Taylor, and D. Gadd. Pattern Theory: An Engineer-
ing Paradigm for Algorithm Design. Final Technical Report, Wright Laboratories,
WL/AART/WPAFB, 1991.

[69] C. Sarwary, E. Prado Lopes, L. Burgun, and A. Greiner. FSM synthesis on FPGA
architectures. Proc. of 7th IEEE ASIC Conf., pages 178–181, 1994.

[70] H. Selvaraj, H. Niewiadomski, M. Pleban, and P. Sapiecha. Decomposition of digital
circuits and neural networks. In Proc. Special Sessions on Modern Digital System Syn-
thesis at The Fifth Multi-Conference on Systemics, Cybernetics and Informatics - SCI’2001,
Orlando, USA, pages 302–307, 2001.

[71] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,
P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli. SIS: A System for Sequen-
tial Circuit Synthesis, Memorandum No. UCB/ERL M92/41. University of California,
Berkeley, 1992.

[72] J. Shen, Z. Hasan, and M. J. Ciesielski. State assignment for general FSM networks.
Proc. of EDAC, pages 245–249, 1992.

[73] M. Venkatesan, H. Selvaraj, and R. Bignall. Character recognition using functional
decomposition. In Proc. International Conference on Computational Intelligence and
Multimedia Applications, pages 721–726, 1998.

[74] T. Villa and A. Sangiovanni-Vincentelli. NOVA: state assignment of finite state ma-
chines for optimal two-level logic implementation. IEEE Trans. on CAD, pages 905–
924, 1990.

176 BIBLIOGRAPHY

[75] F.A.M Volf. A bottom-up approach to multiple-level logic synthesis for look-up table based
FPGAs. Technische Universiteit Eindhoven, 1997. Ph.D. thesis.

[76] M. K. Yajnik and M. J. Ciesielski. Finite state machine decomposition using mul-
tiway partitioning. Proc. of Int. Conf. on Computer Design: VLSI in Computers and
Processors, ICCD’92, pages 320–323, 1992.

Appendix A

Encoding results for generated
FSMs

The following table summarizes the synthesis results for generated benchmark FSMs
encoded with four encoding methods: popular multi-level encoding method JEDI, the
method presented in this thesis – SECODE, one-hot and sequential binary encoding. All
encoded FSMs were synthesized with IRMA2FPGA [41] logic synthesis method as a net-
work of 5-input LUTs.

For each FSM, the parameters of the machines are listed— number of states (column
s), number of primary input (column i) and number of primary outputs (column o).
Further, for each encoding methods the results of logic synthesis of the encoded machine
are reported as the number of LUTs and number of levels of the LUT-network. Finally,
the last column (h+) marks with “+” the machines, for which the algorithm discussed
in Section 5.5.1 indicated efficient one-hot realization.

& ')(+* , - . /0*21�- ,3*242.51�* 6�.)7 8�-9& 6;:
<>= 7@? <>A5< , <>= 7@? <>A�< , <>= 7@? <9A5< , <>= 7@? <>A5< ,

B ,3(DCEC)C F2GIH J J
K H J5F J H
K J H5F HB ,3(DCEC5F F2HLK FMJ HON J H)K J K�F J KOJ HB ,3(DCECEJ F)FPK K FMQ J FMQ J FMR J F2G JB ,3(DCEC)H Q S K J)C H FTR J J)N H J)N H :
B ,3(DCEC
K R F F K F K F K F K FB ,3(DCECEN S K K FMQ H FMS H HEN H J�F HB ,3(DCEC)Q J
CUJ S KOC J KOC J KON J H)G J
B ,3(DCECER R K K FMC J R F FMJ J G J
B ,3(DCEC)S FMJVK K HOR H HEH H N
H H KES HB ,3(DCEC)G Q K K JEJ J J)H J H)H J J
H J
B ,3(DC�F2C F2CWFTJXF2Q HEQ H H)K H HEJ H N
C N :B ,3(DC�F)F G K K HEC H JER H KEH H H5F H
B ,3(DC�FMJ S K K FTR J FTR J H)C J J
H J
B ,3(DC�F2H FMNIJ J F2K J F2K J F2G J F2Q JB ,3(DC�FYK F2CLK K KOH H HES H QEN H N�F HB ,3(DC�FMN FMNLS K QON N KOQ K KEG H Q5F N

177

178 A. ENCODING RESULTS FOR GENERATED FSMS

B ,3(DC�F2Q J
CIJ S J
H J JEJ J H)K J J
K JB ,3(DC�FMR FYKUJ J F2H J FMC J FMQ J F2K J
B ,3(DC�F2S S K K F)F J FMC J FTR J FMH JB ,3(DC�F2G Q K FTJ J
C J FTN J FMG J FMG JB ,3(DCOJ
C J
CIJ S HEN J HEH J HOR J H)K J
B ,3(DCOJ�F F2CXFMJXFMQ HER H JER J J
K J HOJ H :B ,3(DCOJ)J H5FZJ J J)J J J)C J HEQ J J)C JB ,3(DCOJ
H H)SVK FMC F2QES N FMHEJ K FTNTK N FTN)Q Q
B ,3(DCOJTK FMJ[K K J)N J J)C J JEN J J)Q H
B ,3(DCOJ)N J
CIJ S HEN J HEC J K�J J H)K JB ,3(DCOJ
Q F2CVK K F2G J FMQ J JEJ J J5F J
B ,3(DCOJ)R FMRVS K G)Q K S�F K SOR K FTJ)Q QB ,3(DCOJ
S J)NLJ J J
C J J)C J HOJ J JEJ H
B ,3(DCOJ
G F2CVK K J
Q J J5F J J)H J JEN H
B ,3(DCEH)C S K K FMR J FTR J HEC H FMG JB ,3(DCEH5F FMJVS K FMNEN R FMH)H R FTR�F R FMQES RB ,3(DCEHEJ FYKLK K F2S J FMS J J)G J JEJ J
B ,3(DCEH)H H)CIJ J J)J J JEJ J HEG J J
K HB ,3(DCEH
K FMRVS S F)FTN K GON K FMC
K N FEFTJ K :B ,3(DCEHEN F2HXFMJVK KEQ K KOC H HEG J NER K
B ,3(DCEH)Q G K K J)N H J)H H HON H HEC HB ,3(DCEHER G K K FMJ J FEF J FTN J FTN JB ,3(DCEH)S FMNLJ J FMR J F2K J FMS J FMG J
B ,3(DCEH)G Q S K H5F K JER H K�J K KEK K :
B ,3(DC)KEC FMJ[K K K)K H K�J H QEC H KOH HB ,3(DC)K�F FYKLK K J)J J J)H J J)G J JER H
B ,3(DC)KOJ FMJ[K K J
H J FTR J JEJ J J5F JB ,3(DC)KEH FMJVS FTJ G
K H S�F K R)C H GEQ K
B ,3(DC)K)K J
SLH J KEH H K�F H K�J H K�N H
B ,3(DC)KON S K FTJ H
K J HOJ J KOQ J HEQ JB ,3(DC)KEQ S K K FMJ J FMC J FMH J FMH JB ,3(DC)KOR F)F�K K J
Q J J)H J J)Q J J)S J
B ,3(DC)KES Q
KLK K J)REJ Q J)Q)G Q HEHER S J)G�F Q
B ,3(DC)KEG HER\FMJXFTJ J)J)Q Q J)C
K K F2K)K H H�FTN R :B ,3(DCON
C R K K FYK J FMH J J)C J F2K JB ,3(DCON�F S K K J)N J J)H J K�R J J)Q H
B ,3(DCON)J F2QVK K J)N J J
K J H�F H H)K HB ,3(DCON
H F2GIJ J F2Q J FTR J JEJ J FMQ JB ,3(DCONTK FMJVS K H)S K HON H HEG H N5F N
B ,3(DCON)N F2HLS FMQ GEN H SEH K SON H FEFMH K :B ,3(DCON
Q KECLS FTJ F2CEQ H FMCEN K FMCEJ H FEFMS NB ,3(DCON)R R F F K F K F Q J K F
B ,3(DCON
S G K FTJ J)R J J
K J J)S J JER J
B ,3(DCON
G H)QXFMJLS GEN H SEG K S�F H FEFMH N :B ,3(DCEQ)C F2CLS J FMN J FEF J F2K J FMQ H
B ,3(DCEQ5F H)GXFMJXFTJ KES�F S KOS5F G KOC)Q FMC FMC�FMJ G :

179

B ,3(DCEQEJ R K K FMC J S J FYK J F2C JB ,3(DCEQ)H F2SLK FMJ N5F H N)H J QEJ H N
Q H
B ,3(DCEQ
K FMJVK K HON H HON J KON H KOR HB ,3(DCEQEN FYKIK K JEN H J)Q H KOR H HEN KB ,3(DCEQ)Q FMJLS FMJ FTJ
H K FMC)H N F2HEQ N F)F2K K :
B ,3(DCEQER F2HIS F2Q NEJ H K�N H N
H H N)R KB ,3(DCEQ)S F)FPK K KOC H HOR H N
S K KON HB ,3(DCEQ)G J
SIS K F2KEC N FMHEJ Q FYKEK S FYKOS R
B ,3(DCOR
C F2CIS J FTN J FMH J FYK J F2S K
B ,3(DCOR�F QEJVK FMJ JEN)R N JEN
C N J�FMQ K J
QEH NB ,3(DCOR)J J
CUJ S HEG J HES J N
C H KEH H
B ,3(DCOR
H R K K FMC J FMC J FMR J FMN JB ,3(DCORTK F2HLK FMJ K�N J KEK J KEQ J K)K J
B ,3(DCOR)N FMJVK K HON H HOJ K N
H K K)K K
B ,3(DCOR
Q N K FMJ J)C J FMQ J J
C J FMR JB ,3(DCOR)R F2HLK FMJ J
K J J)H J H5F J J)N JB ,3(DCOR
S FMJLS FMJ K�R H HEG H KEQ H N�F K
B ,3(DCOR
G F2GUJ J FMQ J FTN J F2G J J
C JB ,3(DCES)C R K K F2K J F2K J JTK J FMR JB ,3(DCES5F J
GIS K F2KOJ R FMH)H Q FMN)Q R FMNER Q
B ,3(DCESEJ R S FMJ H�F H J)G J KOJ H H)G HB ,3(DCES)H F2HIS FMJ FEFMR N GEQ K F2C�F K FMJ)H K :B ,3(DCES
K J�F[J J J
K J JEJ J J)R J J
H J
B ,3(DCESEN F2CLK FMJ KOG J HEG J KON J KEQ H
B ,3(DCES)Q FMJLS FMJ FMC)C K R)G K GEN N F2CON KB ,3(DCESER N K K FMG J FTR J J)R J J
C J
B ,3(DCES)S R S FMJ J)C J J)C J J)R H J
C J :B ,3(DCES)G S K K FTN J FMH J FYK J FYK J
B ,3(DCEG)C R K K FTN J FMQ J H5F H F2G H
B ,3(DCEG5F F)FPK FMJ JER J J)Q J J
G J J
G JB ,3(DCEGEJ FMJLS FMJ FMC)S K GES K FMJER N F2COR K :B ,3(DCEG)H S K K F2K J F2K J JTK J FMN J
B ,3(DCEG
K FYKIK K KOG H K�R H S)C K NTK H
B ,3(DCEGEN FYKUS J K�R K K�F H KEQ H Q)C KB ,3(DCEG)Q J
QUJ J J)C J FMG J HEJ J J�F HB ,3(DCEGER R K K J5F J J5F J H)S J J)J J
B ,3(DCEG)S J
CIS S FMC)G K FMCEJ K F2COJ N FMJ
K R :B ,3(DCEG)G R S J FTN J FTJ J F2G J J
C KB ,3(]FMC)C F)FPK K FMS J FTN J J)J J J
H H
B ,3(]FMC5F R S S FTR J FMH J FMN J FMR J :B ,3(]FMCEJ G K FMJ J
K J J)H J J
S J J
S JB ,3(]FMC)H N K K FMH J FTJ J J)J J FMN J
B ,3(]FMC
K N
QLK K J)QEJ Q J
K)K Q H)H)K S H5FMC Q
B ,3(]FMCEN FMJVK K JER J J)Q J H)H H J
S HB ,3(]FMC)Q S K FMJ H)K J J)Q J HER J H)Q J
B ,3(]FMCER R S FMJ H)K H H�F H H)Q H H)Q H

180 A. ENCODING RESULTS FOR GENERATED FSMS

B ,3(]FMC)S FMNVS K KES H N)C H KOS H N)G KB ,3(]FMC)G R S J FYK J FTN J JEJ J J
K K
B ,3(]FEF2C FMNLJ J F2Q J FTN J J)C J FMG JB ,3(]FEF)F FYKUJ J FMN J FMH J J)C J FMG JB ,3(]FEFMJ H)GXFMJLS SER K SOJ H QES H FEF2K N :
B ,3(]FEF2H F2HVK FTJ J)N J J)H J H)K J H�F HB ,3(]FEFYK FMJ[K K N)J H KEK H QES K QOJ KB ,3(]FEFMN J
CIJ S J)J J J)C J HEQ J JEJ J
B ,3(]FEF2Q S K K F2Q J FMS H HES J FMS H
B ,3(]FEFMR F2CVK K KOJ H HEG H N)G H KOQ HB ,3(]FEF2S H)GVK FMQ J
QON N J)HEJ K J)S)G N J)QEQ Q
B ,3(]FEF2G Q S K F2G J FTN J J)C J FMS H :B ,3(]FTJ
C F2CXFMJXFMQ H)S K J)S J JER J HES K :
B ,3(]FTJ�F FMJ[K FTJ NTK J N)H J NER J QEC H
B ,3(]FTJ)J F)F�K K H5F H HEC H KOQ H K�J HB ,3(]FTJ
H R�F�K FMQ N
CEC R KOS)Q R K�N)R Q KOQEG RB ,3(]FTJTK H
KLK FTJ G
K H S)K H SEQ H SON N
B ,3(]FTJ)N Q K K F2H J FMH J JEN J FTN JB ,3(]FTJ
Q J)NLJ J J)N J J)Q J HOJ J JER HB ,3(]FTJ)R F2CLS J F2H J FEF J F2K J FTR K
B ,3(]FTJ
S H)GLS FTJ F2CEH H FMCEJ K GEG H FEFMS NB ,3(]FTJ
G F2CVK K KON H KOC H QEC H NEJ HB ,3(]FMH)C F2SXFMJXFMQ G)S H GEG H S�F H FTJ
K N :
B ,3(]FMH5F F)FZJ J FMN J F2K J F2K J FTR J
B ,3(]FMHEJ GEJ[K FMQ QER)H R QES)C R Q�FYK S QEQEH RB ,3(]FMH)H R F F K F K F N F K F
B ,3(]FMH
K FYKIS J KEG K HES H KOQ H QON NB ,3(]FMHEN FMRVS K F)FMH K GES Q SEG K F2KOH Q
B ,3(]FMH)Q F2HVK K KES K K�F H N)S H KOS K
B ,3(]FMHER F)F�K K F2S J FMS J J5F J J)H JB ,3(]FMH)S FMJVS K N
S H N)H K N)H H REN NB ,3(]FMH)G R K FTJ F2Q J FTR J J)H J J)C J
B ,3(]F2KEC R K K F)F J G J F2K J FEF J
B ,3(]F2K�F FYKUJ J FMN J FTJ J FMQ J FMQ JB ,3(]F2KOJ S S S H)S H H)K H N)C H KOQ KB ,3(]F2KEH N K FTJ FYK J FMC F FTR J F2K J :
B ,3(]F2K)K J
CIJ S H
K J HON J KOC J HES HB ,3(]F2KON S K K F2H J FTJ J JEJ J FTN JB ,3(]F2KEQ R F F K F F F K F K F
B ,3(]F2KOR K�FLFMJLS F2HON K FTJ
S N GES K FMHOR N :B ,3(]F2KES J
CIJ S HEN J HEH J KEK J HON JB ,3(]F2KEG F2HVK FTJ HER J HES H K�N J K�N H
B ,3(]FTN
C FYKIS K F2GON R FMSEN R J5FMJ R FMGEH R
B ,3(]FTN�F J
HIJ J J�F J J5F J J)S J FMG HB ,3(]FTN)J F2HVK FTJ K�F J HOR J KOC J K�F H
B ,3(]FTN
H F2GIJ J F2S J FMS J J)C J FMS J

181

B ,3(]FTNTK F2HLK FMJ JER J JEN J H)H J H)H HB ,3(]FTN)N F2CLK K FMQ J FMH J J�F H F2Q J
B ,3(]FTN
Q H)GLK FMJ J5FYK Q FMG)C N J
CEQ N J
H�F NB ,3(]FTN)R S K FMJ J5F J J5F J J
S J J
H JB ,3(]FTN
S J
QUJ J JER J JEN J H)Q J J
Q H
B ,3(]FTN
G R S FMJ JEN H JEJ H K�F K J
G H :B ,3(]FMQ)C F2HLK FMJ H)K J HEH J H)G J H)Q JB ,3(]FMQ5F F2HLK K NER K NEN H SEJ H R
S K
B ,3(]FMQEJ FYKIK FMJ KOH J KEK J KOR J N
C H
B ,3(]FMQ)H F2HIS K NEJ K KOQ H N
C J Q)C NB ,3(]FMQ
K FYKIK K N)Q K N
K K S)C K R
S K
B ,3(]FMQEN J)NIJ J J5F J J)C J H)H J FMR JB ,3(]FMQ)Q F2HIS K N5F K K�N H KEG H Q)Q K
B ,3(]FMQER F2CIS F2Q HOJ H J)Q J J
H J HEJ H :
B ,3(]FMQ)S J
HUJ J J)Q J JEN J HER H JTK HB ,3(]FMQ)G F)FPK K HEH H HEH H KOR H H)Q HB ,3(]FTR
C F2GUJ J JEJ J FMG J J)N J J�F J
B ,3(]FTR�F F2CIS J FMG H FMG J JTK H J
S KB ,3(]FTR)J FMJXFTJVK F2KON Q FTJTK Q FYK�J R J
CEC GB ,3(]FTR
H H)SLK F2C FMS)G N FTR
Q N J
C)K N J
HON Q
B ,3(]FTRTK G K K FMQ J FEF J F2Q J FMR JB ,3(]FTR)N FMRIJ J FMS J F2K J J
C J FMN JB ,3(]FTR
Q F2HIS K HEQ K HON H H)S J K)K K
B ,3(]FTR)R J
QUJ J JEN J JEN J H5F J J
Q H
B ,3(]FTR
S F2HIS F2Q FEF2S K FEF2C K F2H�F N F2HEG NB ,3(]FTR
G J
GUJ J JER H JEN J H)Q J J
G H
B ,3(]FMS)C R K K FMQ J F2K J J
S J F2Q JB ,3(]FMS5F N S FMJ J)G J JER J HEN H HEN H
B ,3(]FMSEJ F2CLK K FTR J FMQ J J)J J F2G J
B ,3(]FMS)H J�F[J J J)C J J)C J J)R J F2G JB ,3(]FMS
K FMJVK K JEN H J
K J KOJ H H)H HB ,3(]FMSEN F2HLK K HEQ H H�F J KON H HER H
B ,3(]FMS)Q Q S K J)S K J
K H H)G K H)S K :
B ,3(]FMSER F2HIS K HEQ K HEH H KEH K KEG KB ,3(]FMS)S S K K FTN J FEF J FMR J FYK JB ,3(]FMS)G FMJVK K KOQ H K�R H RTK H N
Q K
B ,3(]FMG)C R S FMJ J)Q J J)H J J)R J J�F J :B ,3(]FMG5F F2HLK K HOR H HEQ H KOR H K)K HB ,3(]FMGEJ F2QIS J FMQ)S R FTN
Q S J�FTR S J�FTJ R
B ,3(]FMG)H F2QLK K J)C J FMS J J
G H J
S HB ,3(]FMG
K R K K R F R F F)F J G JB ,3(]FMGEN S K K J)H J FMG H H
K J JTK J
B ,3(]FMG)Q S K K J
K H J5F J K�F H J
S H
B ,3(]FMGER N
GLK K J)C)G Q J5FMR Q J
QEG R J)N)Q QB ,3(]FMG)S HERXFTJXFMJ JEN)N FEF J
KEC G J�FMS N N
SEG G
B ,3(]FMG)G F2HLK K KOG H KOC H N
G H K)K H

182 A. ENCODING RESULTS FOR GENERATED FSMS

B ,3(^J)C)C R K K G J S J FTJ J FMC JB ,3(^J)C5F FMJVS K R
Q K QOR K R)H K G�F K
B ,3(^J)CEJ F2HVK K F2G J FMS H JEN H J5F JB ,3(^J)C)H R S FTJ JTK H JEJ J HOJ H J)S HB ,3(^J)C
K F2GXF2CWFTJ H)Q J H�F J J)Q F KEK K :
B ,3(^J)CEN FMJVS K N)R K Q�F K R)H K Q)K KB ,3(^J)C)Q FYKLK FTJ J)R J J
K J HES J J)G JB ,3(^J)CER H)QVK FMC F2CEG H FMC5F H GOJ H FMH)K N
B ,3(^J)C)S F)F�K K F2S J FTR J JEJ J J5F J
B ,3(^J)C)G J
GIJ J J
H H J)C J HOR J JEN HB ,3(^J5F2C R K K S J R J FEF J FMC J
B ,3(^J5F)F R K K FMR J FTN J JEJ J FMQ JB ,3(^J5FMJ KONVS FMQ G)SOJ G GES)C G FTN
QOR FTJ FMSEGEN S
B ,3(^J5F2H G S K R
C Q N)G Q GOJ N GOJ R
B ,3(^J5FYK Q S S F2G J FMQ J JEN J J)S K :B ,3(^J5FMN F2HVK K KON H HEG H N)G H NEJ KB ,3(^J5F2Q H)QXFMJLS F2QEQ N FTN
G K FEFMJ K J5F2K R :
B ,3(^J5FMR F2CVK K FMN J F2K J FMG J J)C HB ,3(^J5F2S H)QLS FTJ FMR
K N FTN
C N FTN
Q N J)CEG N :B ,3(^J5F2G H)QVK FMC R
S K Q)K H REJ J RER N
B ,3(^JEJ
C R S J FMJ J FTJ J FMG J J)C KB ,3(^JEJ�F R S K FMJ J FMC J FTJ J FMH J :B ,3(^JEJ)J F2HVK K F2S J FMQ J J5F J J5F J
B ,3(^JEJ
H G K FTJ J
Q J J)H J HEC J JEN J
B ,3(^JEJTK H)CIJ J J
Q J JEN J HEQ J J)S HB ,3(^JEJ)N H5FZJ J J)R J J
K J HEG J JEN J
B ,3(^JEJ
Q G S FMQ KEC K HEH J H)K J K�N K :B ,3(^JEJ)R J
CVK K R)N H QEG H GEG K GON N
B ,3(^JEJ
S FMJVS K N)R K NEN K N)S K QEQ N
B ,3(^JEJ
G F)F�K FTJ JTK J J)H J J
K J JEN JB ,3(^J)H)C G K FTJ J)R J J
K J HEC J HOJ JB ,3(^J)H5F F2HVK FTJ J
Q J J
K J HEH J J)S H
B ,3(^J)HEJ FMNLJ J FMR J F2K J FMG J J)C J
B ,3(^J)H)H FYKUJ J F2Q J FMQ J J)H J JEJ JB ,3(^J)H
K HERVS FTJ S)C K S�F H S�F H GOR NB ,3(^J)HEN F2HVK K KEH H KOC H QOJ H N)C H
B ,3(^J)H)Q F)F�K K H)C H JER J HOR H J)S JB ,3(^J)HER JTKLK K F2CON N GEH N FTJTK N GEG NB ,3(^J)H)S F2HVK K N
Q K NEJ K FMC
K N R)G K
B ,3(^J)H)G S K K FMJ J FEF J FMG J FTR JB ,3(^J
KEC H)GVK FMC G
K H GEG H G�F H FEF2K KB ,3(^J
K�F F2CLS K HEJ H J)Q J H�F J K�N K
B ,3(^J
KOJ R S S FMN J FMH J FMQ J FMQ J
B ,3(^J
KEH K�FLFMJLS H)SOR S HEHER S H�F2C G QOJEJ S :B ,3(^J
K)K J
CIJ J F2G J FTN J JEN J FTR J
B ,3(^J
KON H)QXFMJXFTJ SEN H R)G H SEC H SON K

183

B ,3(^J
KEQ FMRVK K N)C H HES H KEH H KOJ HB ,3(^J
KOR HERXFTJXFMJ K�R�F G KOQ)H G HER)H G KEGOJ F2C :
B ,3(^J
KES F2GIH J J)G J J)Q H H)Q J HEJ HB ,3(^J
KEG FMJLS K HEQ H H)K H KOJ H Q)C KB ,3(^JEN
C FMJLS K KOS H KOQ K N
Q H RTK N
B ,3(^JEN�F J�FZH J HEQ H HOJ H HER H H)H HB ,3(^JEN)J R K K R F R F F2C F G JB ,3(^JEN
H F2HLK K FMQ J FMQ J J�F J J
C J
B ,3(^JENTK F2SLK K R)C K R5F H F2C)K K F)FMC N
B ,3(^JEN)N F2HIS K KOG K HEQ H KEQ H Q
K NB ,3(^JEN
Q FMNLS K N)G H N5F H KOR H Q5F K
B ,3(^JEN)R F2CWFTJXF2Q J)G J J)Q J J
H J H)C H :B ,3(^JEN
S F2GUJ J FTR J FMS J JTK J F2S J
B ,3(^JEN
G Q)CLK K J
KEQ Q J)H)Q Q J)R
K S J
H�F Q
B ,3(^J)Q)C J
CUJ S J
K J JEJ J HER J J
H JB ,3(^J)Q5F F)FPK K H)K H H�F J KOJ J K�F HB ,3(^J)QEJ FYKIK K N)Q H N)C H R
Q H N
Q H
B ,3(^J)Q)H R S FMJ J
K H J
K H HEJ H H5F H :B ,3(^J)Q
K FYKUS K R)S K R5F K R
G K GER RB ,3(^J)QEN H)HUJ J KOH H HEC H K)K J KEC H
B ,3(^J)Q)Q FMJLS K FMQEJ R FTN)N R J
COR S F2SEH RB ,3(^J)QER J)NVK K SON K R)C K F2CEC N G
K NB ,3(^J)Q)S FMNVK K KEK H KOQ H Q)Q H N)J K
B ,3(^J)Q)G S S S N)G H N)C K Q
K H N
S K
B ,3(^JER
C R K K J5F J FTR J H
K J J
C JB ,3(^JER�F R S FMJ HEH J HOJ J KOR H KON H
B ,3(^JER)J J
QUJ J J5F J J5F J H)H J J�F HB ,3(^JER
H F2CLK FMJ K�J J K�F H N�F J KOR H
B ,3(^JERTK G K K HEQ H JER J KEH H H)G H
B ,3(^JER)N R S FMJ HEQ H HEC J H)Q H KEC HB ,3(^JER
Q R K K FTN J FEF J F2S J FMR JB ,3(^JER)R S K K FTJ J FEF J F2Q J F2H J
B ,3(^JER
S H)SLK FMJ FMG)H N FTR)N K F2SEG N J
COJ N
B ,3(^JER
G FMNVK K KOC H KOC H N�F H KOR KB ,3(^J)S)C J
SIH H K�J H H)K H KEH H KEC HB ,3(^J)S5F H)HUJ J K�F H J)Q H K�F J HEN H
B ,3(^J)SEJ FYKIK K FTR J FTR J JTK J J�F HB ,3(^J)S)H J
CUJ J J
K J JEJ J J
S J J�F JB ,3(^J)S
K F2SLK FMJ QEC H N)Q H Q
K H QER H
B ,3(^J)SEN N S FMJ FMS J FMS J J)R H JTK H :B ,3(^J)S)Q Q K FMJ FMH J FMH J F2Q J FMR J :B ,3(^J)SER KECLK F2C J
KON Q J
KEH Q J
SEC R J
GES N
B ,3(^J)S)S HERLS FMJ K�J�F S KOC)H R KEC�F FMC Q)HOJ R
B ,3(^J)S)G J
CLK K QEQ H N)S H Q)G H SEN NB ,3(^J)G)C F2HLK K K�F H HEG H N)N H KOJ H
B ,3(^J)G5F FMRVK K H)K H JEN J H)S J J
Q H

184 A. ENCODING RESULTS FOR GENERATED FSMS

B ,3(^J)GEJ G K K H)S H HEQ H QEC K K�R HB ,3(^J)G)H F2HLS FTJ KEH N HES H K�R J N)H K
B ,3(^J)G
K F2HVK FTJ KES J K�F J KOS J NEJ HB ,3(^J)GEN G S S H)C H HEC H HON H HOR K :B ,3(^J)G)Q Q S K J
C J FMG J J5F J JEJ J :
B ,3(^J)GER HEN\F2CIS S)Q K R
K H QOR H FEF2K N :B ,3(^J)G)S FYKLK K H)G K HEQ N QEH K QOJ KB ,3(^J)G)G H)GVK FTJ F2SOR K FMGEJ K J)CEJ K JEJEN K
B ,3(DHEC)C F2HXFMJVK HEJ K JER H HES H KOG K
B ,3(DHEC5F J
CIJ S H
K J HEH J KOH J HEH JB ,3(DHECEJ Q S S J)N J J)H J H�F J HEH K :
B ,3(DHEC)H Q S K KOJ K HOJ H KOQ K NEJ K :B ,3(DHEC
K F2HVK FTJ J
Q J J)Q J HEH J HOJ H
B ,3(DHECEN FYKLK K KEC H KOC H QEC H N5F K
B ,3(DHEC)Q FMJ[K K J
C J FTR J JEJ J FMG JB ,3(DHECER H)QLS FTJ J)N)C Q J
KON R J)H)H Q HESEH RB ,3(DHEC)S S K K F2S J FMQ J J)S J FMG H
B ,3(DHEC)G FMJVS FTJ KES K K�N K NEN N NEJ KB ,3(DH�F2C R F F K F H F K F K FB ,3(DH�F)F Q S K F2S J FTR J JEN H JEJ H :
B ,3(DH�FMJ H
KLK FTJ FYK�F K FEF2Q H FMCER H FTJER NB ,3(DH�F2H F2HVK K Q5F K N)S K FMC5F K SEC KB ,3(DH�FYK FYKIS K F2SEC R FTR�F S J
KEG R JEJ5F R
B ,3(DH�FMN S K FTJ FMR J FMQ J J)C J FTR J
B ,3(DH�F2Q R K K J
H J J5F J H)K J J)H JB ,3(DH�FMR F2HVK K H)C H J)G H KOQ H H�F H
B ,3(DH�F2S FMJ[K K H)S H HOR H N)Q H KOG HB ,3(DH�F2G F2QLS J R
C N QEC K QOR K RER N
B ,3(DHOJ
C FYKIS K GEJ R R)G R FMC)Q R FEFMC R
B ,3(DHOJ�F S K FTJ FMR J FMQ J JEN J FTR JB ,3(DHOJ)J F2CVK K KEG H HEQ H N)G H KEK HB ,3(DHOJ
H F2HVK FTJ KEC J K�F J KOG J KEK H
B ,3(DHOJTK F2COJ�K FMQ Q)GOJ R R5FYK R QEQ
K R REJ)C S
B ,3(DHOJ)N N K FTJ FMR J FMH F FMG J FMQ JB ,3(DHOJ
Q F2HVK K F2H J FMH J FTR J FMQ JB ,3(DHOJ)R FMJ[K FTJ H)C J J)G J HES J HON H
B ,3(DHOJ
S R K K FMN J FTJ J J5F J FTR JB ,3(DHOJ
G R S FTJ J
G H JEN J J)G H HEC H :B ,3(DHEH)C S K K FMJ J FEF J FMS J FTJ J
B ,3(DHEH5F H)SXF2CIS GEJ K GEC H S)K H FMHON QB ,3(DHEHEJ F2HVK K J
G H J)Q J HEQ J HEQ KB ,3(DHEH)H H)SLS FMC F)FEF K FMC)G H G�F H FTJ
K N
B ,3(DHEH
K F2HVK FTJ KOJ J K�J J KEK J K�R H
B ,3(DHEHEN FMRLJ J FMN J FMH J J)C J FMH JB ,3(DHEH)Q H)HXFMJLS J�FTJ N FTR
H N F2KEQ N H�FMS G :
B ,3(DHEHER G S K FMNEJ Q FMH)C S FTN
S N FTNEN R

185

B ,3(DHEH)S F2QIS FMQ F2HON K FMH)C K FTJ
Q K FMN)C QB ,3(DHEH)G FMRVK K SEJ K RER K FMC)Q K G)Q N
B ,3(DH)KEC R F F K F K F N F K FB ,3(DH)K�F G K FTJ HEN J HOJ J HEQ J H)Q JB ,3(DH)KOJ G K FTJ H)H J J)G J HEH J H
K J
B ,3(DH)KEH R K FTJ J
H J J5F J H�F J J
G JB ,3(DH)K)K R K FTJ J)J J J)C J JER J JTK JB ,3(DH)KON F2HLK FTJ KOJ J HOR J K�R J K�F J
B ,3(DH)KEQ H)SWFMCXFMC F2H�F N FTJ)R K FMCEN H F2QEQ Q
B ,3(DH)KOR J)NLH H KEG H KEK H KOG H KOR HB ,3(DH)KES FYKIK K JTK J J)H J H�F J J
S J
B ,3(DH)KEG FYKIK FTJ KEC J HON J K�F J H)G J
Σ

J�FMQESEJ_F2CON5F J)C5FMQER_FMC)CEG J)HER5F2K`FMC
KEK J
QEH)HEQ`FMJ)C
K
∆% a R5b C a K�b C G�b K a C�b R J�FEb N FYK�b Q

186 A. ENCODING RESULTS FOR GENERATED FSMS

Biography

Aleksander Ślusarczyk was born in 1974 in Warsaw, Poland.
After receiving primary and secondary education in Warsaw, he enrolled in 1993 at

the Faculty of Electronics and Information Techniques at the Warsaw University of Tech-
nology. During academic year 1996/7 he studied at the University of Wales Swansea in
Great Britain. In 1998, he graduated with honours from Warsaw University of Technol-
ogy in the specialty Computer Construction and Programming.

In the same year, he joined the faculty of Electronics of Technische Universiteit Eind-
hoven in Eindhoven, the Netherlands as a Ph.D. candidate. He performed there the
research on Finite State Machine decomposition and encoding for FPGA implementa-
tion under the supervision of prof. Mario Stevens and dr. Lech Jozwiak. He hopes to be
able to defend the thesis on this subject on 15 December 2004.

In June 2004 Aleksander Ślusarczyk joined Topic Automatisering, where he is cur-
rently active in the area of system design of medical equipment.

187

	Summary
	Samenvatting
	Acknowledgements
	Contents
	List of definitions
	1. Introduction
	2. Preliminaries
	3. General decomposition theorem
	4. General decomposition in circuit synthesis
	5. Effective and efficient state assignment for LUT-FPGAs
	6. Experiments
	7. Conclusions and future work
	Bibliography
	App. A. Encoding results for generated FSMs
	Biography

