945 research outputs found

    Iterative channel estimation techniques for multiple input multiple output orthogonal frequency division multiplexing systems

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2007Includes bibliographical references (leaves: 77-78)Text in English; Abstract: Turkish and Englishxii, 78 leavesOrthogonal frequency division multiplexing (OFDM) is well-known for its efficient high speed transmission and robustness to frequency-selective fading channels. On the other hand, multiple-input multiple-output (MIMO) antenna systems have the ability to increase capacity and reliability of a wireless communication system compared to single-input single-output (SISO) systems. Hence, the integration of the two technologies has the potential to meet the ever growing demands of future communication systems. In these systems, channel estimation is very crucial to demodulate the data coherently. For a good channel estimation, spectral efficiency and lower computational complexity are two important points to be considered. In this thesis, we explore different channel estimation techniques in order to improve estimation performance by increasing the bandwidth efficiency and reducing the computational complexity for both SISO-OFDM and MIMO-OFDM systems. We first investigate pilot and Expectation-Maximization (EM)-based channel estimation techniques and compare their performances. Next, we explore different pilot arrangements by reducing the number of pilot symbols in one OFDM frame to improve bandwidth efficiency. We obtain the bit error rate and the channel estimation performance for these pilot arrangements. Then, in order to decrase the computational complexity, we propose an iterative channel estimation technique, which establishes a link between the decision block and channel estimation block using virtual subcarriers. We compare this proposed technique with EM-based channel estimation in terms of performance and complexity. These channel estimation techniques are also applied to STBC-OFDM and V-BLAST structured MIMO-OFDM systems. Finally, we investigate a joint EM-based channel estimation and signal detection technique for V-BLAST OFDM system

    Indoor Channel Measurement for Wireless Communication

    Get PDF

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Classical and Bayesian Linear Data Estimators for Unique Word OFDM

    Full text link
    Unique word - orthogonal frequency division multiplexing (UW-OFDM) is a novel OFDM signaling concept, where the guard interval is built of a deterministic sequence - the so-called unique word - instead of the conventional random cyclic prefix. In contrast to previous attempts with deterministic sequences in the guard interval the addressed UW-OFDM signaling approach introduces correlations between the subcarrier symbols, which can be exploited by the receiver in order to improve the bit error ratio performance. In this paper we develop several linear data estimators specifically designed for UW-OFDM, some based on classical and some based on Bayesian estimation theory. Furthermore, we derive complexity optimized versions of these estimators, and we study their individual complex multiplication count in detail. Finally, we evaluate the estimators' performance for the additive white Gaussian noise channel as well as for selected indoor multipath channel scenarios.Comment: Preprint, 13 page

    Channel estimation techniques for filter bank multicarrier based transceivers for next generation of wireless networks

    Get PDF
    A dissertation submitted to Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering (Electrical and Information Engineering), August 2017The fourth generation (4G) of wireless communication system is designed based on the principles of cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) where the cyclic prefix (CP) is used to combat inter-symbol interference (ISI) and inter-carrier interference (ICI) in order to achieve higher data rates in comparison to the previous generations of wireless networks. Various filter bank multicarrier systems have been considered as potential waveforms for the fast emerging next generation (xG) of wireless networks (especially the fifth generation (5G) networks). Some examples of the considered waveforms are orthogonal frequency division multiplexing with offset quadrature amplitude modulation based filter bank, universal filtered multicarrier (UFMC), bi-orthogonal frequency division multiplexing (BFDM) and generalized frequency division multiplexing (GFDM). In perfect reconstruction (PR) or near perfect reconstruction (NPR) filter bank designs, these aforementioned FBMC waveforms adopt the use of well-designed prototype filters (which are used for designing the synthesis and analysis filter banks) so as to either replace or minimize the CP usage of the 4G networks in order to provide higher spectral efficiencies for the overall increment in data rates. The accurate designing of the FIR low-pass prototype filter in NPR filter banks results in minimal signal distortions thus, making the analysis filter bank a time-reversed version of the corresponding synthesis filter bank. However, in non-perfect reconstruction (Non-PR) the analysis filter bank is not directly a time-reversed version of the corresponding synthesis filter bank as the prototype filter impulse response for this system is formulated (in this dissertation) by the introduction of randomly generated errors. Hence, aliasing and amplitude distortions are more prominent for Non-PR. Channel estimation (CE) is used to predict the behaviour of the frequency selective channel and is usually adopted to ensure excellent reconstruction of the transmitted symbols. These techniques can be broadly classified as pilot based, semi-blind and blind channel estimation schemes. In this dissertation, two linear pilot based CE techniques namely the least square (LS) and linear minimum mean square error (LMMSE), and three adaptive channel estimation schemes namely least mean square (LMS), normalized least mean square (NLMS) and recursive least square (RLS) are presented, analyzed and documented. These are implemented while exploiting the near orthogonality properties of offset quadrature amplitude modulation (OQAM) to mitigate the effects of interference for two filter bank waveforms (i.e. OFDM/OQAM and GFDM/OQAM) for the next generation of wireless networks assuming conditions of both NPR and Non-PR in slow and fast frequency selective Rayleigh fading channel. Results obtained from the computer simulations carried out showed that the channel estimation schemes performed better in an NPR filter bank system as compared with Non-PR filter banks. The low performance of Non-PR system is due to the amplitude distortion and aliasing introduced from the random errors generated in the system that is used to design its prototype filters. It can be concluded that RLS, NLMS, LMS, LMMSE and LS channel estimation schemes offered the best normalized mean square error (NMSE) and bit error rate (BER) performances (in decreasing order) for both waveforms assuming both NPR and Non-PR filter banks. Keywords: Channel estimation, Filter bank, OFDM/OQAM, GFDM/OQAM, NPR, Non-PR, 5G, Frequency selective channel.CK201

    A scheme for cancelling intercarrier interference using conjugate transmission in multicarrier communication systems

    Get PDF
    To mitigate intercarrier interference (ICI), a two-path algorithm is developed for multicarrier communication systems, including orthogonal frequency division multiplexing (OFDM) systems. The first path employs the regular OFDM algorithm. The second path uses the conjugate transmission of the first path. The combination of both paths forms a conjugate ICI cancellation scheme at the receiver. This conjugate cancellation (CC) scheme provides (1) a high signal to interference power ratio (SIR) in the presence of small frequency offsets (50 dB and 33 dB higher than that of the regular OFDM and linear self-cancellation algorithms [1], [2], respectively, at ΔfT = 0.1% of subcarrier frequency spacing); (2) better bit error rate (BER) performance in both additive white Gaussian noise (AWGN) and fading channels; (3) backward compatibility with the existing OFDM system; (4) no channel equalization is needed for reducing ICI, a simple low cost receiver without increasing system complexity. Although the two-path transmission reduces bandwidth efficiency, the disadvantage can be balanced by increasing signal alphabet sizes

    A novel pilot expansion approach for MIMO channel estimation

    Get PDF
    A training-based MIMO channel estimation scheme is presented to operate in severe frequency and time selective fading channels. Besides the new pilot bits designed from the ‘Paley-Hadamard’ matrix to exploit its orthogonal and ‘Toeplitz-like’ structures and minimising its pilot length, a novel pilot expansion technique is proposed to estimate the length of the channel impulse response, by flexibly extending its pilot length as required in order to capture the number of multipath existed within the MIMO channel. The pilot expansion can also help to deduce the initial channel variation and its Doppler rate which can be subsequently applied for MIMO channel tracking using decision feedback Kalman filter during the data payload
    corecore