3,194 research outputs found

    An Efficient Fuzzy Clustering-Based Approach for Intrusion Detection

    Full text link
    The need to increase accuracy in detecting sophisticated cyber attacks poses a great challenge not only to the research community but also to corporations. So far, many approaches have been proposed to cope with this threat. Among them, data mining has brought on remarkable contributions to the intrusion detection problem. However, the generalization ability of data mining-based methods remains limited, and hence detecting sophisticated attacks remains a tough task. In this thread, we present a novel method based on both clustering and classification for developing an efficient intrusion detection system (IDS). The key idea is to take useful information exploited from fuzzy clustering into account for the process of building an IDS. To this aim, we first present cornerstones to construct additional cluster features for a training set. Then, we come up with an algorithm to generate an IDS based on such cluster features and the original input features. Finally, we experimentally prove that our method outperforms several well-known methods.Comment: 15th East-European Conference on Advances and Databases and Information Systems (ADBIS 11), Vienna : Austria (2011

    Adaptive Online Sequential ELM for Concept Drift Tackling

    Get PDF
    A machine learning method needs to adapt to over time changes in the environment. Such changes are known as concept drift. In this paper, we propose concept drift tackling method as an enhancement of Online Sequential Extreme Learning Machine (OS-ELM) and Constructive Enhancement OS-ELM (CEOS-ELM) by adding adaptive capability for classification and regression problem. The scheme is named as adaptive OS-ELM (AOS-ELM). It is a single classifier scheme that works well to handle real drift, virtual drift, and hybrid drift. The AOS-ELM also works well for sudden drift and recurrent context change type. The scheme is a simple unified method implemented in simple lines of code. We evaluated AOS-ELM on regression and classification problem by using concept drift public data set (SEA and STAGGER) and other public data sets such as MNIST, USPS, and IDS. Experiments show that our method gives higher kappa value compared to the multiclassifier ELM ensemble. Even though AOS-ELM in practice does not need hidden nodes increase, we address some issues related to the increasing of the hidden nodes such as error condition and rank values. We propose taking the rank of the pseudoinverse matrix as an indicator parameter to detect underfitting condition.Comment: Hindawi Publishing. Computational Intelligence and Neuroscience Volume 2016 (2016), Article ID 8091267, 17 pages Received 29 January 2016, Accepted 17 May 2016. Special Issue on "Advances in Neural Networks and Hybrid-Metaheuristics: Theory, Algorithms, and Novel Engineering Applications". Academic Editor: Stefan Hauf

    Data mining based cyber-attack detection

    Get PDF

    Hacking Smart Machines with Smarter Ones: How to Extract Meaningful Data from Machine Learning Classifiers

    Full text link
    Machine Learning (ML) algorithms are used to train computers to perform a variety of complex tasks and improve with experience. Computers learn how to recognize patterns, make unintended decisions, or react to a dynamic environment. Certain trained machines may be more effective than others because they are based on more suitable ML algorithms or because they were trained through superior training sets. Although ML algorithms are known and publicly released, training sets may not be reasonably ascertainable and, indeed, may be guarded as trade secrets. While much research has been performed about the privacy of the elements of training sets, in this paper we focus our attention on ML classifiers and on the statistical information that can be unconsciously or maliciously revealed from them. We show that it is possible to infer unexpected but useful information from ML classifiers. In particular, we build a novel meta-classifier and train it to hack other classifiers, obtaining meaningful information about their training sets. This kind of information leakage can be exploited, for example, by a vendor to build more effective classifiers or to simply acquire trade secrets from a competitor's apparatus, potentially violating its intellectual property rights
    • …
    corecore