2,962 research outputs found

    Mixed Information Flow for Cross-domain Sequential Recommendations

    Get PDF
    Cross-domain sequential recommendation is the task of predict the next item that the user is most likely to interact with based on past sequential behavior from multiple domains. One of the key challenges in cross-domain sequential recommendation is to grasp and transfer the flow of information from multiple domains so as to promote recommendations in all domains. Previous studies have investigated the flow of behavioral information by exploring the connection between items from different domains. The flow of knowledge (i.e., the connection between knowledge from different domains) has so far been neglected. In this paper, we propose a mixed information flow network for cross-domain sequential recommendation to consider both the flow of behavioral information and the flow of knowledge by incorporating a behavior transfer unit and a knowledge transfer unit. The proposed mixed information flow network is able to decide when cross-domain information should be used and, if so, which cross-domain information should be used to enrich the sequence representation according to users' current preferences. Extensive experiments conducted on four e-commerce datasets demonstrate that mixed information flow network is able to further improve recommendation performance in different domains by modeling mixed information flow.Comment: 26 pages, 6 figures, TKDD journal, 7 co-author

    Time Interval-enhanced Graph Neural Network for Shared-account Cross-domain Sequential Recommendation

    Full text link
    Shared-account Cross-domain Sequential Recommendation (SCSR) task aims to recommend the next item via leveraging the mixed user behaviors in multiple domains. It is gaining immense research attention as more and more users tend to sign up on different platforms and share accounts with others to access domain-specific services. Existing works on SCSR mainly rely on mining sequential patterns via Recurrent Neural Network (RNN)-based models, which suffer from the following limitations: 1) RNN-based methods overwhelmingly target discovering sequential dependencies in single-user behaviors. They are not expressive enough to capture the relationships among multiple entities in SCSR. 2) All existing methods bridge two domains via knowledge transfer in the latent space, and ignore the explicit cross-domain graph structure. 3) None existing studies consider the time interval information among items, which is essential in the sequential recommendation for characterizing different items and learning discriminative representations for them. In this work, we propose a new graph-based solution, namely TiDA-GCN, to address the above challenges. Specifically, we first link users and items in each domain as a graph. Then, we devise a domain-aware graph convolution network to learn userspecific node representations. To fully account for users' domainspecific preferences on items, two effective attention mechanisms are further developed to selectively guide the message passing process. Moreover, to further enhance item- and account-level representation learning, we incorporate the time interval into the message passing, and design an account-aware self-attention module for learning items' interactive characteristics. Experiments demonstrate the superiority of our proposed method from various aspects.Comment: 15 pages, 6 figure

    Self-Supervised Dynamic Hypergraph Recommendation based on Hyper-Relational Knowledge Graph

    Full text link
    Knowledge graphs (KGs) are commonly used as side information to enhance collaborative signals and improve recommendation quality. In the context of knowledge-aware recommendation (KGR), graph neural networks (GNNs) have emerged as promising solutions for modeling factual and semantic information in KGs. However, the long-tail distribution of entities leads to sparsity in supervision signals, which weakens the quality of item representation when utilizing KG enhancement. Additionally, the binary relation representation of KGs simplifies hyper-relational facts, making it challenging to model complex real-world information. Furthermore, the over-smoothing phenomenon results in indistinguishable representations and information loss. To address these challenges, we propose the SDK (Self-Supervised Dynamic Hypergraph Recommendation based on Hyper-Relational Knowledge Graph) framework. This framework establishes a cross-view hypergraph self-supervised learning mechanism for KG enhancement. Specifically, we model hyper-relational facts in KGs to capture interdependencies between entities under complete semantic conditions. With the refined representation, a hypergraph is dynamically constructed to preserve features in the deep vector space, thereby alleviating the over-smoothing problem. Furthermore, we mine external supervision signals from both the global perspective of the hypergraph and the local perspective of collaborative filtering (CF) to guide the model prediction process. Extensive experiments conducted on different datasets demonstrate the superiority of the SDK framework over state-of-the-art models. The results showcase its ability to alleviate the effects of over-smoothing and supervision signal sparsity

    Recommendation Systems: An Insight Into Current Development and Future Research Challenges

    Get PDF
    Research on recommendation systems is swiftly producing an abundance of novel methods, constantly challenging the current state-of-the-art. Inspired by advancements in many related fields, like Natural Language Processing and Computer Vision, many hybrid approaches based on deep learning are being proposed, making solid improvements over traditional methods. On the downside, this flurry of research activity, often focused on improving over a small number of baselines, makes it hard to identify reference methods and standardized evaluation protocols. Furthermore, the traditional categorization of recommendation systems into content-based, collaborative filtering and hybrid systems lacks the informativeness it once had. With this work, we provide a gentle introduction to recommendation systems, describing the task they are designed to solve and the challenges faced in research. Building on previous work, an extension to the standard taxonomy is presented, to better reflect the latest research trends, including the diverse use of content and temporal information. To ease the approach toward the technical methodologies recently proposed in this field, we review several representative methods selected primarily from top conferences and systematically describe their goals and novelty. We formalize the main evaluation metrics adopted by researchers and identify the most commonly used benchmarks. Lastly, we discuss issues in current research practices by analyzing experimental results reported on three popular datasets

    Dual Preference Distribution Learning for Item Recommendation

    Full text link
    Recommender systems can automatically recommend users with items that they probably like. The goal of them is to model the user-item interaction by effectively representing the users and items. Existing methods have primarily learned the user's preferences and item's features with vectorized embeddings, and modeled the user's general preferences to items by the interaction of them. In fact, users have their specific preferences to item attributes and different preferences are usually related. Therefore, exploring the fine-grained preferences as well as modeling the relationships among user's different preferences could improve the recommendation performance. Toward this end, we propose a dual preference distribution learning framework (DUPLE), which aims to jointly learn a general preference distribution and a specific preference distribution for a given user, where the former corresponds to the user's general preference to items and the latter refers to the user's specific preference to item attributes. Notably, the mean vector of each Gaussian distribution can capture the user's preferences, and the covariance matrix can learn their relationship. Moreover, we can summarize a preferred attribute profile for each user, depicting his/her preferred item attributes. We then can provide the explanation for each recommended item by checking the overlap between its attributes and the user's preferred attribute profile. Extensive quantitative and qualitative experiments on six public datasets demonstrate the effectiveness and explainability of the DUPLE method.Comment: 23 pages, 7 figures. This manuscript has been accepted by ACM Transactions on Information System
    corecore