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ABSTRACT Research on recommendation systems is swiftly producing an abundance of novel methods,
constantly challenging the current state-of-the-art. Inspired by advancements in many related fields, like
Natural Language Processing and Computer Vision, many hybrid approaches based on deep learning
are being proposed, making solid improvements over traditional methods. On the downside, this flurry
of research activity, often focused on improving over a small number of baselines, makes it hard to
identify referencemethods and standardized evaluation protocols. Furthermore, the traditional categorization
of recommendation systems into content-based, collaborative filtering and hybrid systems lacks the
informativeness it once had. With this work, we provide a gentle introduction to recommendation systems,
describing the task they are designed to solve and the challenges faced in research. Building on previous
work, an extension to the standard taxonomy is presented, to better reflect the latest research trends,
including the diverse use of content and temporal information. To ease the approach toward the technical
methodologies recently proposed in this field, we review several representative methods selected primarily
from top conferences and systematically describe their goals and novelty. We formalize the main evaluation
metrics adopted by researchers and identify the most commonly used benchmarks. Lastly, we discuss issues
in current research practices by analyzing experimental results reported on three popular datasets.

INDEX TERMS Recommendation systems, survey, collaborative filtering, content-based, hybrid methods,
learning-to-rank, taxonomy, evaluation protocols.

I. INTRODUCTION
The volume of digital information has been increasing at an
exponential rate within the last few decades. This has led
to what is commonly defined as the information overload
problem, which describes those situations in which users find
themselves dealing with excessive amounts of information,
and are actually hindered in their ability to navigate it and
make decisions in its regard. Whenever content providers
offer goods or services in numbers that are intractably
large for individual customers, an automated method able to
guide them towards a custom selection of content becomes
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a necessity. Recommendation Systems (RSs) [1] are such
methods, functioning as an indispensable tool to users, as well
as increasing sales and views for providers. RSs have an
incredibly wide range of applications, such as e-commerce,
social media, video hosting platforms, online news platforms,
music libraries and much more. With this review, we aim
to provide a strong foundational overview of this research
area, describe its latest advancements and precisely frame
the most important issues and challenges that should be
addressed.

A. RECOMMENDATION TASK
We begin by providing a brief overview of the generic task
tackled by recommenders. A RS can be generally described
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as a framework that suggests items to users utilizing any type
of data that regards either or both of them, as well as historical
interactions between them. These are the three main actors
of RSs — users, items and interactions — and are used as
generic terms regardless of what they concretely represent in
different scenarios. Interactions are considered to be a user’s
feedback, and are either explicit (user reviews of an item, e.g.,
a score in the range 1–5) or implicit (user acts on an item
without indication of preference) [2]. Some approaches split
interactions into additional subcategories based on the more
concrete action type that describes them (e.g., click, buy,
view, etc.). RSs based on implicit feedback face additional
difficulties, as all interactions are weak signals: items selected
in the past give a weak indication of what a user may
want to see in the future, and there are no explicit negative
interactions [3]. In either case, all of the remaining items (not
interacted with) are weak negatives, in the sense that it is
unknown how the user would react to them, a fact that poses
its own challenges (most notably, how to handle the large
number of negatives).

As far as learning objectives are concerned, in the case of
explicit feedback the task is frequently framed as a prediction
of how a user will rate an item. Instead, in the case of implicit
feedback the task can be defined as ‘‘maximization of the rate
of consumption’’. Because the signals are weak, the problem
is not what the user will like or not, but what the user is likely
to interact with. The meaning of ‘‘consumption’’ is domain-
dependent. The watch time for a video or the dwell time on
a website page can both be considered consumption signals
for a video sharing platform and a news agency. On the other
hand, advertisement platforms are more likely to be interested
in themaximization of Click-Through Rate (CTR), that is, the
fraction of clicks on an item over the number of times it has
been seen.

B. PROBLEM DEFINITION
Item recommendation, also known as top-n recommendation,
is the task of selecting the best items from a large catalog for a
user in a given context. In this section, we give a short formal
introduction to common notational conventions.

Formally, we define a user u and an item i as belonging
to corresponding sets, i.e., u ∈ U and i ∈ I . Again, these
are generic terms that abstract from what they are concretely,
which is instead described by their representation. User and
item representations are very flexible and depend on the
data utilized by the system itself — Section III will explore
these different representations. The simplest representation
for these actors is based on user and item identifiers (ids),
supplied with no further information, meaning the system
works solely on user–item interactions. Some authors prefer
to incorporate users in a ‘‘context’’ [3], which encapsulates
both the user and additional contextual information such as
time, location, and previous interactions of that user. We keep
these concepts separate, though the resulting methods are
the same. Interactions between users and items are most
commonly organized in a matrix R, where r ∈ R can

be an explicit rating (e.g., 1 to 5) or an implicit signal
(1 if the interaction has occurred, 0 otherwise). Therefore,
rui represents the interaction between user u and item i.
In general, most recommenders systems can be seen as having
to design a scoring or utility function:

f (u, i) = f (i|u), f : U × I → R (1)

This utility indicates the degree of preference towards the
item of the user. The choice and design of such function are
core aspects of the modeling process of a RS [3], [4].

C. RELATED WORK
There are a number of recently published surveys and articles
on the area of RSs, though the vast majority addresses a
particular sub-field without attempting to capture it as a
whole. Herewe brieflymention themost relevant to our work,
highlighting their merits and how they differ from this survey.

The authors of [5] organize a survey from the perspective of
modeling recommenders with the accuracy goal, and limited
to neural approaches. Collaborative filtering approaches are
reviewed in [6], which also showcases hybrid approaches
that integrate information derived from social networks.
In [7], neural recommenders are tackled, focusing on deep
learning-based approaches and building a comprehensive
summary of current research. The work by [8] provides an
excellent categorization of recommendation tasks and goals
for sequence-aware recommenders, which have to deal with
sequentially-ordered interactions. In [9], a unified framework
on session-based RSs is provided (often considered a subset
of sequence-aware recommenders), describing in depth the
unique characteristics and challenges posed by session data.
The excellent article by [3] details item recommendation
in implicit settings, with a large focus on challenges faced
during training and various techniques (mainly sampling)
utilized to solve them. In [10], a framework of recommenda-
tion from the point of view of explainable recommendations
is described. The interesting formulation of RSs as systems
trying to solve a Multi-Armed Bandit problem is surveyed
in [11]. Both [12] and [13] cover the usage of knowledge
graphs in RSs. Finally, [14] characterize and formalize graph
learning-based RSs, their challenges, and main progress in
the sub-field.

We found many recent surveys addressing the usage of
RSs in specific domains. For instance, in [20] the authors
discuss algorithms that make use of user-assigned tags to
predict item relevance, often in social network platforms.
Much research has been published on the recommendation of
scientific texts, like in [16], [18], [21]. Applications of RSs in
the tourism and travel industry, like accommodation and food
recommendations, are explored in [19], while [17] showcases
the importance of location-based services and social networks
in this domain. Finally, RSs can be beneficial in education
for recommendation of teaching resources, for instance on
e-learning platforms [15], [22]. Table 1 provides an overview
of the surveys analyzed.
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TABLE 1. Recent related surveys, sorted chronologically.

D. CONTRIBUTIONS OF THIS SURVEY
In contrast, our survey is organized from a more generic point
of view, attempting to collate much of this information into
a single, foundational overview. We attempt to highlight how
the field has evolved over the years, such as to give a realistic
and up-to-date view of the recommendation landscape.
By analyzing challenges and points of contention on recent
progress, we aim to incorporate theoretical knowledge with
an authentic representation of the current state of this
research field. This will help researchers discover new ideas
to design better solutions in the future, while also being
conscious of possible disputes about recent progress in the
recommendation area [23]–[25]. Relatedly, we discuss how
several different evaluation protocols are currently adopted
to test the performance of RSs, and how possible issues in
such protocols affect the assessment of the state-of-the-art.
In summary:
• We provide an overview of the recommendation task, its
various facets, and possible design choices to be made
when developing a recommender;

• We propose an updated taxonomy of RSs, based both
on traditional categorizations and new emerging trends,
clearly characterizing different approaches through
popular representatives;

• We briefly describe a wide array of recently proposed
methods, such as to provide an easily accessible
overview of recent research in this area;

• We study the evaluation process of a RS and its critical
issues, highlighting examples in recent literature.

How Papers Are Collected:
As our survey aims to capture the latest advancements

and proposed ideas in the field, we retrieved the most
related top conferences such as NEURIPS, ICML, ICLR,
RECSYS, SIGIR, KDD, WWW, WSDM, AAAI and IJCAI,
the same that were surveyed in [5]. Due to the very large
number of retrieved results, we only reviewed a selection of
contributions from each conference, matching the keyword
‘‘recommendation’’, ‘‘recommender’’ and ‘‘recommendation
system’’, and preferring the ones surrounded by a larger

amount of academic discourse. Among our goals, we wished
to perform an analysis of testing protocols in recent works,
a procedure which in many cases requires access to the code
implementation of the experiments.We found that conference
papers tend to publish the code of the experiments more
frequently than journal publications. As such, we decided to
select mainly conference papers, as was done in [23], [26].
As this field of work is particularly dynamic, we limited
our search to papers published after the year 2019, though
we also consulted particularly influential and distinguished
publications from years prior.

However, in order to provide a more thorough analysis,
we also complement our search with queries to Google
Scholar1 and DBLP.2 We have first searched for the
most influential works with an unfiltered search sorted by
relevance, and then applied a more fine-grained search of
recent works in the period of time 2018-2022. While we still
included works published in conferences with this procedure,
we tried to put a particular emphasis in searching works
published in related journals rather than conference papers.
These include journals such as Knowledge-Based Systems,
Expert Systems with Applications and IEEE Access. The
total number of works retrieved by the end of our researchwas
of roughly 200 works, of which about 150 were conference
papers. Another large portion of our references is from
cross-referencing particularly important works mentioned
within the corpus of our analysis. Over 120 recent or influ-
ential works are briefly presented in the methods overview.

E. STRUCTURE OF THE SURVEY
This survey is organized with the following structure:
• Section II provides an introduction to the main design
choices to be made towards the optimization of RSs;

• Building on such information, Section III provides
an overview of recommendation models and explains
a data-dependent taxonomy, tying it with standard
taxonomies and clarifying these approaches by giving
influential examples;

• Section IV goes in-depth into an exploration of the
recently proposed methods and approaches, which are
largely based on neural networks;

• Section V describes the main evaluation protocols
adopted in research, and reports the most popular
metrics and datasets, with considerations on various
testing strategies found in the literature on three of them;

• The survey draws to an end in Section VI, analyzing
possible new and long-standing challenges as well as
future research directions of this field;

• Lastly, our conclusions are reported in Section VII.

II. DESIGN CHOICES
Before diving into a taxonomy of RSs, it is useful to introduce
a few propaedeutic concepts related to the field, all of which
relate to the general design of a recommendation framework.

1https://scholar.google.com
2https://dblp.org
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In this section, we first provide some clarity on why a
categorization of RSs is not simple, and what considerations
should be taken when constructing such a system. In a related
fashion, we then proceed to introduce some of the main
challenges faced by RSs, fundamental in order to better
understand the design choices that differentiate the methods
within the taxonomy. We introduce some of the most popular
choices of learning objectives used to frame the recom-
mendation problem into supervised Machine Learning (ML)
problems. Lastly, we briefly touch on the ‘‘retrieval and
ranking’’ approach for designing recommender frameworks,
as well as a short mention to sampling approaches.

A. CONSIDERATIONS TO BE MADE
RSs have been long studied with great interest, and are
generally considered an important subclass of ML and
information filtering. However, we find that, unlike many
traditional fields of study, they lack a robust definition and
classification. This is not without reason; while an intuitive
notion of what a RS should do is easily identifiable, the
process of developing a careful characterization is soon met
with an abundance of questions. Here we attempt to identify
some of the main reasons why a consistent categorization of
RSs can be difficult to achieve.

Firstly, it is important to consider (1) what type of data
is available to the system. It is often not trivial to decide
what information should be used, and how to treat missing
or not readily available data points. Secondly, one should
also consider (2) how user interactions are treated. For
example, an e-commerce website might want to consider
the action of ‘‘adding to cart’’ differently from the ‘‘buy’’
action. In a similar vein, one might ask (3) what interaction
is being sought. In video recommendation scenarios, one
might want to decide between maximizing watch time and
CTR; this latter objective may favor ‘‘click-bait’’ videos,
resulting in many videos that were opened, but abandoned
shortly after. Last but not least, considering (4) how the task
is framed is also of utmost importance. Learning strategies
can differ depending on whether the algorithm objective
is to approximate a user-dependent function that describes
the level of affinity with items (classification or regression
problem), or to populate a list of items of probable interest
(retrieval problem). Furthermore, the specific application
might have additional requirements, such as having at least
one relevant item (or, conversely, as many as possible in a
less precise manner).

Clearly, these considerations only cover part of the large
number of facets of this design process. The ones presented
above were chosen as we found them to capture some of the
most relevant and thoroughly studied issues within the field.
Throughout this survey, we will introduce and explain the
various concepts necessary to answer these questions.

B. MAIN CHALLENGES
Throughout the years, RSs have had to deal with a staple set of
challenges that are important to consider whenever discussing

both new and old approaches. This section provides a brief
introduction to the most common: data sparsity, the cold
start problem and scalability. While we will address other
important challenges in Section VI, we briefly anticipate
these core issues, as we deem it necessary to wholly
understand the methods that will be illustrated.

1) DATA SPARSITY
One of the most severe complications associated with RSs
is the sparsity problem [4], a natural consequence of the
fact that it is very unlikely for users to have interacted with
more than a small fraction of the available items. In turn,
the representations of such systems — which are, one way
or another, based on interactions — will contain a large
number of missing entries, i.e., will be very sparse. This
causes severe complications, most notably the difficulty to
create accurate representations for users and items, as most
of the interactions will not have occurred [6]. Unobserved
interactions are inherently weak negatives, as we have no
information on whether the user has actively avoided them
or has simply not come across them yet.

Moreover, not only are interactions sparse, but they are also
commonly concentrated around popular items, meaning such
sparsity is also highly localized [2], [27]. This property often
satisfied by real-world recommendation datasets is referred
to as the long-tail. Datasets with such property will have
the vast majority of their interactions related to a restricted
fraction of highly popular items. This creates a long-tail
distribution when plotting the number of interactions against
the items sorted by interaction frequency (Fig. 1), where the
vast majority of items reside in such long-tail, yet have the
least number of interactions overall.

2) COLD START
The cold start problem [4], [28] describes situations in which
a recommender has to deal with either users or items that have
few or no interaction histories, which is usually the case when
they have just entered the system. Approaches based solely
on interaction histories are inherently sensitive to this issue,
since they have no other foundation to characterize users or
items. While new users can be trivially suggested popular
items, new items might end up never being recommended
because of how they have never been part of any interaction.
Utilizing side information (e.g., based on the item and user
data) is usually an effective way to mitigate this problem [6].

3) SCALABILITY
Practical properties such as scalability [29], [30] are fun-
damental in RSs, as recommendations should be generated
quickly — usually as soon as the user enters the system
or each time they interact with an item. A scalable system
should be able to handle often massively large amounts
of information, which will likely only grow in time. It is
notable that this issue leads to many real-world applications
relying on methods that are not very recent (though they have
obviously been refined) [23], [24], [31], [32], yet perform
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FIGURE 1. Characteristic long-tail distribution of interaction frequencies.

undeniably well when we consider their scalability. New
approaches should be mindful of this constraint; trading
accuracy for performance through approximations is often a
necessity.

C. LEARNING OBJECTIVES
Recommendations are rarely provided as single items and
instead are usually presented as a ranked list, with items
deemed more relevant placed on top and vice versa.
An important point of divergence between different recom-
mendation approaches, then, is the choice of optimization
task [3]. Functions that optimize a single affinity score
between a user and an item are defined as pointwise, while
other methods, namely pairwise and listwise approaches,
fall within the ‘‘learning-to-rank’’ category. In general, this
popular class of algorithms in information retrieval (IR)
contains methods that sort items according to their predicted
degree of relevance, putting less focus on a predicted score
and more emphasis on a well-ordered result. The last part of
this section discusses the multiclass approach highlighted by
some authors [3], [33].

1) POINTWISE OPTIMIZATION
A large number of traditional RSs rely on pointwise
optimization functions.Methods based on a pointwise criteria
can be generally described as seeking to predict affinity
scores between individual pairs of users and items. For
instance, a method within this category might aim to predict
the expected rating a user might give to a previously
unseen item; the optimization process would therefore aim
to minimize the error of each predicted rating against
the real rating value. While the underlying task might be
classification or regression, the result can be easily adapted
to a top-n recommendation scenario by ordering the items

by their predicted rating. This can very well incur infeasible
computational costs as the number of training examples
is very large (O(|U ||I |)), an open problem that has been
tackled with various approaches, one of which is negative
sampling [3], [33], [34].

2) PAIRWISE OPTIMIZATION
Researchers have long argued against the discrepancy
between the objective of the optimization process and the
final output of a RS. For example, [35] showcased how
influential the choice of a properly chosen optimization
criterion can be towards the end result, proving the potential
of pairwise methods by introducing the widely popular
Bayesian Personalized Ranking (BPR) optimization crite-
rion. Pairwise methods compare pairs of interactions at train
time. The learning task becomes one that must determine
which of the two items would be preferred by the user,
ultimately creating an ordering between items— leading to a
personalized ranking for each user. Other works, such as the
one by [36], have also argued against pointwise approaches,
claiming that the application of accuracy-based metrics (such
as rating prediction error, see Section V-B) is a sub-optimal
fit to the recommendation task. Furthermore, they argue
that pointwise optimization is by nature wasteful, as a good
approximation is sought for items that are not to be suggested.
In general, pairwise approaches are at least as expensive as
pointwise approaches, having to consider a number of pairs
in the order of O(|R||I |) ⊇ O(|U ||I |) [3], therefore also
incurring in complexity issues.

Learning-to-rank approaches attempt to model the fact
that, ideally, the algorithm should learn to directly maximize
a ranking utility. However, maximizing utilities of this
kind is not trivial, as they are often non-differentiable or
otherwise uninformative gradient-wise, and this challenge
has been studied widely by the academic community
[37], [38]. The examples mentioned above fall within the
class of solutions that devise surrogate, differentiable ranking
losses to minimize, such as to indirectly maximize ranking
metrics. To clarify, whenever we use the term ‘‘ranking
loss’’, we refer to one that only considers relative preferences
between items for each user, and does not care about
maximizing absolute utility scores on single items. We also
point out that, as an alternative approach, the pairwise ranking
task has been reformulated as a classification problem (as
in [39]), where pairs are labeled as positive if correctly
ordered, negative if not.

3) LISTWISE OPTIMIZATION
Listwise approaches can be seen as a generalization of
pairwise approaches to multiple items. Authors in this
field argue that listwise approaches are more suitable for
the learning-to-rank paradigm, as they directly address
the problem of creating a list of objects as a prediction
[39], [40]. Evidently, due to the fact that such approaches
work with permutations that grow factorially in number, the
learning task can quickly become intractable. This issue is
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often addressed by utilizing what is called a score-and-sort
approach [41]. The task is then to learn a scoring function
that, given a query (e.g., a user) and a set of items, produces a
vector of relevance values, which can then be used to produce
a ranking.

Many learning-to-rankmethods further reduce the problem
to that of learning a univariate scoring function to produce a
score between a single query and an item [36], [37], [42].

4) MULTICLASS APPROACH
A related formulation frequently used in practice casts rec-
ommendation as an extrememulticlass classification problem
where each item is a possible class. From a probabilistic point
of view, this option models recommendation as a multinomial
distribution over the items (conditional on the user, ŷ(i|u)).
One of the most common functions utilized to translate the
real valued score to a multinomial distribution is the softmax
function, defined as:

p(i|u) =
exp (β · ŷ(i|u))∑
j∈I exp (β · ŷ(j|u))

(2)

In the above equation, β is a temperature parameter used to
control howmuch the output distribution will be concentrated
around large values [3]. This class of methods is often paired
with cross-entropy as a measure of the distance (or error)
between predicted and target distribution [33].

The seminal work that introduced ListNet [39] reaches
a similar formulation, which the authors call ‘‘top-one
probability’’, while devising an approach to the otherwise
intractable listwise approach based on permutations. The
authors prove that the top-k probabilities over the items form
a probability distribution, and propose to utilize any loss
metric that measures the distance between score lists, such
as cross-entropy.

Treating recommendation as a multiclass scenario utilizing
the softmax and cross-entropy pairing might appear loosely
related to ranking metrics. In [37], however, the authors find
analytical connections (under certain conditions) between
this loss and popular ranking metrics. Many modern methods
do, in fact, utilize similar approaches (i.e., cross-entropy
paired with softmax), and it is debatable whether these
methods should be considered listwise, as most of the time
they do not model the permutations within elements in the list
explicitly. For the sake of clarity, throughout this article we
consider ranking methods only those which openly address
the learning-to-rank task, usually by applying ranking losses
(or their approximations) directly.

D. RETRIEVAL, RANKING AND SAMPLING
Before moving on to the taxonomy, we note that many
recommendation approaches are not applied directly as ‘‘out-
of-the-box’’ solutions in practical settings. Modern recom-
mendation architectures are usually much more complex and
includemultiple steps. For example, [43] describes a two-step
pipeline in which items are gradually filtered and re-ranked
into smaller groups, making it possible to exploit different

approaches with different complexity requirements even in
large settings.

Generalizing beyond a concrete framework, many
approaches implicitly assume that complex methods are
preceded by a retrieval model, whose job is to return a short
(compared to the whole database) list of items. Retrieval
models have to make a compromise between returning good
items and obtaining them within the required serving latency
requirements (commonly in the order of milliseconds).
Complex models are then applied on the much smaller
retrieved list, on which they act as a ranking model [44].
Another possible way to approach large-scale systems

is that of sampling. While going into detail about such
approaches is beyond the scope of this survey, the basic
idea is to tackle the sparsity problem by coupling positive
examples (which are typically much fewer in number) with a
restricted pool of negative ones. This is commonly referred to
as negative sampling. The choice of sampling distribution for
the negatives and how the sampler weighs different examples
is key to the design of proper sampling strategies [3].

III. TAXONOMY OF RECOMMENDATION SYSTEMS
In this section, we describe a data-oriented taxonomy for RSs.
Based on our review of past and current works, we deem
more appropriate an incremental taxonomy dependent on the
amount and type of side information available inspired by
works such as [5] and [45]. Note that what is meant by
incremental is not that categoriesmust necessarily contain the
ones before it, but rather that each category can be extended
by combining it with the others, allowing for large areas of
overlap between them. This better reflects how work in this
field has progressed, rarely tying itself to a specific subset of
data and instead attempting to utilize any bit of information
as permitted by the situation.

This section will introduce influential, explanatory exam-
ples for the categories, while Section IV will provide a more
in-depth exploration of the current landscape of proposed
methods.

A. TRADITIONAL VS DATA-ORIENTED CATEGORIES
In the following, we provide an overview of the classic
taxonomy of RSs and then extend it to showcase a more
accurate categorization of current approaches.

1) TRADITIONAL CATEGORIES
Traditional categorizations are helpful in providing a general
perspective of the most prominent methods, even though
we argue they no longer wholly capture how current
methods approach the recommendation task. RSs have been
traditionally divided in three main categories: collaborative
filtering, content-based and hybrid recommenders:
• Collaborative filtering [46] methods predict user-item
affinity by considering past interactions from other
known users. This is commonly referred to as leveraging
the ‘‘wisdom of the crowd’’, as suggestions made to
a user will be based upon similar users. Similarity
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measures might differ, but are only ever based on
past interactions and an expressed preference/feedback
towards them;

• Content-based [47] methods are used to predict
user-item affinity by considering only the user or item
features (i.e., their ‘‘content’’); approaches such as this
are most commonly user-centered, in which the system
builds profiles for individual users to make predictions
on unseen items. It is also possible to create item-
centered systems, which models individual items and
predicts some sort of affinity score when provided with
unseen users;

• Hybrid [48] methods utilize approaches that combine
both of the above categories. Many different combina-
tion approaches have been proposed, as well as entirely
new methods which fuse them into a single algorithm.

Though such labels still see use, many new categorizations
have been adopted in the literature, each with different
amounts of overlap between the other. Earlier works, such
as the seminal work by [48], placed these groups beside
Demographic-based (based on demographic attributes of
users), Utility-based (based on a utility model of items
with regards to users), and Knowledge-based (based on
knowledge bases of items) systems. Hybrid systems would
then be defined as combinations of two or more of these,
with multiple possible combination strategies between them.
While these categorizations are a good fit, they are not
entirely balanced, and recent approaches have begun to
incorporate them within larger categories.

In our research, we find that most new approaches were,
in fact, either hybrid or collaborative-based. Thus, though
the distinction between collaborative and content-based
filtering is still useful, it should be noted how the modern
recommendation landscape is much more focused on the area
of overlap between the two. We believe that by giving a
more data-oriented depiction of this field we can paint a more
realistic picture of the current state of RSs.

2) DATA-ORIENTED TAXONOMY
Differentiating models based on specific sources of data
can potentially spawn too many subcategories. Recent
approaches, from which we draw inspiration, maintain
the dichotomy of interaction and content data and add a
third category, which covers what is defined as contextual
information. The latter aggregates features that are not
specific to users or items but rather to the interactions
themselves (i.e., describes their context) [5]. Depending on
the information utilized, methods may fall below one or
multiple of these categories.

It has become common to define the agglomeration
of content and context information as side information,
which most commonly adds to the base information of
interactions given by collaborative filtering approaches.
In other words, most methods are influenced by collaborative
filtering methods, to which they possibly add available

FIGURE 2. Representation of interactions, content and context data in a
3D space.

side information. This is due to the fact that interaction
data (in particular, in its implicit form), is by and large
the most common type of interaction information available
[35], [49], [50].

In the following sections, we describe a taxonomy based
on three main categories:
• Collaborative filtering, which are based solely on the
interactions between items and users, ignoring all types
of information that describe either or both;

• Content-enriched models, which integrate content
data into a recommendation, including all descriptive
attributes that may be associated directly with items or
users;

• Context-aware models, which utilize those types of
information associated with interactions but not exclu-
sive to the user or item involved, such as time or location.

Fig. 2 depicts the differences in the type of information
used in the three families of methods. Again, many parts
of such categories overlap based on specific availability and
considerations of a particular context.

B. COLLABORATIVE FILTERING METHODS
Collaborative filtering (CF) methods model users and items
solely based on the interactions of a population of users.
As mentioned, users’ interests are usually presented as a
numerical rating in a small range (explicit feedback) or as a
binary value that simply indicates whether the interaction has
occurred (implicit feedback). We reiterate that, in practical
scenarios, implicit feedback is far more common.
Memory-Based vs. Model-Based: Collaborative filtering

approaches have often been divided into two subcategories,
namely memory-based (or heuristic-based) and model-
based [4], [45].
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Early approaches calculate the behavior similarity of users
or items directly, operating over the collection of interactions
in order to make a suggestion. They are termed memory-
based because of how they store computed similarities
between users or items as a sort of ‘‘memory’’ to produce
new recommendations. Memory-based models may also be
further sub-categorized based on whether they compare users
or items. Similarity may be identified through metrics such as
the Pearson correlation or the cosine similarity [45]. Themost
popular memory-based approaches fall into the neighborhood
search category, which we discuss next.
Model-based approaches, on the other hand, train predic-

tion models based on the user-item interaction matrix (in
contrast to using ratings directly), hence transforming the task
into one of estimating the model’s parameters. Latent Factor
Models (LFMs), discussed in Section III-B2, are the most
popular representatives of this category, though the idea is
not exclusive to them and includes approaches such as cluster
models and Bayesian networks [4], [51].

1) NEIGHBORHOOD METHODS
A popular memory-based approach is the conceptually
simple nearest-neighbor (k-NN) algorithm [4], [45]. A user-
based approach of this kind finds the k users with the highest
similarity in terms of ratings and bases its expected affinity
between a given user u and an unseen item i on the ratings of
the k neighboring users. For example, a simple formulation
to produce a predicted rating r̂ might be:

r̂ui =
1
C

∑
k∈Ku

sim (u, k) · rki (3)

In the above equation, C is a normalizing constant, sim
is a chosen similarity measure and Ku and r are the set
of neighboring (similar) users to u and the true ratings,
respectively. The above is merely a simple example, and
much more refined methods exist. A similar, mirrored
approach can be taken towards item-based neighborhood
methods, where an unknown rating is predicted by averaging
the ratings of similar items rated by the same test user [52].

Nearest-neighbor methods (and memory based approaches
in general) can run into scalability issues. While the
underlying implementation and what is being compared
(items, users, a combination of both) obviously matters,
there is an inescapable complexity in calculating similarities
between all pairs of users and/or items. Most approaches,
for |U | users and |I | items, have a worst-time complexity of
O(|U ||I |) — though it is empirically usually closer to
O(|U | + |I |) thanks to the sparsity of most user vectors [53].
This might still be prohibitive for large datasets, but
appropriate preprocessing paired with sampling techniques
can make these systems more viable at large scale, though
recommendation quality is likely to be reduced.

2) LATENT FACTOR MODELS
LFMs have risen to be the most indicative representatives
of collaborative filtering-based RSs, attracting great deals of

FIGURE 3. Visual representation of the matrix decomposition process,
typical of MF.

attention ever since their impressive results in the Netflix
contest [54], [55]. The idea behind such approaches is to
find representations for users and items in a shared latent
space, deriving them from the interaction matrix. The general
objective is to learn two embedding matrices P and Q for
users and items, where pu and qi are the parameters of the
corresponding matrices for user u and item i, respectively.
Latent models aim to find the underlying relationships
between users and items by learning what are defined as their
‘‘latent factors’’.

The most well-known method in this category is Matrix
Factorization (MF), and its basic idea is at the foundation
of other LFMs. This model attempts to decompose the
interaction matrix into the respective embedding matrices,
whose combination is a good approximation of the original
feedback matrix (Fig. 3). The most basic type of MF,
proposed in [56], predicts a rating r̂ by performing a dot
product between user and item embeddings:

r̂ = puqiᵀ (4)

Though already an effective formulation, many developments
have been proposed for it since (such as the different variants
of the SVD [57], [58] and iALS [32] methods). One of
the advantages of MF is its compact representation; given
|U | users, |I | items and d-dimensional embeddings, the
theoretical space complexity of the embedding matrices is
O((|U |+|I |)d) in total. Given that d is typicallymuch smaller
than both |U | and |I |, the resulting complexity is much more
affordable than methods that have to consider all user-item
pairs.

As a side note, the dot product has become a popular
combination strategy for latent representations in many
applications within the field of RSs (as we will showcase
in Section IV). Indeed, it can be applied to any system
that produces embedding representations for users and items.
While we do not dive into details, it should suffice to
know that dot product models are widely popular because
they provide an efficient and effective way of combining
embeddings, with many well-studied approximations that
improve their practical applicability [3].
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FIGURE 4. Bipartite graph representation of users, items and ratings.

3) GRAPH-BASED ALGORITHMS
Graph-based algorithms, as the name suggests, opt out of the
traditional data representation based on feedback matrices,
instead adopting one based on graphs. Not only is this a
natural fit to interaction data, but it also lends itself quite
conveniently to the integration of additional side information.

Indeed, the interaction relationship between users and
items can be easily translated to a graph representation.
Formally, consider the interaction relationship S as composed
of user and item pairs, i.e., (u, i) ∈ S if an interaction has
occurred between the two. We can then define the graph
as graph G = (U ∪ I , S) (Fig. 4). This representations is
inherently bipartite, since user nodes can only be connected
to item nodes and vice versa. Edges within the graph (i.e.,
interactions) might also be weighted, depending on available
information. The weight might be based on feedback data
such as explicit ratings, but might also be a straightforward
opportunity to introduce more nuanced influences — such
as the one derived from content information based on the
features of the pair representing the edge.

In general, the objective of graph-based recommenders is
to discover a ranking of item vertices in I for a user vertex
u based on their respective similarities, as defined by the
structure of the graph. If the interactions are implicit and the
graph unweighted, the task can be framed as a more generic
link prediction problem [14]. The bipartite graph representa-
tion grants several advantages; most notably, information can
be propagated through nodes to mitigate sparsity and cold
start issues. However, the true challenge resides in finding
an effective way to enact such propagation. Moreover, this
is particularly challenging in bipartite graphs, as user-user or
item-item edges do not exist, requiring multiple hops from
neighboring nodes for certain communications to happen.

Many graph-based approaches exist, and the recent resur-
gence in popularity of graph-based methods has revitalized
this category of methods. A popular example of such
approaches consists of random walk-based algorithms [59],
[60]. In short, these methods operate through a stochastic

process that lets a random walker move between nodes
based on a transition probability (established from known
feedback). The probability that a walker lands on an item
node after a certain number of steps is utilized as a means
to rank the candidate nodes. Examples of methods that fall
within this category include P3α [61] and RP3β [62], which
have obtained excellent results. An interesting consideration
to be made is that P3α can be framed as equivalent to a k-NN
item-based approach, which highlights how similar certain
approaches can be despite a different representation [23].

More recently, graph embeddings have been proposed
as a way to exploit graph structures, mapping nodes into
low-dimensional embedding vectors to capture the structural
information of the graph. Such embeddings can then be used
as representations for users and items. With the advent of
neural approaches, Graph Neural Networks (GNNs) have
also been proposed, which we further detail in Section IV-F.

C. CONTENT-ENRICHED METHODS
We define as content-enriched those methods that integrate
information about the main agents of interactions within a RS
(i.e., users and items). Differently from the traditional class of
content-based RSs, we consider this group almost as a natural
extensions to collaborative filtering models. Empirically
speaking, we find that many modern content-enriched
methods utilize interaction data as a basis.

Therefore we find, similarly to [5], that describing them as
complementary to collaborative filtering approaches is more
suitable. Most content-enriched methods indeed ‘‘enrich’’
base interactions with auxiliary data related to users or items.
This category can be further dissected into sub-classes that
encapsulate the specific variety of data being incorporated,
as will be described in the remainder of this section.
As always, these categorizations can overlap and may be
integrated as deemed appropriate.

1) PURELY CONTENT-BASED APPROACHES
We begin by providing a brief overview of purely content-
based approaches. Empirically, we find these to be less
common in modern systems, where hybridized models are
by far the most prevalent. Still, in light of the previously
mentioned fact that RSs are oftentimes complex, multi-step
processes with multiple algorithms involved, they are worth
mentioning, and can still be useful in certain contexts [63],
[64]. A positive side of such algorithms is that they
often produce more accurately tailored predictions to single
users when compared to purely collaborative approaches.
On the other hand, purely content-based systems suffer from
overspecialization [4], [65], which describes a system whose
recommendations are strictly similar to previous interactions,
as well as sometimes being too similar (and hence, not
interesting). Furthermore, while they fare better than CF in
item cold start scenarios, they struggle with user cold start,
as a sufficient number of interactions is necessary before a
user profile can be built.
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A standard example of a purely content-based approach
would be an item-based k-nn approach [47]. This is similar
to the one detailed in Section III-B1, where item similar-
ities would be computed utilizing content attributes rather
than ratings. To improve scalability, many content-based
approaches resort to a projection of features into some
type of low-dimensional space, which is then utilized to
perform, for example, a search of nearby items. It is also
possible to develop predictive models, inducing a similar
dichotomy between memory andmodel based CF approaches
(though it is less common to make this distinction in content-
based approaches). These include various types of classifiers,
decision trees, and clustering methods [4].

2) CATEGORICAL FEATURES AND ATTRIBUTES
The sources of side information regarding users and items are
broad and varied. Categorical and other similarly quantifiable
generic types of attribute information are among the most
commonly found, describing users and items to some degree
(e.g., the genre of a movie or the gender of a user).

A strong representative of the models in this category are
Factorization Machines (FMs) [66], which extend factoriza-
tion models by integrating ideas and advantages of Support
Vector Machines (SVMs) [67]. FMs are general predictors
but, in contrast to SVMs, and thanks to their modeling of
interactions between variables through factorized parameters,
can estimate interactions in settings with high sparsity (which
is practically always the case in RSs), all at an affordable
computational cost [68]. FMs are not applied directly to the
interaction matrix, instead requiring a data representation
that more closely reflects their predictive nature. Concretely,
FMs are provided a matrix in which each row is a feature
vector that describes a specific interactions and its features.
An interaction matrix can be easily transformed into such
a form by creating a one-hot encoding of items and users
(Fig. 5).

Additional features may then be concatenated to this
feature vector. As each of these rows has a target value
y ∈ Y (e.g., rating), this framework is easily understandable
as a standard prediction task. Notably, a FM without any
auxiliary data is identical to a MF model, and it has also been
shown that FMs can mimic most factorization models with
appropriate feature engineering [69].

3) MULTIMEDIA CONTENT
Not all types of features can be introduced straightforwardly.
When it comes to multimedia content, a dedicated approach
may be necessary to first extract a good representation.
This is the case for textual and visual content, which have
been vastly studied of their own accord; the developments
in the fields of Natural Language Processing (NLP) and
Computer Vision (CV), respectively, can be combined with
recommendation frameworks to obtain better user and item
representations. Similarly, the same approach can be taken in
regards to audio and video content.

FIGURE 5. The matrix representation utilized in a FM. Here, F stands in
lieu of an arbitrary set of feature columns.

Textual content. The past decade has seen revolutionary
advancements in the field of NLP. In particular, neu-
ral network-based approaches have enabled the automatic
extraction of syntactically and semantically meaningful
representations for text, most recently with the development
of contextualized word embeddings based on Transformer
architectures [70]–[72]. These embeddings can be combined
with user and item embeddings produced by CF approaches
to produce more accurate representations, or to produce more
explainable recommendations [73]. As an example, content
descriptions (such as abstracts for articles) can be utilized in
this fashion [74].
Image content. RSs based on image content are suitable

for scenarios that rely heavily on visual influence, such as
clothing recommendation [75]. Image-based models may
attempt to extract textual tags from images, which may
then be processed as discussed previously. Another approach
is to project both users and items in the same visual
space; items are trivially projected through their pictorial
representation, while users may be projected through the
items they previously liked or by more advanced encoding
procedures. Approaches based on Convolutional Neural
Networks (CNNs) are, as of now, some of the most
popular and prolific in terms of extracting features from
images [76]–[79].
Audio and video. RSs based on rich visual and audi-

tory information have also been proposed, both as purely
content-basedmodels as well as integrated to hybrid, content-
enriched architectures [80], [81]. These can be particularly
useful to recommend new audio and video content that
has no historical behavior data by comparing its similarity
to other well-known items, mitigating cold start issues.
The more straightforward approach might be to utilize
metadata related to such types of media (e.g., titles or
descriptions), as it is more easily manageable. Nonetheless,
some recent approaches have developed deep neural networks
to extract image and audio features, projecting items into
a low-dimensional feature space in which it is easier to
operate (for example, by searching for similar videos in this
space) [5]. It is worth noting that working with video media
can be difficult because of the underlying computational
expensiveness, as well as space storage requirements [80].
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4) SOCIAL NETWORKS
Recommenders based on social networks (sometimes more
broadly termed as ‘‘community’’ based) leverage the pref-
erences of a user’s friends or otherwise closely tied users
to make a recommendation. Such methods attempt to model
the underlying social influence among ‘‘neighbors’’, which is
seen as the driving force that correlates users’ interest in the
network. Social sciences have long studied principles such
as homophily, a property suggesting that contact between
similar people occurs at a higher rate than among dissimilar
people. In turn, this provides reason to believe that capturing
social interactions can lead to better recommendations,
as friends are likely to show preference to similar things.

The integration of social networks has been often devised
as a countermeasure towards cold start issues and to inte-
grate information into particularly sparse environments. For
instance, [82] integrates social influences into probabilistic
LFMs as regularization terms. Some recent approaches have
also introduced social influences in neural models. An exam-
ple is the work by [83], which pairs latent model-inspired
user embeddings with social embeddings learned from an
unsupervised deep learning approach, applying regulariza-
tion techniques based on social correlation theories.

Social connections are also a natural extension to graph-
based approaches, where they can be seen as edges that
relate users to other users. While other approaches that
integrate social networks might limit themselves to local
first-order social neighbors (i.e., the direct friends of a user),
recent approaches (notably GNNs) have been proposed as
more accurate models to describe the global social diffusion
process for recommendation. These methods have been
applied to user-user social graphs (i.e., no interactions),
but perhaps more interestingly have also been applied to
heterogeneous graphs where both social connections and
interactions are present [84]. The leftmost side of Fig. 6
represents an example social interaction graph.

5) KNOWLEDGE GRAPHS
Knowledge Graphs (KGs) are another effective way to
represent entities and the relationships between them. There
has been some debate [85] on the exact definition of this
term; in the context of RSs, the denomination knowledge
graph refers to directed graphs containing nodes e ∈ E
which represent entities, and edges s ∈ S to denote the
relationships between them. AKG is then formally defined as
G = {(h, s, t) | h, t ∈ E, s ∈ S}, where each triplet indicates
the existence of a relationship s between head entity h and
tail entity t [86]. Users and items will have relationships with
their describing features (or otherwise connected data), which
might also be related to other entities.

Earlier approaches utilized KGs to extract a representation
(e.g. in the form of embeddings for users and items), but
recent models have proposed to enrich such graphs by adding
interaction relationships to the graph itself, arguing that it
provides a more complete representation [87]. In other words,

FIGURE 6. A possible (simplified) graph representation for a RS, including
elements of a KG as well social relationships. Double dotted (yellow)
edges between users represent social relationships between users, while
straight directed edges (purple) indicate relationships between entities.
As before, dotted directed (green) edges between users and items
represent ratings.

such methods add interactions to the set of edges of the
graph. Fig. 6 showcases an explicative example. As before,
the user-item interaction data is most commonly presented
as a bipartite graph. Note that, while the example shown
is mixed with information from a social interaction graph,
this need not be necessarily the case. The concept outlined
above where KGs are enriched with interaction information
can be formally expressed as G = {(h, s, t) | h ∈ E, t ∈
E ∪ I , s ∈ S ∪ R}, where we abuse notation and refer to
R as the rating/interaction relationship.

KG-based methods are attractive because they allow for
a more interpretable system [12], as it is possible to verify
the reasoning behind a recommendation and, thus, create
an explanation for it. In a similar fashion to standard graph
approaches, these approaches can be used as regularization
terms, as input for predictive path-based methods, and, more
recently, have been explored in the frame of GNNs to model
higher-order connectivity representations.

D. CONTEXT-AWARE METHODS
The category of context-aware methods includes approaches
that integrate information sources that can describe the
environment where an interaction happens. Because of this,
this context is sometimes called ‘‘interaction-associated
information’’ [45]. Some authors make the distinction
between representational context [88], which is defined by a
predefined set of ‘‘observable’’ context variables (e.g., time,
location, weather), and interactional context [89], [90], which
instead is more dynamic and has to be derived from the
user’s most recent actions and is not directly observable (user
mood, current shopping intent). The latter set of context
data is considered particularly important in settings where
users are anonymous or new, as there is no historical data
in such scenarios. Some types of side-information might not
fall clearly within one category or the other, such as textual
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reviews for an item (which are content for the item, but
contextual to the interaction that prompted the review).

The most widely studied type of contextual information
is by far of the temporal kind [4], [5]; as such, the next
sections examine in more detail approaches that take into
consideration the temporal domain. Though we do not go into
detail about other types of context, we point out that several
approaches are possible in those cases, and are often similar
to those described in the previous section. Methods that are
not usually designed to work outside of the two-dimensional
User×Item space have been generalized to multidimensional
spaces, with approaches such as Tensor Factorization [91].
Tensor Factorization generalizes MF to arrays of higher
orders, where, intuitively, they factorize interactions in the
generic form (user, item, interaction context, rating).
Categorization of Temporal Methods: Users’ preferences

change and evolve over time; due to this fact, static recom-
mendations are likely to be less effective. Instead, it may be
possible to discern patterns within the sequential behavior of
users, which is the aim of methods that incorporate time in
the recommendation process. Methods in this field usually
differentiate between a sequence, which is considered a
list of chronologically ordered interactions with no explicit
time intervals, and a session, a list of interactions with a
clear boundary, either ordered or unordered, which most
commonly spans a relatively brief interval of time.

However, while research in this particular area is extensive,
it is also surprisingly scattered, making it hard to find a
categorization commonly agreed upon. To cite a few notable
surveys, [8] classifies these methods based on the importance
given to historical interactions, distinguishing between last-
n interactions-based recommendation, which considers only
the last few user interactions, session-based recommendation,
in which only the last sequence of interactions (contained in
a session) is available, and session-aware recommendation,
which contains both knowledge about the current session as
well as historical information. On the other hand, in [9] such
categorizations are deemed to be more fitting of a ‘‘sequence-
based’’ class. The authors argue that session-based methods
are not only those that consider single, anonymous sessions,
but instead include approaches that consider historical
sessions as well.

Based on these ideas as well as other works [45], [92], [93],
we differentiate between three loosely separated classes:
• Time-aware RSs utilize time information directly to
recommend appropriate items, with a focus that is more
largely tied to the exact point of time of past user
interactions (e.g., time of day, day of the week). These
methods are still related to a sequential environment
as with the other two classes, as they might discover
patterns within, for example, temporal cycles;

• Sequence-based RSs, sometimes defined time-dependent
or sequential recommenders, instead put a much larger
focus on the sequential order of events. Such methods
aim to predict the next items a user might interact with
given a sequence of historical interactions;

• Session-based RSs instead group interactions within
sessions and tackle tasks more closely related to the
sessions in question (further detailed later).

Again, these categories are not separated by hard lines and
should be taken as purely functional to a better understanding
of this sub-field. Indeed, sequence- and session-based RSs are
often considered as special cases of a broader category, that
of sequence-aware methods [8], [94].

We do not discuss time-aware approaches directly, pointing
out that many of them rely on matrix completion approaches
(i.e., common CF approaches), of which [92] provides an
excellent overview. Instead, in the next sections, we briefly
introduce sequence- and session-based recommenders, which
have seen rising popularity in recent research. Notably, both
of these classes frequently differentiate between various types
of interactions [93], i.e., different with regards to the concrete
action logged at that specific time (e.g., view vs buy). This
is particularly relevant in a sequential context, as a specific
sequence of actions might deliver further insights on the
intent of a user.

As a side note, sequence- and session-based RSs will
sometimes have to predict a utility value on a list of
items, rather than for a specific item. This is different from
Equation 1, where the utility was based on a single item, as the
utility of the list is calculated on the entire sequence, and the
sequence with maximum score should be found.

1) SEQUENCE-BASED RECOMMENDERS
Sequence-based systems try to explicitly discover the sequen-
tial dependencies among interactions, such as to discover
behavioral patterns and other information that can only be
understood when viewing the interactions as a succession of
events. There are different types of patterns that might be
sought; for example, [8] differentiates between sequential,
co-occurrence and distance patterns. Sequential patterns
relate interactions in a specific order, while co-occurrence
patterns only care that two interactions have happened
together. Distance patterns are less common and try to
identify good lapses of time necessary before recommending
something (e.g., a reminder).

2) SESSION-BASED RECOMMENDERS
Session-based recommenders consider (usually short)
sequences of interactions within clearly bounded periods of
time. A user’s sessions are usually separated by non-identical
time intervals. Sessions themselves have been categorized
in multiple ways depending on their internal characteristics
(length, internal order, action type). While the most common
type of session is totally ordered and contains interactions
of a single type, heterogeneous and partially ordered (or
unordered) sessions have also been researched. Further
considerations have also been made in regards to the length
of the sessions and the amount of content (user) information
available [93].
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We note that some of the most popular session-based RSs
are limited to the interactions of the current user session
(i.e., only the last one), which is the case in anonymous
or new-user scenarios. Most of the time, researchers will
use the term ‘‘session-based’’ to refer to this situation,
where user attributes and histories are usually scarce or not
present [95]. As there is no consensus, we do not make a
clear-cut distinction, clarifying when sessions are deemed as
anonymous (only the last session is present) and when the
system is instead session-aware, i.e. has knowledge about
historical sessions (a term we also borrow from [95]).
Common Approaches:
There is a wide range of approaches that have been

proposed for sequence- and session-based recommendation,
and a detailed overview is provided by [9]. In general, the
most popular approaches are, as expected, based on the
exploitation of the sequential item transition patterns. These
include conventional sequential approaches (e.g., Markov
chains) [96], LFMs, and neural network-based approaches
(e.g., RNNs, CNNs) [95]. Notably, graph-based approaches
have also been successful, integrating sessions as chains
(sequences of nodes) within the graph [97]–[99]. Methods
also differ depending on the task being faced, which,
especially in the case of session-based recommenders, can be
of various types. The most common categorization separates
them based on whether the system is trying to predict the next
item in the session, all the remaining items (until the end of
the session), or even the entirety of the next session [9].

E. SUMMARY
We described an extended taxonomy to classify RSs based
on the amount and type of information they exploit to
make recommendations. We consider this categorization as a
reframing of the traditional classification schema, which we
deem to have become less informative due to the abundance
of hybrid methods that have been proposed. The taxonomy
is inspired by the one devised in [5] and consists of three
broad categories. The first makes exclusive use of user-item
interaction histories, while the other two families of methods
are characterized by the usage of additional information,
namely user and item content and any environmental data
describing the context in which the interaction took place.
These categories are further specialized into more fine-
grained sub-classes of methods, to exemplify how practical
methods fit in this classification. It’s easy to see how such
taxonomy puts much more emphasis on hybrid approaches;
moreover, practical implementations usually fall in the large
areas of overlap between the first category and one (or both)
of the others.

IV. METHODS OVERVIEW
This section provides an overview of the most recent
proposals for the improvement of RSs. When vital to the
understanding of more recent methods, earlier influential
approaches are introduced.

To reduce the amount of redundancy, methods are
introduced based on which generic model they are based
on — many methods span across different categories, so the
distinction is not clear-cut. Whenever describing methods,
we will clarify where they lie in the data-oriented taxon-
omy: collaborative filtering (CF), content-enriched (CE),
or context-aware (CA). In particular, a methodwill bemarked
as CF if it only acts in a purely collaborative setting, while
methods that use side information can be tagged as either
CE, CA, or both. In those cases, we do no write CF, but we
find that the vast majority of the algorithms analyzed have
a collaborative foundation (in most neural approaches, the
collaborative signal is implicitly embedded in the learning
process).

Unsurprisingly, most of the discussed methods will be neu-
ral methods; the application of neural network frameworks
is undeniably the most popular new approach to ML tasks.
The section is also loosely ordered in terms of optimization
processes. The widest class, described first, is mixture
of pointwise and multiclass approaches. In Section IV-G,
we will instead discuss approaches that directly tackle the
learning-to-rank paradigm, while Section IV-H makes a few
notable mentions of approaches not included elsewhere.

1) CONTROVERSY ON PROGRESS
Before going into detail on the most recent methods, we deem
necessary a word of caution. The particular field of RSs
has seen a vast amount of proposed improvements and
proclaimed advancements, but these have been sometimes
disputed by fellow researchers. It has been demonstrated that,
at times, much simpler methods can compete or surpass com-
plex, deep learning-based methods which were deemed supe-
rior because of poor testing practices or non-standardized
metric evaluation [23]–[25]. This, in turn, causes a ripple
effect throughout publications that use the latter methods as
baselines, inadvertently basing improvements off of a false
belief. We tried, to the best of our knowledge, to factor
this within the explanation of individual recent approaches,
such as to provide an intellectually honest representation
of the recommendation landscape. The ideas and research
directions taken by different fellow researchers are still
important to study, but a careful examination of the baselines
is necessary before declaring new approaches as state-of-the-
art. We further discuss some of the issues at the root of these
controversies in Section V-E.

2) COMMON ABBREVIATIONS
For the sake of clarity, Table 2 summarizes common technical
acronyms used in tables throughout this section and in the rest
of the survey.Whenever appropriate, the abbreviations will be
explained in the text.

A. MATRIX FACTORIZATION-BASED METHODS
Ever since Funk’s MF [56] achieved third place in the Netflix
Prize challenge [54], many LFMs based on Matrix Factoriza-
tion (MF) principles have been proposed. SVD++ [57] is a
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TABLE 2. Summary of acronyms used throughout this survey.

notably popular example, extending the previous algorithm
by creating an integrated model that allows for the benefits
of neighborhood models (e.g., explainability), as well as
allowing the use of implicit feedback in place of explicit item
ratings. The reasoning behind this choice is that if a user rates
an item, that is in itself an indication of preference. Non-
negative Matrix Factorization (NMF) [120] has also been
long used as a powerful tool able to identify meaningful
substructures underlying the data. In particular, variants have
been successfully applied into diverse fields and extended to
analyze multiple matrices jointly [121].

1) RECENT DEVELOPMENTS IN MF
With the recent popularization of neural network-based
approaches, some researchers have proposed MF methods
that replace the original dot product between factorized
matrices with learnable functions, most often feed-forward
neural networks [104]. However, recent research concluded
that these strategies are not trivial to fine-tune, and that
dot-product should still be considered when developing MF
methods, since it cannot be easily approximated using a
feed-forward neural network [24]. Other approaches have
proposed to consider feedback data as ordinal rather than
binary; the Ordinal NMF (OrdNMF) [100] is a notable
example, introducing a NMF approach that generalizes
Poisson factorization and can be used with ordinal data,
making it applicable to big sparse matrices of explicit
ratings. On a different note, there is also great recent interest
in creating extensions for MF techniques that focus on
improving the interpretability and mathematical properties of
the decomposed matrices [101]–[103].

2) HYBRIDIZED MF APPROACHES
As mentioned, purely CF methods do not natively support
the incorporation of side information available from users
and items. Content-enriched and context-aware methods,

TABLE 3. Recent MF-based methods. (E/I) = (Explicit/Implicit) ratings,
no tag represents a method that can be used for both.

which the literature commonly regards as hybrid methods,
have been studied extensively in recently proposed research.
Within the spectrum of MF approaches, [122] proposes the
usage of a Quantile Random Forest to model the effect of
side information and combines it with MF in a Bayesian
framework. In [123], Probabilistic Matrix Factorization
(PMF) [124] is extended by integrating information derived
from item descriptions, extracting a latent representation
through a shallow CNN with max pooling.

Information derived from social structures have also
been successfully applied to MF-based methods. For
instance, [113] integrates information from social relations
between users, with the underlying assumption that different
kind of relations should have different impact on the
recommendation process. In a similar manner, the authors
of [116] develop EnSocialMF, a model which derives social
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factors from social network data and uses it to influence
recommendations. In particular, the algorithm attempts to
fuse three factors, namely user trust relationships, user
interest similarities, and item similarities, all within a PMF
framework. Several works [117]–[119] propose to extendMF
by considering temporal dynamics in user preference, as well
as social factors and geo-spatial information. An example
of joint MF framework is proposed by the authors of [114]
in the context of AIoT. They propose a hybridized RS to
learn user similarity, API similarity and user-API relevance
matrices using three MF models that are jointly trained.
API invocation histories for each user are embedded through
a Word2Vec model [125]. ER-MF [115] is a similar
approach, using Doc2Vec [126] to obtain user and item
representations and training two models to compute the final
recommendation score based respectively on user-similarity
and item-similarity. The final model is the ensemble the
previous two.

3) FACTORIZATION MACHINES
In Section III-C2, we discussed FMs as straightfor-
ward reformulations of the recommendation task through
general-purpose linear predictors, able to work under huge
sparsity. Recent studies have proposed FMs that are able
to work with both categorical and arbitrary real-valued
features [105], [106]. The authors of [107] propose the
usage of product quantization to compress the memory usage
(their model is based on [106]). In [110], Heterogeneous
Information Networks and a hierarchical attention mecha-
nisms are explored to capture relationships between objects.
Finally, while many existing FM-based methods adopt
negative sampling for training efficiency, [111] proposes a
non-sampling method that is relatively efficient compared to
the selected baselines.

B. FEED-FORWARD AND MULTILAYER
PERCEPTRON-BASED METHODS
Feed-forward networks are some of the conceptually sim-
plest and most widely explored types of neural networks.
In particular, Multilayer Perceptrons (MLPs) have seen wide
use throughout ML. Thanks to their flexibility, they have
often been used as starting points or combined with other
architectures, and have laid the foundation for some of the
most influential earlier neural works on recommendation.

The term MLP is sometimes used ambiguously, usually
referring to feed-forward networks with fully connected
hidden layers. Since the vast majority of methods utilize fully
connected structures, this section addresses them as MLPs
directly. We thus review prominent methods based largely
on feed-forward networks and MLPs, with various types of
augmentations, most notably attention mechanisms (further
detailed in Section IV-D and Appendix A-A).

1) POPULAR MLP APPROACHES
The influential work by [43] proposes a 2-step recom-
mendation procedure to recommend YouTube videos. Side

TABLE 4. Recent methods based on MLPs.

information about users (watch history, search keywords,
demographic information) is embedded and passed through
a feed-forward NN with ReLU activation to learn user and
item representations. To train the classifier to discriminate
between possibly huge numbers of items, a negative sampling
strategy is used to generate multiclass probabilities over
millions of candidate items, using a softmax to gener-
ate normalized probability scores. At serving time, the
model is used to generate user and video embeddings,
and an approximate nearest-neighbor algorithm can be
used for low-latency constrained predictions. The Wide &
Deep Learning framework [44], which has gained similar
popularity, combines the advantages of memorization and
generalization using two MLP-based branches. The ‘‘wide’’
component is a linear model that works with various
combinations of manually-created features (responsible for
memorization). The ‘‘deep’’ component, on the other hand,
is a feed-forward neural network that converts sparse, high-
dimensional categorical features into low-dimensional dense
embeddings for all user and item features (responsible
for generalization). The model attempts to learn nonlinear
interactions through the combination of embeddings via
neural networks rather than a dot product, a matter which still
stands as a controversial topic. DeepFM [127] later expanded
on this idea by introducing a framework that integrates FM
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and deep neural networks. Differently from Wide & Deep,
the proposed model jointly learns both low- and high-order
feature interactions without the need for handcrafting feature
combinations. Both the wide and deep parts utilize the same
input, enabling efficient training.

2) MLPs FOR HIGHER-ORDER FEATURES
Recent contributions mostly focus on strategies to embed
side information such as to create more robust recom-
menders. The recent Deep Learning RecommendationModel
(DLRM) [129] addresses the problem of using dense features
in addition to categorical interaction features. While the
latter are processed using an embedding table and projected
in a dense feature space using a MLP, dense features are
imputed in a disjoint MLP to learn expressive and properly
sized representations. The authors of AutoInt [133] propose
a newmodel to learn expressive higher-order features through
a self-attention mechanism. In the proposed method, both
categorical and continuous features are firstly projected in a
low-dimensional embedding space. Different nonlinear com-
binations of features are then extracted and their relevance is
weighted using the self-attention mechanism.

3) MLPs AND COLD START
In order to address the cold start problem, researchers have
experimented with meta-learning solutions, approaches that
use previous learning experiences to train new models [134],
[135]. The core idea of meta-learning algorithms is to learn
a global representation (shared initialization parameters) for
all users, which are then used to learn local, personalized
parameters for individual users. The work by [134] improves
this by utilizing memory matrices that can to store task-
and feature-specific memories. Also in the context of cold
start solutions, [136] uses a MLP-based strategy to produce
vector representations for warm (known) users using both
interaction data and side information. To obtain approximate
cold-user representations, they use averaged embeddings
from a pool of warm users from the same geographical
area and with similar age. Additionally, they leverage the
interaction data from the same warm users during the
registration day.

4) EFFICIENT MLPs FOR RECOMMENDATION
Several works adapt neural-based recommenders to satisfy
specific resource constraints. The authors of [138] propose to
jointly learn a tree-index and a deep neural model. The tree
structure allows to efficiently retrieve user representations
with logarithmic time complexity w.r.t. the corpus size.
Jointly optimizing the tree-based retrieval problem with the
deep recommendation model gains improvements in the
overall recommendation accuracy. In [139] and [140], model
compression methods are explored. The first proposes a
unified framework to jointly optimize a network compression
task as well as feature extraction from input interactions.
The latter defines a new memory-efficient feature projection
technique that relies on several smaller embedding tables

TABLE 5. Recent methods based on CNNs.

to dynamically generate unique embeddings for every user.
The Deep Hash Embedding (DHE) [141] framework replaces
embedding tables with deep NNs that compute embeddings
on the fly, utilizingmultiple hash functions to generate unique
identifiers for every feature value. This work aims to reduce
memory requirements imposed by the usage of embedding
tables.

C. CONVOLUTIONAL NEURAL NETWORK-BASED
METHODS
CNNs have been thoroughly explored as an efficient and
effective way to extract latent representations from various
types of media. Though popularized in the context of CV,
they are not only applicable to RSs that involve visual content
but also to other types of data, such as textual and temporal
information.

1) CNNs FOR TEXTUAL INFORMATION
As it is common to encounter bodies of text (such as reviews,
descriptions, and news articles) in various recommendation
scenarios, a wide range of new approaches proposes to utilize
CNNs to learn contextual representations efficiently. For
instance, [146] proposes the Neural news recommendation
model with Personalized Attention (NPA), which uses a
CNN to learn the hidden representations of news articles
based on their titles. Furthermore, two personalized attention
mechanisms are introduced, at the word- and article-
level respectively. This is intended to model how different
users might perceive the same words in a title differently
(with similar reasoning being applied to whole articles).
Similarly, the Neural Recommendation with Personalized
Attention (NRPA) proposed by [147] applies a hierarchical
personalized attention mechanism to generate both user and
item representations, considering textual user reviews of
items as additional information. CNNs are used to extract
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semantic features of text reviews, while attentionmechanisms
are applied hierarchically over words and entire reviews.
[150] proposes a neural news recommendation approach
with long- and short-term user representations (LSTUR),
which combines CNNs with GRUs to capture both long-
and short-term dependencies between interactions. In a
similar vein to previous approaches, news are encoded by
passing their titles’ embeddings through a CNN and an
attention layer. Topics and sub-topics (represented by tags)
are also projected to embeddings and concatenated with this
representation. GRU networks are utilized to learn short-term
user representations from their recently browsed news, which
are combined with long-term representations (based on user
embeddings) through either initialization of the GRU hidden
states or by concatenation.

2) CNNs FOR SEQUENTIAL RECOMMENDATION
Multiple approaches embed the sequences (or sessions) of a
user’s interaction into a 2-dimensional latent matrix and treat
them as an image. For instance, [149] proposes a Recurrent
CNN model (RCNN), mixing LSTM and CNN networks to
capture both long- and short-range user preferences from
the user’s interaction sequence. Recent hidden states of
the recurrent layers are regarded as the ‘‘image’’, which
convolutional filters search for local sequential features. The
authors of [144] propose Weave&Rec, a 3D CNN applied
on word embeddings extracted from news articles. This
approach aims to learn ‘‘spatial’’ features (i.e., content of
the article) as well as temporal features (across different
articles, seen as a sequence). Test articles are instead passed
through a 2D CNN, also working on word embeddings,
and the interaction between a user and the item is obtained
through element-wise product of the 3D (user) and 2D
(item) CNN outputs. The usage of 3D CNNs had also
been explored by [145], which addresses session-based
recommendation. In their approach, content features are
modeled with character-level encoding to avoid expensive
feature engineering steps.

The Convolutional Sequence Embedding Recommenda-
tion Model (Caser) proposed by [151] represents users as
a L × d image where L is the length of the interaction
sequence and d is the embedding dimension (embeddings are
learned throughout the training process). Sequential patterns
are regarded as local features and extracted through 2D con-
volutions, while vertical convolutions (i.e., filter size L × 1)
are used to capture point-level sequential patterns across item
representations. The authors of [152] address the issue of
generative models in modeling long-range dependencies in
item sequences, directly showcasing some limitations within
the Caser model. Their model, named NextItNet, utilizes a
stack of dilated 1D convolutional layers, as well as residual
blocks to enable the training of deeper networks. Inspired
by previous methods, [153] define a general framework for
training encoder-decoder recommenders named Gap-filling
based Recommender (GRec). The authors showcase a CNN-
based encoder-decoder architecture, where the two parts

are jointly trained with a gap-filling mechanism (inspired
by NLP’s masked language modeling [155]), such as to
introduce bidirectionality without data leakage. Similar to
NextItNet, both the encoder and the decoder use stacked 1D
dilated convolutional layers with skip connections.

3) OTHER CNN-BASED APPROACHES
Lastly, we introduce a few interesting CNN-based approaches
that do not fall within other categories. In [148], the authors
aim to explicitly model feature interactions of arbitrary order,
deemed particularly important to express context-aware
semantics. They propose a Multi-Branch Convolutional
Network (MBCN) with three specialized branches. The first
branch is a standard 1D convolutional layer that learns feature
correlations in a vector-wise manner. The second branch is a
dilated convolutional layer that was added with the idea of
generating interactions among features in non-neighboring
positions. The last layer models user, item, and context bias
(e.g., a user that tends to give mostly positive ratings) for
better recommendation.

In [156], a framework to bridge content- and collaborative-
based representations is proposed. Textual information is
utilized (though extensions to other types of metadata are
proposed) to extract representations for completely cold
items, i.e., with no prior interactions. The resulting Content
Based to Collaborative Filtering (CB2CF) model learns a
mapping from the word embeddings of item descriptions (the
‘‘CB’’ representation) to a representation learned through
BPR [35] (the ‘‘CF’’ representation). This multi-view map-
ping is learned with a CNN, though the authors claim that
both this architecture and the BPR model can be replaced
with similar approaches, focusing on the connection between
representations.

The independence assumption between items is challenged
in [154], which focus on the importance of item-item
relationships in a CF problem. The authors propose the
Co-occurrence pattern combined with CNN (CoCNN); this
model is based on the assumption that the more two items
appear together in a users’ interaction history and are co-rated
(i.e., similarly rated) by similar users, themore their represen-
tations should be close. The CNN learns representations from
the co-occurrence matrix, directly applied to the embeddings.
A different CNN model is used to learn pointwise user-item
affinity and is jointly optimized with the previously described
model.

D. RECURRENT NEURAL NETWORK-BASED METHODS
Recurrent Neural Networks (RNNs), by virtue of their
intrinsic advantages in modeling sequential dependencies,
are a strong candidate whenever dealing with interactions
organized in sequences or sessions. Many recent approaches
use more sophisticated recurrent units within their archi-
tecture, most popularly implementing a gating mechanism
such as Long Short-Term Memory (LSTM) units [170]
and Gated Recurrent Units (GRU) [171], such as to solve
the various challenges faced by vanilla RNNs (e.g., the
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TABLE 6. Recent methods based on RNNs.

vanishing gradient problem). Furthermore, recent years have
seen a dramatic increase in the proposal of approaches
utilizing the attention mechanism [172], which was indeed
first popularized in the context of recurrent networks. This
enhancement can be summarized as a weighting strategy for
different numerical components; a more detailed explanation
is provided in Appendix A-A.

1) RNNs FOR ANONYMOUS SESSION-BASED
RECOMMENDATION
Many candidate solutions for session-based recommendation
are based on RNNs, a large portion of which deal with
anonymous users (i.e., no historical information other than
the current session is available). As a first example, [173]
introduces the Neural Attentive Recommendation Machine
(NARM), proposing an item-level attention mechanism to
encode the user’s global purpose in a session. The model
presents itself as a neural encoder-decoder, where two
encoders based on GRU layers encode global and local
signals. An attention mechanism is applied to the hidden
representations of each time-step t to emphasize it or ignore
it. A collaborative framework is introduced in [159], which
focuses on exploiting neighboring (but also anonymous)
sessions. Two neural-based modules are applied in parallel:
an ‘‘Inner Memory Encoder’’, that follows the NARM
architecture, as well as an ‘‘Outer Memory Encoder’’. The
first is composed of two sub-modules: one to capture global
behavior from the user interaction sequence, the other to pay
attention to specific behaviors and linearly combine them into

a summary of the user’s main purpose in a session. On the
other hand, the Outer Memory Encoder extracts knowledge
from similar sessions, effectively integrating a CF approach
in session-based recommendation. The information from the
two memory encoders are selectively combined through a
fusion gating mechanism, and the recommendation score
is computed through a bi-linear layer. In [163], a multi-
task learning approach is proposed, incorporating keywords
from product titles as soft supervision signals. Such signals
are used in a keyword-generation module, which extracts
the intent from the session and integrates it in the final
prediction, improving performance as well as explainability.
A Transformer module is used for keyword generation, while
the next-click predictor module is based on a recurrent
framework that utilizes GRU layers. A bi-linear layer with
softmax, as with the previous approach, is used to get the
probability for each item. Keyword generation is integrated
into the learning process by connecting the Transformer
encoder to the item predictor. An interesting topic is
addressed by TailNet [166], which addresses the long-tail
problem in anonymous session-based recommendation. The
authors propose a ‘‘preference mechanism‘‘ to learn to
balance recommendations between popular and niche (i.e.,
within the long tail) items.

2) RNNs FOR SHORT- AND LONG-TERM MODELING
Some approaches tackle instead scenarios where user profiles
are available and propose various approaches to factor
in long-term dependencies. The authors of [157], for
instance, implement the Hierarchical Recurrent Network
with metadata (HRNN-meta), which utilizes two different
GRU models to learn intra- and inter-session representations.
The idea of utilizing hierarchical recurrent architectures
was first proposed by [95], which HRNN-meta builds on
and extends by encoding time information as a learned
embedding, allowing for more flexibility and efficiency. The
authors integrate meta-data information by utilizing ‘‘field-
aware’’ MLPs, allowing for multiple types of contextual
data (other than time) to be integrated. The Sequential Deep
Matching (SDM) [164] model also focuses on the evolving
preferences of users by observing short- and long-term
behaviors. In particular, we highlight the usage of multi-head
attention on the output of a LSTM network to model the
multiple interests of a user within the current session. A gated
fusionmodule is utilized to merge global and local preference
features. Intuitively, the latter combines a user representation
with the short- and long-term representations, learning a
gate vector that controls fusion behaviors in a similar
fashion to LSTM gates. The authors recall a resemblance
to attention-like models, though they argue this approach
has more representational power. Similarly, the Hierarchical
RNNmodel (Hi-RNN) [167] usesmultiple GRU-based layers
to represent both short- and long-term interactions, taking
in consideration the time interval between inputs. Finally,
the Streaming Session-based Recommendation Machine
(SSRM) [165] incorporates a MF into a GRU-based encoder
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model, intending to integrate collaborative information into
a session-based model. They focus on a streaming session-
based environment, in which they enhance the short-term
representation captured by the RNN encoder with the
historical long-term preferences captured by MF.

3) OTHER RNN-BASED APPROACHES
Lastly, we introduce some RNN-based methods which
explore different research directions. The work by [160],
for instance, explores cross-domain sequential recommen-
dations to improve CTR accuracy. The proposed Dual
Attentive Sequential Learning (DASL) learns cross-domain
user representations using a dual embedding strategy, which
extracts latent embeddings in both domains simultaneously
through metric learning. The dual embeddings are then
used to initialize a GRU layer, that updates its hidden
state consuming the sequence of interacted items. The dual
attention mechanism then matches the embeddings with
candidate items to provide cross-domain recommendations,
which are obtained through a final MLP block.

The Co-Attentive Multi-task Learning (CAML) model
[161] tackles recommendation explainability through an
encoder-selector-decoder architecture. An encoder network
is used to obtain latent representations for users and items,
utilizing what they call ‘‘implicit factors’’ (user embeddings)
as well as words item reviews. Then, a multi-pointer
co-attention selector module is used to identify relevant
features within reviews and concepts for both users and
items. Amulti-head decoder is used to generate predictions as
well as a sentence explaining the recommendation in natural
language. A FM is used for predictions, while a GRU-based
module is used for sentence generation.

In [162], a deep LSTM-based model is proposed, meant
to incorporate geographical and category information for
next POI recommendation, such as to enrich sequential
information. A personalized attention mechanism is used to
weigh the importance of different time windows to improve
recommendation accuracy.

Lastly, the authors of [158] propose to model the context of
historical interactionsmore precisely, by factoring in ‘‘what’’,
‘‘when’’, and ‘‘how’’ the action took place. Most notably,
they argue that session-based approaches could create a
bottleneck in the way they aggregate data points in sessions,
and hence distance their approach from such assumption.
Their three-step approach starts by applying self-attention to
the input sequence, meant to capture item correlation and
long-term dependencies (‘‘what action’’). The second stage
is used to learn temporal influence between interactions and
the current moment of recommendation, for which multiple
kernel functions are proposed (‘‘when’’). The last stage
is concerned with using the temporal scores and the item
representations to understand the user purpose (‘‘how’’) in
the session, tuning out noisy interactions that are probably
less relevant and imputed to somewhat casual browsing, and
it is implemented with a bi-directional RNN to capture event
contexts from the past and the future.

TABLE 7. Recent methods based purely on attention mechanisms.

E. PURELY ATTENTION-BASED METHODS
As previously introduced, the attention mechanism has
seen widespread use as an enhancement to various neural
approaches. The authors of [70] introduced the Transformer,
an architecture that has revolutionized the field of NLP and
that crucially makes no use of recurrence, relying on attention
as its main learning mechanism. RSs based on transformers
(or its idea of basing themselves largely on attention) have
naturally been a popular new approach to this task.

1) SELF-ATTENTION FOR SEQUENTIAL RECOMMENDATION
The application of self-attention modules, inspired by
transformers, has been widely popular in recent proposals.
A noteworthy example is the Self-Attention-based Sequential
model (SASRec) [184], which attempts to capture long-term
semantics in the interaction process while also being able
to base the prediction on relatively few interactions. The
attention mechanism seeks to identify relevant items within a
user’s history of interactions, basing the network’s prediction
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on them. The Disentangled Self-Supervision (DSS) training
strategy [188] aims to enhance SASRec’s ability to capture
multiple intentions. This approach utilizes self-supervision to
reconstruct the sequence of future items as a whole (seq2seq),
instead of individual items (seq2item). Moreover, the authors
propose a disentanglement layer, which clusters intentions
according to their distance to a set of prototypes. This is
followed by an attention mechanism to encourage the model
to learn user intentions over a number of latent categories.

In [185], it is argued that self-attention does not account
for the time span between events, thus capturing sequential
signals rather than patterns. They thus introduce various
functional time feature mappings, from which they develop
time embeddings compatible with self-attention. In a similar
vein, [186] attempts to model both sequential behaviors as
well as continuous timestamps (which measure a distance
between those behaviors) with self-attention. They propose
a self-modulating attention approach, which involves the
re-weighting of attention coefficients according to the
intensity function of temporal point processes, as well as
continuous-time regularization to penalize the intensity of
largely time-independent behavior data. The intuition is
to adaptively and predictively re-weight past behaviors in
their impact on the current score. In the same context
but with a different approach, [174] proposes to tackle
the sparsity of item-to-item transitions by examining the
categories of items. They utilize self-attention to capture
transition patterns within the same category (e.g., clothing,
toys). A separate context encoder is used to predict the
next interacted category, applying self-attention to interaction
sessions. Finally, a collaborative module compares the users’
category-specific preferences and integrates collaborative
information based on users’ similarities.

GeoSAN [181] also uses self-attention to model long-
range dependencies, framing it in the context of sequential
location recommendation. Here, the task is to predict the next
location position based on the user trajectory and behaviors.
The model is based on a Transformer architecture, with
several modifications to handle geographical data. They
also propose a new loss function based on importance
sampling to obtain more informative negative samples. The
Spatio-Temporal Attention Network (STAN) [182] improves
over the previous work’s performance by explicitly consid-
ering spatio-temporal information and the personalized item
frequency (the number of times a user visits a location), using
a bi-layer attention architecture.

2) OTHER ATTENTION-BASED APPROACHES
Lastly, we outline two notable Transformer-based frame-
works. The Personalized Re-ranking Model (PRM) authored
by [190] is a modular component that can be stacked on top of
existing recommendation approaches to perform a re-ranking
of item candidate lists. It uses a Transformer structure to
capture item-to-item influences and a personalized module to
integrate user-level preferences. A likewise worthwhile men-
tion is the proposal by researchers at NVIDIA, which recently

open-sourced the Transformers4Rec [191] library. Built upon
the popular HuggingFace Transformers library [193], Trans-
formers4Rec has the goal of encouraging the development
of Transformer-based RSs, especially in sequential and
session-based recommendation. The library includes various
enhancements specific to the recommendation settings, and
a general framework for training and evaluating different
models on several built-in datasets with an incremental
strategy.

F. GRAPH NEURAL NETWORK-BASED METHODS
GNNs have gained increasing popularity in recent years.
Graphs have long been studied as particularly expressive
structures, able to effectively capture dependencies and rela-
tionships between nodes [14], [219]; whenever a problem has
an intuitive representation as a graph, approaches based on
themmay be able to reveal higher-order connectivity between
its vertices. Many well-established approaches of popular
neural network architectures have been generalized to arbi-
trarily structured graphs, most notably convolutions [220],
[221], and have been shown to effectively propagate auxiliary
information throughout the graph. There is also great interest
in the application of GNNs to KGs, as we will showcase in
this section. We refer to [220] for further details on graph
convolutions.

1) GRAPH CONVOLUTIONAL NETWORKS
In recent years, works such as Neural Graph Collaborative
Filtering (NGCF) [194] have paved the way for neural graph
approaches in recommendation through the application of
Graph Convolutional Networks (GCNs). The authors argue
that earlier methods based on vectorial representations (i.e.,
embeddings), such as MF and other LFMs, can be lacking
as they do not encode the collaborative signal expressed
by interactions. The proposed bipartite graph structure
allows the expressive modeling of high-order connectivity,
which is injected in and propagated through the embedding
process by utilizing an architecture akin to a standard
GCN. LightGCN [203] simplifies the previous approach,
yet obtains substantial improvements. The authors argue
that, in the context of collaborative filtering, neighborhood
aggregation is the most essential component of the GCN.
The resulting network learns user and item embeddings
by linear propagation on the user-item interaction graph,
using a weighted sum of all layers’ embeddings as the
final embedding. The Self-supervised Graph Learning (SGL)
paradigm [204] expands on the idea of LightGCN and
explores the idea of self-supervision to supplement node
representation learning via self-discrimination. In theory, this
approach should mitigate bias, increase robustness to noise
and encourage learning from hard negatives.

The GCN-based PinSage [205] combines efficient random
walks and graph convolutions to generate node (item)
embeddings, such as to incorporate both information about
the graph structure and node feature information. It is a
particularly worthwhile mention because of the work done
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TABLE 8. Recent methods based on GNNs.

towards architectural and training choices that make the
method viable in massive graphs, with billions of nodes and
edges. In [197], the oversmoothing problem is addressed
directly — where node embeddings converge to a single set
of values and become indistinguishable, resulting in poor
performances. While the authors argue that works such as
LightGCN partially address this issue by simplifying the
structure, they argue that it is still largely present, and propose

a novel Interest-aware Message-Passing GCN (IMP-GCN),
where convolutions are performed inside subgraphs. The
subgraphs consist of users with similar interests (as well
as their interacted items), which should avoid transmitting
information between users with little in common. The
subgraphs are generated by a dedicated model based on user
features and graph structure information. By limiting the
amount of ‘‘negative’’ information, the model is proved to be
more resistant to the oversmoothing issue. In [202], the type
of interactions are diversified into multiple behaviors such as
to contrast the data sparsity and cold start issues. The authors
integrate this concept into a GCN over a heterogeneous
graph based on multiple types of behavioral data, arguing
that GNNs are a strong candidate in learning the difficult
semantics and impact of multiple types of behaviors.

2) GNNs AND KNOWLEDGE GRAPHS
As mentioned, KGs have been studied with increasing
interest as effective solutions to sparsity and cold start prob-
lems. As a prime example, [208] utilizes interactions within
KGs in order to break down the interaction independence
assumption. This is achieved by exploiting the links between
items and their attributes (which may then be connected to
other items, acting as bridges). They propose a Knowledge
Graph Attention network (KGAT), which explicitly models
high-order connectivities in an end-to-end fashion. Embed-
dings for nodes (which may be users, items, or attributes)
share information through recursive propagation, regulated
by a discriminative attention mechanism that weighs the
importance of neighbors. In [201] an end-to-end framework
inspired by GCNs on a KG representation (KGCN) is
proposed. The system is able to capture inter-item relatedness
by mining their associated attributes in the KG, aggregating
and incorporating neighborhood information with bias when
calculating the representation of the items within the graph.
An extended GNN architecture is proposed by [198], aimed
at simultaneously capturing user preferences as well as
relationships between items. The KG is transformed into
a user-specific weighted graph to address the relational
heterogeneity, which, in layman’s terms, attempts to learn
a scoring function to weight particular relationships for
users. For instance, in a movie recommendation setting,
some users might be more interested in a ‘‘directed by’’
relationship, while others in the ‘‘lead actor’’ relation. They
also develop a regularization technique based on label
smoothness to counter overfitting (the model is hence called
KGNN-LS). The Collaborative Knowledge-aware Attentive
Network (CKAN) [199] extends the previous two methods
and describes a novel way to integrate KG information
with latent collaborative signals. This is achieved through
heterogeneous propagation (collaboration and KG) and
a novel attentive embedding strategy to model different
conditions affecting neighboring KG entities. The authors of
the Knowledge Graph-based Intent Network (KGIN) [200]
propose an attentive combination of KG relations to model
the intents that lie behind a user-item interaction. A newly
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proposed information scheme for GNNs allows for the
integration of such intent information within user and item
representations. This framework also allows for interpretable
results (through an understanding of the intent).

3) GNN FOR SESSION-BASED RECOMMENDERS
Graph-based approaches have also been used in context-
aware environments, encoding sessions within a graph struc-
ture. The Target Attentive GNN (TAGNN) [97] investigates
temporal transitions of items within a session. The authors
argue that prior sequence-based approaches often compress
sessions into a single fixed representation, failing to consider
the target items to be predicted. By representing sessions
as directed graphs and introducing a target-aware attention
mechanism, their GNN architecture should instead be able
to activate different user interests concerning varied target
items. In [98], session-based recommendation is tackled in
an environment where data is produced in an online manner
(in ‘‘streams’’). The authors argue that previous online
learning approaches do not model sequences adequately
and may easily overfit new data, losing important historical
information on long-term preferences. They propose tomodel
sessions as session graphs, where user embeddings are
treated as a global attribute for the graph (Global Attributed
Graph, GAG for short), and perform graph convolutions
to update such global attributes. They also develop a
reservoir technique based on the Wasserstein distance, which
they deem more effective in sampling streaming session
data. The LESSR model (Lossless Edge-order preserving
aggregation and Short-cut graph attention for Session-based
Recommendation) [99] addresses two issues with previous
graph representations of sessions. The first issue they explore
is the fact that such representations are lossy, as multiple
sessions could map to an identical graph structure. The
authors argue for a directed multigraph representation whose
information is aggregated in an edge-order preservingmanner
through a GRU module. The second issue is related to the
propagation of long-term dependencies, which they address
by introducing attention-based shortcut connections.

G. LEARNING-TO-RANK
As mentioned, it has been argued that approaches that
try to directly predict ratings may be non-optimal [42],
[229]. Ideally, solving a ranking problem should require the
objective function to depend on the relative distances between
candidates (preference or rank), rather than the absolute
rating value, which should instead have little importance.
However, as we mentioned, IR metrics that are often used
in the context of recommendation evaluation cannot be
easily used as optimization criteria due to their non-smooth
nature [38]. In this section, we explore recent approaches that
put a larger focus on the learning-to-rank side, often devising
surrogate ranking loss functions in an attempt to bridge the
gap between training and evaluation objectives.

Various influential works have been proposed in earlier
years, devising proxy approaches to optimize ranking scores

TABLE 9. Recent methods presenting learning-to-rank strategies.

directly, most commonly the Normalized Discounted Cumu-
lative Gain (NDCG) metric. COFIRANK [230] uses Max-
imum Margin Matrix Factorization to this end, while [36]
crafts surrogate ranking losses in both a pointwise and
pairwise scenario (proposing a heuristic approach for the
latter’s complexity). Other notable classes of algorithms that
work towards this end were proposed by the authors of
SoftRank [38] and LambdaRank [231].

1) PAIRWISE APPROACHES
Pairwise ranking approaches consider pairs of interactions
rather than attempting to model the affinity between a single
user and an item. It’s worth noting that many pairwise
approaches are based on the idea of Bayesian Personalized
Ranking (BPR) [35], a general optimization criterion that
tries to maximize the probability of binary comparison
between an observed and an unobserved item, assuming
the observed item will always be preferred. An example
is that of DeepRank [227], which proposes a neural
network model using the BPR loss for implicit feedback
recommendation.

Earlier approaches such as RankBoost [232] have recently
been revisited; as the name suggests, the original algorithm
consists in the application of a boosting algorithm (an ensem-
ble meta-learning algorithm widely used in classification) to
the ranking framework. Effectively, this approach combines
a collection of weak rankers into a single, more powerful
ranking procedure. The original work proposed two pairwise
ranking losses as optimization criteria; RankBoost+ [222]
rectifies some issues related to the theoretical soundness
of one of these approaches. Another example of pairwise
approach is given by JoVA [223], a VAE-based model
which we discuss in Section IV-H1. Finally, we mention
PushCR [226], an approach based on collaborative rank-
ing (CR) that experiments with three convex loss functions
for ranking to emphasize the top positions of the results
list.
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2) LISTWISE APPROACHES
While pairwise approaches have seen great advances, authors
have argued against the fact that this class of algorithms
implicitly assumes that the item comparisons (the pairs) are
independent. The problem, however, remains hard to solve,
because of the aforementioned non-smoothness of ranking
functions, hence making them unsuitable as direct loss
functions. Notable works such as ListNet [39] address this
by projecting labels and scores onto the probability simplex,
minimizing the cross-entropy between resulting distributions.
LambdaMART [233], on the other hand, dispatches the loss
function entirely and formulates the gradients heuristically.
While not recent, the latter approach is still considered to be
among the best.

Due to its heuristic nature, LambdaMART’s loss func-
tion is unknown, and it can only be assumed to be
smooth — making theoretical analysis difficult. The work
by [234] attempts to close this gap by defining a listwise
ranking loss function based on cross-entropy. This modified
cross-entropy loss is similar to ListNet’s, and proven to
provide an upper bound over the NDCG in general IR
settings, hence allowing NDCG-driven optimization for
retrieval problems. The Stochastic Queuing Listwise Ranking
(SQL-Rank) [40] is a listwise approach that applies prob-
abilities to permutations of the set of interacted items for
every user. This work, which extends the earlier ListNet,
can handle both implicit and explicit feedback, as well
devising a graceful method to break ties through a stochastic
shuffling process. The authors define a custom listwise loss
for collaborative ranking, defined using the permutation
probabilities, and highlight advantages over listwise methods
that utilize the cross-entropy loss. The aforementioned
DeepRank [227] also tests a listwise loss function, derived
from the one used in ListRank-MF [228]. This method
estimates the probability of an item being in the top position
in a ranked list (i.e., top-one probability). The relation
between users and items is modeled with the inner product,
through a MF model. To introduce non-linearity in users
and items representations, DeepRank replaces MF with a
MLP with nonlinear activation functions. Differently from
ListRank-MF, cross-entropy is used to optimize the top-k
probability of items in the ranked list.

3) SETWISE APPROACHES
Someworks have begun to incorporate setwise comparison in
listwise approaches.While [224] praise the approach of SQL-
Rank, they identify a weakness in the fact that only the upper
bound — rather than the original negative log-likelihood —
is optimized. To solve this, they propose SetRank, a setwise
Bayesian approach for collaborative ranking that exploits
set structures to better adapt to the recommendation with
implicit feedback data (in which ties are particularly difficult
to break). Their preference structure assumes users always
prefer observed items over the set of unobserved ones. Thus,
there is no need to order unobserved items. They experiment

TABLE 10. Recent methods based on Autoencoder architectures.

with two different models, MF-SetRank and Deep-SetRank.
The first one utilizes PMF, while the second one is based on
the DeepMF method [235] (an earlier MLP-based approach).
The authors of Set2SetRank [225] also explore ideas based
on considering sets of items, proposing a model-agnostic
framework which leverages both an item-to-set and a set-to-
set comparison. The first is achieved by encouraging each
observed item to be ranked higher than the set of unobserved
ones. The second works on setwise distances, by assuming
that the sum of distances between positive instances should be
less than the distance between the set of observed items and
the closest unobserved item (‘‘hard negative’’). Both utilize
sampling approaches for the two sets.

H. OTHER METHODS
Lastly, we make a briefer mention to two other classes of
methods that are seeing much interest in recent years.

1) AUTOENCODER-BASED METHODS
Autoencoders are a type of encoder-decoder architecture in
which the decoder maps back to the input space. This process
forces the encoder to compress information and maintain
the most important features in a low-dimensional space.
Therefore, the task is to reconstruct the input with the least
possible error. While generally unsupervised approaches,
these architectures are often utilized with supervised learning
methods to learn improved representations (embeddings) for
raw input features, such as users and items in the context of
RSs.

Different types of autoencoders exist, and we point to
the comprehensive review from [7] for in-depth coverage.
In our research, we found a rising interest in the application
of a particular class of autoencoders, namely Variational
Autoencoders (VAE), introduced in [239]. VAEs have a
distinct probabilistic formulation, in which input samples
are encoded as a probability distribution over the latent
space factors, rather than a single value for each latent state
attribute. This results in a representation of input data that
resides in a smooth latent space.

In the aforementioned Joint Variational Autoencoder
(JoVA) [223], two VAEs are assembled and jointly trained
to understand user-user and item-item relationships with
implicit feedback. One block reconstructs the rating matrix
row-by-row (user representation), while the other recon-
structs it column-by-column (item representation). The
authors also propose a pairwise hinge-based loss function,
to further specialize the method for top-n recommendation
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TABLE 11. Recent methods based on Capsule Networks.

tasks. The Macro-micro Disentangled Variational Auto-
Encoder (MacridVAE) [237] tackles the complex problem
of entangled representations. Briefly, an entangled represen-
tation identifies latent factors that each map to more than
one generative factor; in the context of recommendation,
this can be roughly understood as the learned representation
for interactions being related to many different facets of
the users’ decision-making process. The authors therefore
explore the development of a more interpretable and
robust disentangled representation, based on VAEs and an
information-theoretic interpretation of such models to obtain
macro (e.g., user intention) and micro (e.g., descriptive
factors of the item being sought) disentanglement. The
Bayesian Latent Organic Bandit model (BLOB) [236] shows
how to combine ‘‘bandit’’ data, information that describes
how the user reacted to a sequence of recommendations, with
‘‘organic’’ data, which are sequences of naturally occurring
interactions. The proposed probabilistic algorithm makes use
of both these data sources, integrating advantages of VAEs
and bandit-based approaches.

2) CAPSULE NETWORK-BASED METHODS
Recent work explores the usage of Capsule Networks to
model dynamic user interests. The base unit in Capsules
Networks (CN) is the capsule, which can be seen as a group
of standard neurons (i.e., perceptrons). Differently from a
perceptron, the output of a capsule is a vector instead of a
scalar. An introduction on CN is given in Appendix A-B,
and we refer to [244] and [245] for further details on
these architectures. In the RS domain, capsules attempt
to model the reasonable assumption that each user is a
composition of different intents and multi-domain interests
that should be recognizable by looking at their interaction
sequence [240]–[242], [246].

The authors of [240] use capsules to generate multiple
interest embeddings for every user. The multi-interest layer
receives average pooled item embeddings as well as user
embeddings, and outputs a variable number of interest vectors
generated through a Dynamic Routing (DR) approach.
Then, scaled dot-product attention is used to compute the
importance of user interests with respect to the target item.
At serve time, the capsule module is used to generate
user interests, and a nearest neighbor procedure is run to

generate recommended candidates. In [241], a novel routing
by bi-agreement algorithm is proposed, optimized for a
binary sentiment analysis task over review texts. By using a
self-attention mechanism over embedding and convolutional
layers, the method also aims to provide insight on which
expressions and aspects of user reviews are most determining
for the predicted sentiment. A general framework to extract
multiple user representations is proposed by [242], such
as to better capture a user’s multiple interests. Both DR
and self-attention mechanisms are used to generate these
embeddings. The model is trained to predict the next
interacted item in a sequential recommendation setting.
At serve time, an approximate nearest neighbor is used
to find the top-n candidates for every user interest, and
an aggregation module selects the best candidates for the
user. The work by [243] leverages future user behavior
using DR to aggregate users’ future behaviors into trend
representations. A LSTM is used to compute sequence-aware
user vectors. Then, a CF-inspired approach is used to select
similar users and extract behavioral trends from them.A time-
aware attention layer is applied to compute the future trend
representation that is concatenated with the user history
embedding and used to predict next item probability with a
softmax operation.

3) NOTABLE MENTIONS
Lastly, we mention the existence of other noteworthy
categories of methods, for which we however do not include
a full section but rather point to other sources.
Reinforcement learning approaches have begun to garner

attention in their deep learning variants, and the same can
be said for adversarial network-based recommenders; [7]
provides an overview of these methods. The multi-armed
bandit is a reinforcement learning problem that exemplifies
the exploitation-exploration dilemma. In the context of
RSs, bandit-based algorithms [247], [248] have shown to
be effective tools to promptly react to user feedback and
trade-off between two goals: pleasing users by making
safer bets based on historical behaviors (exploitation) and
gaining knowledge about their tastes (exploration). The
latter encourages showing more diverse recommendations in
order to further improve user satisfaction in the long run.
Reinforcement learning can also be used as an enhancement
to other ML methods, as it is the case in the previously
mentioned BLOB model [236]. An excellent resource on this
topic is provided in [11].
Counterfactual learning has recently attracted much inter-

est as a strategy to learn more robust representations for users
and items. For instance, CauseRec [249] is a sequential model
that uses contrastive learning bymodeling counterfactual data
distributions. They focus on denoising user representation
learning, intuitively considering the retrospect question ‘‘how
would the user representation change if we intervened
on the observed (historical) behavior sequence?’’. The
‘‘counterfactual’’ part lies in changing the behavior sequence
to observe how the representation changes.
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Recent approaches are also furthering the class of neigh-
borhood methods, such as [250], which apply a k-NN
model with item frequency data and temporal dynamics
to a next-basket recommendation environment. Related to
distance-based methods, the authors of [251] argue that
factorization and neural models, though effective, violate the
triangle inequality, losing valuable fine-grained preference
information. They propose to approximate users and items
with Gaussian distributions use and the Wasserstein distance
as a distance (preference) function between users and items.
The set-based model proposed in [252] (which we refer to
as ‘‘SetBased’’) is a straightforward and explainable method,
where every user is represented as a weighted bag of interests
(tags). A conceptually simple probability model is used to
estimate the likelihood of tags for each user, based on the set
of personalized preferences as well as the item priors (i.e., the
probability of an item being liked by any user).

V. EXPERIMENTAL FACTORS
A. DATASETS AND CONSIDERATIONS
In this section, we highlight several popular datasets and their
statistics, as well as describing some considerations to be
made whenever splitting a dataset for the recommendation
task.

1) POPULAR DATASETS
We report in Table 12 some statistics of the most popular
datasets used within the research works we reviewed. Along
with the number of users, items, and interactions, the table
further indicates:
• whether sessions are defined explicitly;
• whether interactions are in the form of explicit rat-
ings (EX) or implicit feedback (IM);

• the availability of additional feature for users (U) —
e.g., age — items (I), — e.g., title, description — or
the interaction itself (C) — e.g., context and type of
interaction;

• the domain of the dataset.
We noticed that in some cases, namely with datasets like
Epinions and Foursquare, researchers often crawl the data
themselves. Therefore, many different versions of these
datasets exist, but not all of them are published and some
may be customarily built for a particular work. In such cases,
datasets listed in Table 12 describe the most common version
that is publicly available.

2) APPLYING EVALUATION METRICS
In order to better understand the application of evaluation
metrics, which will be discussed in Sections V-B and V-C,
it is important to understand how datasets in this context are
utilized and partitioned.

First and foremost, evaluation procedures are assumed to
be applied in an ‘‘offline’’ scenario, i.e., on historical data.
Data is also assumed to be split as is common in most ML
scenarios, i.e., a training split utilized for model building,
a validation one used for parameter tuning, and a testing

FIGURE 7. Common partitioning of a ratings matrix to accommodate for
training and evaluation procedures. The validation and test portions
might be selected with different procedures (e.g., random or based on
time). The shown procedure evaluates weak generalization.

set that is used exclusively for evaluation (Fig. 7). Typical
approaches, such as hold-out and cross-validation, may be
applied.

Validation and test portions of the data are not truly
missing ratings but rather simulated through various hold-
out procedures. This assumption has been widely studied [2],
and such evaluation items are often characterized as Missing
Not At Random (MNAR) or subject to a selection bias [275],
which can lead to possibly inaccurate evaluations. This is a
lengthy topic with various complications, some of which are
explored in the following sections. For now, we mention that
common approaches include random splits, temporal splits
(utilizing more recent ratings as test data), and pre-made,
fixed splits. The approach we found to be most common is
the temporal one, which is, however, not entirely devoid of
issues, as it does assume a certain sequential behavior model
in the data; regardless, it is usually considered a reasonable
choice [2].

3) STRONG AND WEAK GENERALIZATION
Another consideration to be made about evaluation proce-
dures is the choice between ‘‘strong’’ or ‘‘weak’’ general-
ization protocols [276]. As discussed previously, in order to
evaluate a model’s generalization abilities, users (or, in some
contexts, anonymous sessions) should be divided into a
training and testing set. Strong generalization refers to a split
that ensures the model is tested against completely novel user
profiles. However, not all methods (especially in the case of
collaborative filtering) are designed to work with novel user
profiles. Such approaches are tested on a weak generalization
protocol, where the test set is comprised of interactions from
users that have already been characterized by the model (such
as in Fig. 7).

In datasets where the interaction timestamp is available,
a chronological split (e.g., first 80% of interactions in
training, the last 20% for testing) is frequently used, though
more traditional CF methods often prefer a random splitting
strategy. The number of interactions reserved for testing
is largely dataset- and method-specific. We found that
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TABLE 12. List of most commonly used datasets.

session-based methods prefer to use one or a few target
interactions [141], [188], while there is no clear preferred
strategy among other methods.

B. ACCURACY METRICS
Here and in the following section we provide a description
of the main evaluation metrics utilized in RSs. Note that,
in discussing these metrics, it is common to use the terms
‘‘relevant’’ and ‘‘irrelevant’’ as an abstraction from the
various types of interactions possible. Intuitively, a relevant
item should be recommended (e.g., a positive implicit signal
or a high explicit rating). Moving forward, we define all
metrics for a generic user u, but in practice, reported metrics
for a RS are always averaged over all users:

Average metric =
1

|U |

∑
u∈U

metric(u)

Though throughout this survey we frequently mentioned
various critiques of accuracy-based evaluation procedures,
they are often still preferred because of their simplicity. This
is particularly common in contexts such as CTR prediction
or next item prediction. These metrics measure the error of a
predicted rating w.r.t. the real rating, i.e., for a user u and an
unseen item i, eui = r̂ui − rui.

1) ROOT MEAN SQUARED ERROR
The RootMean Squared Error (RMSE) is a metric commonly
utilized in regression tasks, and is used to measure the
difference between predicted and true values. A smaller
RMSE indicates better performance, and the square-rooted

version is usually preferred to plain the MSE, as its units are
aligned with those of the ratings. Given a vector of predicted
ratings r̂u and the ground truth ru, it may be defined as:

RMSE(r̂u, ru) =

( ∑n
i=1(r̂ui − rui)

2

n

) 1
2

(5)

where n is the number of test items (i.e., n = |r̂| = |r|), u is a
user and i is an item.

2) MEAN ABSOLUTE ERROR
The Mean Absolute Error (MAE) is another accuracy-based
metric that is frequently used as an alternative. Notably,
while RMSE tends to penalize large errors disproportionately
(because of the squared term), MAE is more lenient in this
regard:

MAE(r̂u, ru) =

∑n
i=1 |r̂ui − rui|

n
(6)

MAE tends to better reflect accuracy when outliers have
limited importance, while RMSE values the robustness of the
prediction across various ratings more highly.

C. RETRIEVAL METRICS
Though comparably not as simple in terms of direct
performance feedback, retrieval (or ranking) metrics based
on information retrieval theory provide a more realistic
perspective of the true usefulness of a RS. These metrics
typically restrict the evaluation to the first k item, and are
hence commonly referred to as top-k metrics.
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FIGURE 8. Visualization of a ranked list predicted by a RS.

Given a catalog of n items, consider a recommendation
algorithm that produces a ranked list of such items. In order
to make the formulations more digestible, we introduce the
following notations: let P = {p1, p2, . . . , pn} with |P| = n
be an ordered set of predicted items, generated by a scoring
function, for a single user u (which we omit in the notation for
the sake of simplicity). Better scores imply a higher degree of
relevance of the item for the user. P is sorted in descending
order with respect to the scores predicted (i.e., the first item is
the best candidate), and pi indicates item ranked at position i
(Fig. 8). Notably, the predicted score only matters for sorting
purposes. Let G with |G| = m be the list of true relevant items
for the same user. We call I the set of all available items,
either irrelevant and relevant. Whenever limiting such sets to
the top k elements, we will indicate the value as a parameter,
e.g., P(k) = {pi ∈ P | i ≤ k}. Also define 1 as an indicator
function, formally defined as:

1 (condition) =

{
1 ⇐⇒ condition
0 otherwise

1) NORMALIZED DISCOUNTED CUMULATIVE GAIN
The Discounted Cumulative Gain (DCG) is an overall
measure of the usefulness (also called gain) of a list of
retrieved items, weighted by how well the list is sorted.
As mentioned, this is commonly restricted up to an arbitrary
position k ≤ n. The relevance score of singular items is
summed, while a logarithmic discount factor is used to give
more weight to higher positions and penalize lower ones.

While different approaches exist, it is common to express
a utility function util as an exponential function of the
relevance, such as to place a stronger emphasis on retrieving
relevant items:

util(pi) = 2 rel (pi) − 1 (7)

where rel(pi) is the relevance of item pi (e.g., true rat-
ing/relevance of the item or a heuristic function thereof). For

the sake of generality, we write util (pi) rather than specifying
a particular utility function.

Formally, DCG at k can be understood as an inverse
logarithmic reward on all positions i that hold a relevant item:

DCG@k(P) =
k∑
i=1

util (pi)

log2 (i+ 1)
(8)

The Normalized DCG (NDCG) further normalizes the score
in the 0−1 range: the DCG score is divided by the ideal DCG
score (IDCG@k), which is obtained by calculating the DCG
on the ground truth of relevant items:

NDCG@k =
DCG@k
IDCG@k

(9)

NDCG is defined as standard when utilizing the inverse
logarithmic decay (i.e. 1

log (i+1) . Note that the base of the
logarithm is not important, as constant scaling will cancel out
due to normalization [277].

2) RECALL
The Recall at k is the fraction of relevant items in P that are
correctly recommended in the top-k scoring items, out of the
set of relevant items G:

Recall@k(P) =
|P(k) ∩ G|
|G|

(10)

As a side note, it must be considered that, if the total number
of relevant items is greater than the cutoff value k (i.e., |G| >
k), the value of this metric will be lower than 1 even for
perfect rankings.

3) PRECISION
The Precision at k is the fraction of relevant items in P that
are correctly recommended among the top-k scoring items:

Prec@k(P) =
|P(k) ∩ G|

k
(11)

In this case, if |G| > k , multiple lists can achieve a perfect
score as long as the top k items are relevant.

4) AVERAGE PRECISION
The Average Precision (AP) is defined as the average
Precision at k over all k values that hold a true relevant item:

AP@k(P) =

∑k
i=11 (pi ∈ G) · Prec@i (P)

min (|G| , k)
(12)

where the indicator function is used to enforce a value of
1 if the item at position k is truly relevant, 0 otherwise. The
average precision also has an interpretation as the area under
the precision-recall curve. We note that, as this metric is most
commonly utilized in its averaged (over users) form, it is
often used interchangeably as a synonym to Mean Average
Precision (MAP@k), as it is implied that it is only a useful
statistic when the mean of AP@k over all users is taken.
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5) F -SCORE
The F-score (or F-measure) combines the Precision and
Recall score in a single value, and their relative importance
can be controlled with a β factor:

Fβ (P) = (1+ β2)
Prec (P) · Recall (P)

(β2 · Prec (P))+ Recall (P)
(13)

If β = 1, both terms are equally weighted, resulting in the
harmonic mean of precision and recall (usually termed F1-
score). This measure can be generalized to a F-measure@k
using the previously defined Precision and Recall at k .

6) RECEIVER OPERATING CHARACTERISTIC
The Receiver Operating Characteristic (ROC) is one of
the possible approaches for the evaluation of the trade-off
between the length of the recommendation list (k) and the
percentage of relevant items. Note that the ROC evaluates a
binary setting, and hence is best suited for implicit feedback
environments. The ROC depends on two measures, namely
the true-positive rate (TPR), which is the same as recall, and
the false-positive rate (FPR, also called inverse recall), which
measures the fraction of ground truth negatives (items not
interacted with) incorrectly captured in the prediction:

FPR@k(P) =
|P(k) \ G|
|I \ G|

(14)

The latter can be seen as a ‘‘negative’’ recall. The ROC curve
is obtained by plotting the FPR on the x-axis and the TPR on
the y-axis for varying values of k .

7) AREA UNDER CURVE
The Area under the ROC Curve (simplified to AUC)
measures the likelihood that a random relevant item is ranked
higher (scored better) than a random irrelevant item [278]:

AUC(P) =

∑
g+∈G

∑
g−∈I\G 1

(
util (g−) < util (g+)

)
|G| · (|I \ G|)

(15)

Alternatively, it can also be expressed in terms of ranks
rather than utilities (i.e. the util function), therefore requiring
that the rank values (i.e., positions in the list) be sorted
correctly [3].

Though AUC provides an objective and quantitative
evaluation of the effectiveness of a particular method, as well
as having many intuitive interpretations, this metric should be
valued carefully. Among its most notable weaknesses stands
the fact that it is not always the case that a method with
higher AUC is strictly better than another, as the two ROC
curves could cross (and, practically, they often do) at different
thresholds [279]. In that case, it is hard or impossible to
determine which method dominates the other. Furthermore,
it should be considered that the ROC treats higher and lower
ranked items equally, and is thus unable to give greater
importance to higher-ranked items [2].

8) HIT RATE
Wemake a brief mention to Hit Rate (HR), a metric that often
appears with different definitions. In many cases, it is defined
as analogous to recall. Here, we describe it as measuring
whether the prediction contains least one relevant item in the
top-k results. For a single prediction:

HR@k(P) = 1 (|P(k) ∩ G| > 0) (16)

Generally, the hit rate is more meaningful when averaged
among users. The similarity with recall is obvious; when
exactly 1 relevant item exists for every user, this metric is
equivalent to Recall@k .

9) MEAN RECIPROCAL RANK
The Mean Reciprocal Rank (MRR) is defined strictly on a
pool of queries Q (i.e., prediction lists), where ‘‘rank’’ refers
to the position of the first relevant item in the prediction.
In other words, it measures, on average, where the first correct
prediction lies. Assume the existence of a function rank,
which returns the position of the first relevant item for a given
prediction P:

MRR =
1
|Q|

∑
P∈Q

1
rank (P)

(17)

If there is no relevant item, the reciprocal rank for that
prediction is 0. Since ranking positions are explicitly taken
into consideration, this metric emphasizes the order of the
recommendations, whereas the hit rate only cares about the
existence of a relevant item.

10) SUMMARY
There is no pre-defined ‘‘best’’ metric for evaluation, as each
metric values different aspects of the final ranking differ-
ently. Accuracy-based metrics only care about the distance
between the actual and the predicted score, without directly
considering the actual ranking. For ranking metrics, NDCG is
comparatively better than other approaches at distinguishing
between higher- and lower-ranked items. In order to verify
the trade-off between precision and recall for different values
of k , F-scores, average precision, and AUC can give intuitive
evaluation estimates. HR and MRR can also be useful,
especially if the situation requires the predicted list to contain
at least one relevant item (HR) or if it is particularly important
for a relevant item to be present in the higher ranks (MRR).

D. SAMPLED METRICS
While discussing metrics, we referred to the generic set of
all items, containing both observed and unobserved items.
However, the total number of items available in a practical
setting is often up and above the hundreds of millions,
whichmakes evaluation in real-world conditions challenging.
Pointwise models, for example, would have to evaluate each
user-item pair, resulting in substantial time requirements.
Therefore, downsizing the set of items may be considered not
only for training (with the aforementioned negative sampling
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approach) but also for the evaluation process, though this
choice has significant influence over the results of the
metrics. Keeping such considerations in mind, it comes as
no surprise that many researchers use sampling strategies to
speed up the evaluation process; since datasets are usually
very sparse, some approaches sample a subset of unobserved
items for every user. However, several studies have pointed
out the difficulty of obtaining reliable performance results
using metrics with sampling strategies [280]–[283].

Specifically, [280] demonstrates how sampled metrics
are, in fact, not good indicators of the model performance
when compared to the same global, non-sampled metrics.
As a consequence, it is not possible to reliably compare the
performance of two methods using sampled metrics, even
if the two adopt the same sampling strategy for evaluation.
The authors also introduce corrected versions of popular IR
metrics that account for the sampling bias at the cost of higher
variance. They point out that obtaining statistically significant
results is still challenging, and requires at the very least
the execution of several evaluation runs, such as to reduce
variance. However, they conclude by saying that the only way
to remove sampling bias is to avoid sampling altogether.

A recent work by [282] studies the impact of sampling on
the recall@k measure, used frequently in implicit feedback
recommendation settings. They demonstrate how this metric
paired with sampling can be used to approximate the
global metric, hence providing a more reliable measure.
In another work, [284] proposes new methods to estimate
the true unbiased rank distribution with approaches based
on Maximal Likelihood Estimation and Maximal Entropy.
However, it is still unclear how many samples should be used
for a reliable evaluation.

E. EVALUATION IN RECENT WORKS
To provide practical insight to the discussion on evaluation
procedures, this section presents our findings of the usage of
different evaluation procedures in recent methods as applied
to three popular datasets, with a foreword on reproducibility
issues. We briefly introduce the most relevant preprocessing
choices and evaluation strategies they describe, referring to
the published code used for experiments when available.
We selected methods from Tables 13 and 14 as applied to two
large review datasets (Netflix, ML-20) and a common dataset
for POI recommendation (Gowalla).
Foreword: The Issue of Reproducibility: In theory, research

works that introduce new methods and deem them to be
at a state-of-the-art level should clearly describe all the
relevant details to make it possible for other researchers to
validate their claim. Reproducibility of results should be
ensured by publishing the training and evaluation code and,
if possible, relevant data splits. Alternatively, authors ought to
give precise instructions on how to generate and preprocess
the data [26].

However, several studies, such as the ones in [23], [26],
showcase that this is not always the case. Moreover, retrieval
top-k metrics are often used with different parameters

(i.e., different values of k). In many situations, we found it
impossible to make a solid comparison between methods by
looking at the reported performance metrics, even when they
were reported on the same datasets. The main issues that
caused this impossibility concerned different dataset splits
or lack of enough details on how data were preprocessed
and adapted to different tasks. We occasionally found it not
possible to determine whether reported metrics had been
computed using comparable data splits or whether they
relied on sampling strategies, which would prevent direct
comparison. As pointed out in [283], [311], the selected
strategy to split data in training and testing set (and possibly
to generate sessions) from user’s historical behavior can
have a considerable impact on the measured performance.
Hence, methods using different data splits, even when created
from the same datasets, cannot always be compared reliably
without repeating tests on the same preprocessed data.

Another point of contention can be found with the
conversion of datasets with explicit rating into an implicit
feedback setting, most often by interpreting higher rating as a
positive signal (e.g., applying a threshold such as 1 (r ≥ 4)).
This practice is widely diffused, seemingly with disregard of
the fact that explicit ratings are a much stronger preference
indicator than implicitly-gathered signals, which in turn are
by nature ambiguous and thus weaker. As an example,
consider a movie RS utilizing the previously described
procedure. While a rating above a high threshold (e.g., 4/5)
describes a movie the user liked, an implicit signal only
reveals that the movie has been watched or interacted with in
specific ways. On behalf of this practice, [23] points out that
there seems to be no rationale on the choice of the threshold
beyond the fact that others used it before.Metrics and datasets
seem to be conveniently chosen and paired with inadvertently
weak baselines, giving the impression of improving a few
performance metrics, despite several works warning there
may not be a direct correlation between accuracy and
improved recommendations [23], [312], [313]. While we
understand how many of these works are custom-tailored to
solve domain-specific problems and may well be worthy of
attention, our goal is to show how slight variations in the
problem formulation, data processing, and metrics of choice
create a very fragmented landscape that lacks established
benchmarking strategies of reference [25], [283].

1) THE NETFLIX PRIZE DATASET
In our search of recent contributions from top conferences,
four works using the Netflix Prize dataset [54] were selected.
This dataset comprises about 100 million explicit rating
values assigned to 17.700movies bymore than 450.000 users.
All of the studied methods binarize the dataset to emulate
implicit feedback by considering movies with rating ≥ 4 as
observed interactions and evaluate the models with retrieval
metrics.

We start by considering the following two methods. The
Embarrassingly Shallow Autoencoder (EASE) [238] is a
linear model geared towards sparse data, for which the
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TABLE 13. Tabulation of methods with employed datasets and code availability.
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TABLE 14. Tabulation of methods with employed datasets and code availability (continuation).
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authors report better ranking accuracy over state-of-the-art
and deep models. The authors of MacridVAE [237] instead
use VAEs to capture disentangled user representations. Both
these methods use the same preprocessing steps to extract
implicit feedback from the explicit ratings. They also declare
to follow the exact same splitting strategy, where 40.000 users
are held out for evaluation and the rest is used for training.
Therefore, this is a strong generalization protocol. Once
trained, the model is given 80% of the click history of
the held-out set, and the remaining 20% is used as target.
By inspecting the code available for MacridVAE, we found
that all unobserved items are considered for evaluation (i.e.
no negative sampling is used in evaluation). Both methods
report results using NDCG@100 and Recall@20/50. These
methods are evaluated under the same settings, hence their
results can indeed be natively compared.

The authors of JoVA [223] report results using
NDCG@1/5/10, but a random sample of 70.000 users is
kept for training. Moreover, after inspecting the train/test
splits generated from the ML-1M dataset (since the Netflix
dataset splits are not shared in their repository), we can only
assume that this model has been similarly evaluated on a
weak generalization task, where interactions are randomly
split and results are reported over 10%of each user’s observed
items. No negative sampling is used during evaluation. The
last method we analyzed, the Deep Generative Ranking
(DGR) [285] model, does not share its implementation, and
little detail on the splitting strategy is provided. However,
their conference paper seems to suggest that their evaluation
on the Netflix dataset is conducted using all the available
users, hence using a weak generalization framework. They
also perform a separate evaluation on users with less than
five ratings, but only on other datasets.

2) THE Movielens20M DATASET
The second dataset we analyze is the popular Movielens
datasets, specifically in its 20-million interactions form. This
dataset consists of about 20 million explicit movie ratings on
a 1 − 5 scale (with half-points) given by 138.493 users on
27.278 items [255].

The DHE and DSS models [141], [188] both use the same
splitting strategy, but do not publicly share the experiments
implementation. In both cases, all user ratings (regardless of
the rating value) are considered observed interactions and are
sorted by timestamp. Then, the last two interactions are put in
the validation and test set respectively, and the rest are used
for training. The authors of DSS further specify that their
evaluation procedure relies on a negative sampling strategy:
100 items a user has never interacted with are randomly
sampled according to their popularity and added to the test
set. DHE results are reported using AUC while DSS uses
Recall@k , NDCG@k , and MRR. M2GRL [211] works with
sessions of movie ratings, created by splitting sequences
into sessions for a user when two consecutive ratings are
more than one year apart. Additionally, sessions with more
than 50 ratings are divided into two shorter ones. Ratings

lower than 3 are deleted from the dataset, so this method
uses a different threshold value than the previous ones. The
MetaHIN [135] model does not share the code used for its
experiments, and we were not able to clearly understand the
adopted strategy. Results are reported using MAE, RMSE,
and NDCG@5.

The graph-based approaches KGCN [201],
KGNN-LS [198] and CKAN [199] all propose to enhance
recommendation using knowledge bases. The dataset is
binarized using 4 as a threshold value for ratings that
should be considered observed interactions, resulting in about
13.5 million interactions. During training, an equal number of
unobserved interactions is randomly sampled. For evaluation,
40% of the total interactions are reserved and equally split
between validation and testing, and the rest are used for
training. The three models adopt a weak generalization
scheme with no negative sampling in the evaluation process.
Results of these methods can be compared on the reported
AUC score for the CTR task.

The SetBased model proposed by [252] uses a strong
generalization protocol, with a restricted dataset of about
17 million interactions and 5.800 items. To evaluate the
binary relevance of predicted items, 1000 users are held-out
and 20% of their ratings are used for testing. Again,
a predicted rating of at least 4 is considered the minimum
threshold for relevant items. MAP, NDCG, and MRR are
reported, considering the list of the top-100 items. In the
Ordinal NMF [100] approach, only users and movies
with more than 20 interactions are kept, resulting in a
smaller dataset of 20.000 users and 12.000 movies. A weak
generalization scheme is also used here, as it commonly is
for MF methods, without negative sampling in evaluation.
Results for this method are reported using NDCG@100, but
the task is framed as prediction of explicit ratings in the
original scale, so it is hard to make a fair comparison with
the others. EASE andMacridVAE follow the same evaluation
protocol described previously for the Netflix dataset, with
10.000 held-out testing users.

3) THE GOWALLA DATASET
The Gowalla dataset [264] is a popular dataset of check-ins,
where the users’ friendship network is made available in the
form of a graph with 190.000 nodes and 950.000 edges.

Three related graph-based methods, namely NGCF [194],
LightGCN [203] and IMP-GCN [197], preprocess the dataset
removing users and locations with less than 10 check-ins,
keeping about 1 million interactions and 40.000 locations.
Performance on the test set is evaluated by using all
not-visited locations for every user, and the test set is
composed of 20% of randomly sampled interactions for every
user, hence using a weak generalization protocol. Results
are reported using Recall@20 and NDCG@20, making these
methods comparable. GeoSAN [181] seems to work with
a bigger version of the dataset, with 131.000 locations
and almost 3 million interactions, obtained by removing
locations visited less than 10 times and users with less
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than 20 interactions. For efficient evaluation, the last visited
location is used as target (weak generalization), while the
rest are used for training, and 500 of the closest locations to
the target are selected as negative samples. Between these,
100 are selected by a model trained on the same task. The
hit rate and NDCG@5/10 are hence reported on a pool of
101 candidates for each user.

In the SSRM and GAG [98], [165] models, the 30.000 top
locations are kept, and user sessions are created by grouping
all check-ins for a single day. Sessions with more than
20 or less than 2 items are then removed. Both methods
simulate a streaming context for evaluation, in which 40%
of the last check-ins in chronological order are split into
5 slices, and evaluation is conducted over each slice, giving
all past interactions as input. Results are reported using
Recall@20 and MRR. The LESSR [99] model uses the same
preprocessing described for the two previous methods to
generate sessions, but the evaluation protocol is different: the
last 20% of interactions for every session is used as target set.
Even if these methods are evaluated on weak generalization
and results reported on MRR@20, their results are hardly
comparable. Negative sampling is not used in evaluation here,
since the model predicts scores for all items.

In PMLAM [251], interactions are not considered as
sequential, so evaluation is done similarly to purely CF
algorithms, with a cleaned dataset of 1.2 million interactions.
Five-folds-cross validation is used: observed interactions are
randomly divided into five folds, one fold used for test and the
rest for training, and metrics are the average of test results
over the five splits. Negative sampling is used for training,
but we are not able to clearly understand if it is also used
during testing, since the implementation is not available at
the time of writing. The authors of LightRec [142] approach
evaluation with a similar strategy, but here, for every user,
10% of interactions are used for validation. The dataset is also
reduced to about 800.000 samples, by removing users with
less than 3 interactions. The code is published, and we found
that their weak generalization evaluation protocol does not
use negative sampling. However, results can only be tested on
the ML-10M dataset, and the Gowalla splits are not shared.

The authors of STAN [182] use a subset of the dataset
with 121.000 locations, 53.000 users, and 3.3M interactions.
For every user with m check-ins, m − 3 training sequences
are created. Each sequence i ∈ [1,m − 3] is composed
of the first {1, . . . , i} items with item i + 1 as target
item. The test set is composed of a single sequence of
the first m − 1 items for each user, with the last check-in
as target item. No evaluation negative sampling is used,
as the model outputs prediction over the whole set of items.
Likewise, Deep-RegionRs [169] uses a weak generalization
protocol and predicts the next location given the sequence
of previous check-ins. However, during testing, candidate
locations appear to be sampled based on their distance from
the correct one, and results are reportedwith differentmetrics,
making it incomparable with STAN. HME [307] uses a
subset of Gowalla with check-in data from Houston, and the

most recent 10% of each user’s check-in is used for testing.
Therefore, the method adopts a weak generalization strategy.
Code is not published for this work. The CauseRec [249]
approach uses a strong generalization protocol, and 10% of
users are held out for testing. During evaluation, for each
test user, 80% of interactions are used to learn the new user
representation and the remaining part are the target items.
We were not able to find an official implementation, and no
further details are given.

We briefly mention SSTPMF [118], POI-SMF [119] and
Meta-SKR [168], methods which all appear to use different
subsets of the Gowalla dataset. Interactions are chosen as
selected within different time spans, or filtering check-ins on
a subset of cities. The splitting strategies utilized are different
from one another, and the authors do not publish the code for
inspection of their results.
Summary and Discussion: Most methods we analyzed

follow evaluation procedures defined by previous work.
When in doubt on the evaluation procedure, we consulted
the published code for experiments, which, to the best of our
knowledge, is only available for 2/3 of the methods listed
in Tables 13 and 14. However, with the exception of related
methods or the ones that directly improve over one another,
they are not directly comparable without extensively editing
their implementations.

This is mainly due to two reasons. First, as showcased,
it is common to find methods trained and tested on different
subsets of the same dataset. Furthermore, these sometimes
utilize different splitting strategies for training and testing
sets. The second culprit resides in substantial variations on
the evaluation objective: models that operate on the same
dataset are often tested on different tasks. These include
but are not limited to the prediction of the next n item(s),
the selection of top-n items among candidates, and the
incorporation of temporal ordering in both. For example,
we showcased how the Movielens20M has been framed as
a purely implicit collaborative filtering task, but also as a
session-based context-aware problem. In two of the analyzed
works (DHE, DSS) [141], [188], all explicit ratings were
considered observed interactions, but it is easy to find other
research in the literature in which a threshold value (e.g.,
3 − 4) is used to convert explicit feedback to a binary
form. Additionally, there is always the possibility of framing
the task as explicit rating prediction, of which we studied
one example (OrdNMF) [100]. Though NDCG can still be
calculated on the resulting ranked list, it might be unfair to
compare two methods with different optimization tasks in
mind.

Even between methods working with the same implicit
data, we found performance estimations reported using vari-
ous top-k metrics (often with incomparable k values), as well
as AUC. Even when AUC is used, the evaluation protocol
can be very different. For instance, DHE and DSS evaluate
the ability of the model to recommend a single relevant
item, while the graph-based approaches KGCN, KGNN-LS,
and CKAN [198], [199], [201] all evaluate on 20% of
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the interactions, with a variable number of relevant items.
A similar strategy is adopted by the SetBased approach,
EASE, andMacridVAE [237], [238], [252], but using a strong
generalization protocol and measuring different metrics,
computed over a different subset of held-out users (1000 for
the SetBased approach, 10.000 for the others). NDCG@100
is reported for all three latter methods. As evaluation metrics
continue to be an already controversial topic because of
phenomena such as MNAR and the significance of accuracy,
this fragmentation makes evaluation all the more difficult.
Negative sampling in evaluation was declared to be used
in only two of the analyzed works, namely DSS and
GeoSAN [181], [188].

Both weak and strong generalization settings present
these issues. Ideally, datasets should be standardized in
the way they are split and treated, at least in regards
to their testing procedures. This is further discussed in
Section VI-D. Ultimately, we find that this great variety in
evaluation strategies is worsened by the lack of effective
benchmarks and platforms that should be used for consistent
evaluation of different models [314]. In the NLP field, for
instance, GLUE, SuperGLUE [315], as well as other sibling
initiatives, provide strong frameworks for the evaluation
of newer language models, ensuring fair and consistent
results that can be easily compared with other baselines.
Similar initiatives should be sought for the improvement
and betterment of recommendation methods. Fortunately, the
emergence of works such as the previously mentioned [23]
and [24] have raised much concern, and various proposals
for comprehensive recommendation frameworks are starting
to be proposed. Many of these issues are being addressed by
the excellent works of [191], [283], [314], [316].

VI. CHALLENGES AND RESEARCH DIRECTIONS
The ubiquity of RSs in today’s digital platforms motivates
research and industry to monitor closely users’ online
experience with the aim to continuously improve it. At the
same time, the influence of AI systems on users’ behaviors
raises legitimate concerns about the unwanted effects that
a biased RS may have when used to deliver content (like,
for instance, personalized news feeds, search results, and
shopping advice). Furthermore, the growing need to adhere to
strict data protection regulations has steered recent research
towards the development of more reliable, transparent, and
privacy-aware RSs. While we previously introduced the main
technical difficulties encountered in the development of a RS,
this section expands on this topic and introduces other major
challenges and directions addressed in current research.

A. FACING BIAS AND FAVORING DIVERSITY
It is well known that, in data-driven approaches, the lack
of sufficiently diverse data can create dangerous biases,
especially on consumer-faced systems such as recommenda-
tion algorithms. In general, the concept of diversity implies
that the set of proposed recommendations within a single
recommended list should be as diverse as possible. The

effects of bias are discussed in two recent surveys [317],
[318], that systematically study the sources of bias (like
input data and model design) and highlight how these flaws
contribute to creating unfair results. For example, they argue
that the user base contained in the training historical data
usually reflects the behavior of an uneven user distribution,
resulting in a tendency to under-represent smaller groups.
Moreover, additional inductive biases exist within models,
related to the assumptions about the nature of the target
function of the method of choice.

These, however, are problems that concern every data-
driven system. Nonetheless, it is also possible to find biases
specific to RSs, such as the ones that may originate from
the users’ tendency to give feedback only to content that
is particularly liked or disliked and to converge towards
the majority behavior (a phenomenon termed ‘‘conformance
bias’’). Many works also highlight the influence of the long
tail phenomenonwementioned at the start of this work, where
a small number of popular items represent a considerable
part of user interactions. Feedback-loops used within RSs
to update user preference may reinforce this effect, known
as ‘‘Matthew’s effect’’ [317], that reduces recommendation
diversity in favor of the most ‘‘likely likable’’ items.

Recent works try to mitigate bias effects, mostly through
regularization techniques using multi-task objective func-
tions or explicitly capturing the concept of diversity from
past user interactions [291], [319]–[321]. Other notable
works include the one from [322], which performs an
empirical study on this phenomenon on a news dataset
using different recommendation logic, finding that careful
algorithm design can lead to diverse recommendations
in line with manually curated news feeds. The authors
of [323] test a serendipity-oriented approach based on a topic
diversification algorithm to improve the variety of retrieved
items.

B. EXPLAINABLE RECOMMENDER SYSTEMS
Explainability refers to the ability of a user to understand
why it has received a recommendation. This can be directly
related to the concept of user trust, which can be thought
of as similar to accuracy (though not entirely the same
because of its intrinsic subjectivity, among other things).
Many of the works we presented rely on various artificial
neural network architectures to generate recommendations.
In recent years, researchers have tried to make the results
of these ‘‘black-box’’ architectures more understandable to
human subjects. Surveys from [10], [324] comprehensively
cover the latest efforts and emphasize the desirability of
robust RSs that can be perceived as reliable and transparent
by the users. Some works focus on explicitly modeling
latent factors or user profiles [325] and propose the usage
of template-based systems to generate user data [252], [326].
Manyworks use disentangled representation learning to assist
in the separation of contextual representation into a number
of disjoint user and item factors that support factor-based
explanations [187], [237]. Some works have gone as far
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as proposing the usage of language models to generate a
natural language explanation base on the internal user/item
representations [73], [161], [288].

C. TOWARDS FEDERATED LEARNING
Changes in data policies laws have recently pushed for
the development of recommendation solutions that strike a
balance between personalization and user privacy. In contrast
with traditional systems, where all data is processed by a
centralized infrastructure, federated learning enables a dis-
tributed approach. Personalized models are updated directly
on user devices and then transferred to the server to be
aggregated in a global model [293]. We found several recent
works proposing new solutions for federated RSs [293],
[327]–[329]. One recently published work explores the
effectiveness of FedAttack [330], a method for launching
‘‘poisoning’’ attacks on federated RSs. This work suggests
that this paradigm may be vulnerable to specific adversarial
attacks that may compromise the functioning of the target RS.
In [290], the authors study memory-efficient recommenders
to tackle the limitations of resource-constrained edge devices,
proposing ‘‘elastic embeddings’’. Such embeddings are
composed of smaller blocks (sub-embeddings), similar
to compositional embeddings, though its components are
exclusive and not shared.

D. IMPROVING EVALUATION PROTOCOLS FOR
COMPREHENSIVE EVALUATION
As already discussed, few datasets are used consistently
throughout different studies and results are often difficult to
compare. For example, only one of the presented datasets
provides an ‘‘official’’ data split for training and testing. As a
consequence, most works adopt different splitting strategies
or reuse datasets from previous work without clear indication
of how to retrieve them.

More importantly, this strategy can be seen as somehow
compelling new research to select the dataset and evaluation
strategy in function of the methods that it is seeking to
improve, since results would be not comparable otherwise.
This would not necessarily be a negative thing if it were not
for the highly fragmented dataset and evaluation landscape.
The only exception we could find is the MIND dataset [268],
a relatively recent dataset whose train, test, and validation
data splits have been made readily available ever since its
origin. The dataset portal3 also allows the submission of
predictions on an undisclosed test set with results published
on an official leader-board. Benchmarks such as this ensure
that models are evaluated fairly and always using the
same evaluation protocol. We find that initiatives of this
kind, close in spirit to the ones that have now become
standard in domains such as NLP, can effectively mitigate the
fragmentation and reproducibility issues that are becoming
more frequent in current research.

3https://msnews.github.io

E. OTHER ISSUES AND EXTENSIONS
There exist other research issues and possible extensions
that we did not address, some of which we briefly introduce
here. We mentioned, though did not address it directly, how
researchers have sought algorithms that are both stable and
robust, which should imply they are not affected by fake
ratings or when patterns in data evolve significantly over
time [2]. Some studies have addressed multi-criteria ratings,
i.e., approaches that distinguish between (for example) like,
dislike, and no interaction at all. Other properties related to
user experience such as non-intrusiveness, trustworthiness
and other matters related to privacy have also been discussed
with great interest [4]. Finally, much could be said about
metrics related to fairness and novelty, partly related to the
matters of bias and diversity we discussed before, and that
are seeing more and more interest in recent research [283].

VII. CONCLUSION
In this work, we provide a comprehensive overview of
the main topics necessary to develop an understanding of
recent developments in recommendation systems research.
We begin by discussing the relevant factors that impact the
design of a recommendation algorithm, like data availability
and evaluation metrics of choice. We describe a data-oriented
taxonomy in line with new developments in this area and
present a selection of recent traditional and neural-based
approaches classified using the newly introduced catego-
rization. We provide statistics for the most popular datasets
and discuss the most common evaluation metrics used
to measure an algorithm’s performance. We examine the
various evaluation protocols used in the researched works and
make an empirical analysis concerning three datasets. Our
findings highlight a lack of clearly defined testing protocols
and benchmarks of reference, suggesting a dire need for
systematic evaluation procedures. Finally, the survey closes
with a description of the latest research trends and open
challenges addressed in recent works.

APPENDIX A
ARCHITECTURAL DETAILS
This section briefly outlines two influential architectural
paradigms that are extensively used in neural-based methods
and also in RSs research.

A. THE ATTENTION MECHANISM
Recent research has made extensive use of various types
of attention mechanisms, which can be summarized as
weighting strategies for different numerical components.

1) ORIGINS OF ATTENTION
Attention has become truly ubiquitous when it saw appli-
cations in the domain of NLP, being used first in machine
translation tasks [172] and later in the Transformer archi-
tecture [70]. The seminal work by [172] introduced additive
attention as an enhancement over an encoder-decoder archi-
tecture based on bi-directional RNNs. Previous to this work,
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the standard approach to such encoder-decoder structures was
to use a single, fixed-size context (the compressed hidden
representation) as input of the decoding stage. However, long-
term dependencies between tokens in the input sequencewere
difficult to encapsulate in such representation, as the context
was, in practice, not able to compress all relevant information
when it came to particularly long sequences. The authors
therefore proposed to enrich the context vector fed to the
decoder by instead providing all hidden states of the encoder,
obtaining a different context ci for each target position of
the sequence (sentence). The context vector ci for each target
word yi is a weighted sum over all the hidden states hj , which
are the concatenation of backward and forward hidden states
for input word j, as defined in Equation 18.

ci =
N∑
j=1

αijhj (18)

The weights αij that effectively measure the attention score
between word j and target word i are computed by the
attention model. These depend on the previous decoder state
si−1 (before generating word yi) and the hidden state hj , as in
Equation 19.

αij = softmax (attention (si−1,hj)) (19)

In the above equation, the attention function (originally
termed as the alignment model) was parameterized as a
feed-forward neural network jointly trained with the rest
of the system. This approach allows for the hidden states
from each input word to influence, to different degrees, the
generated word yi (that depends on previously generated
words) as well as the context ci.

2) THE TRANSFORMER ARCHITECTURE
In the Transformer architecture [70], a similar mechanism
is applied to a different framework, notably without any
recurrence involved. Having dispatched with recurrence, the
sequential processing restrictions are lifted, allowing the
authors to propose a novel encoder-decoder model that can
process all input tokens in parallel. While a detailed descrip-
tion can be found in the original paper, we introduce the most
important part of the architecture, which is the multi-head
attention (MHA) layer. This layer uses ‘‘scaled dot-product’’
attention in order to achieve efficient computation of attention
weights. In the regular attention function proposed, all input
tokens are inputted and embedded simultaneously since the
architecture makes no use of recurrence, and each embedding
matrix X ∈ RN×dim is projected in three different spaces
through different linear transformations, generating three
different input representations with values ∈ RN×dk , as in
Equation 20. These are dubbed query (matrix Q), keys (K),
and values (V ) following an information retrieval naming
convention.

Q = XWQ, K = XWK , V = XWV (20)

Then, in a few efficient matrix operations defined in
Equation 21, the whole self-attention matrix Z ∈ RN×dk is
computed, producing the context vector for every decoded
position. The authors define this mechanism as ‘‘self-
attentive’’ because of how keys, values, and queries all come
from the same place (in their case, the output of an encoder
layer).

Z = Attention (Q,K,V ) = softmax

(
QKT

√
dk

)
V (21)

In the above Equation, the denominator dk is a scaling factor,
used to improve the gradient stability. Intuitively, in the NLP
context, the query is the word being looked at, while keys
and values both represent the past memory. The query is
checked against the key matrix; the output of the matrix
multiplication is passed through a softmax, obtaining a mask
that allows to find the values corresponding to those keys.
The idea of multi-head attention is simply to linearly project
the queries, keys, and values h times with a set of learned
linear projections. These operations are performed in parallel
and operate on a (usually smaller) sub-space, which can
learn multiple diverse representations. Their output is then
concatenated and passed through a linear layer to obtain the
summarized representation from all heads.

B. CAPSULE NETWORKS
Recent work explores the usage of Capsule Networks [244]
to model dynamic user interests. The base unit in Capsules
Networks (CN) is the capsule, which can be seen as a group
of standard neurons (i.e., perceptrons). Differently from a
perceptron, the output of a capsule is a vector instead of
a scalar. Capsules have been first introduced in CV [331],
and their operation on images is probably the easiest way to
explain them. Every object in an image can be considered
a composition of several sub-objects, all in a predictable
position with respect to each other (e.g., eyes, mouth, and
nose in a face). In the RS domain, authors translate this
metaphor into the reasonable assumption that each user is a
composition of different intents and multi-domain interests
that should be recognizable by looking at its interaction
sequence.

1) CAPSULES
Acapsule is a specialized unit with a dual task (contextualized
to images):
• recognize the presence of a single sub-object (estimate
how likely a part of a whole object is present in an
image);

• estimate the instantiation parameters of this part, com-
puting a vector that describes the sub-object orientation
in space, like its dimension, position, rotation, etc.

Hence, with respect to perceptrons, a capsule can capture
much richer information about each object’s spatial prop-
erties, and this information is propagated in the network
and exploited in the training process. This stands in stark
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contrast with other lossy operations often used in CV like
pooling [245]. Capsules are organized in layers, and their
output is fed to the next capsule using weighted connections.
Every layer of capsules specializes on recognizingmore high-
level objects, by using the sub-objects information captured
by lower-level capsules.

2) DYNAMIC ROUTING
Since every capsule in a specific layer learns to recognize
specific parts of an image with spatial information, the next
layer must decide how to organize these parts consistently.
The routing-by-agreement algorithm known as Dynamic
Routing [245] is the key solution to this issue. To learn
connection weights, each capsule tries to predict the output
of every capsule in the following layer. This can be intended
as an ‘‘educated guess’’ of the capsule about the object that is
most likely made up of the recognized parts, and that should
be found by the higher-level capsules. The entire process can
be seen as a soft-clustering algorithm that creates clusters of
capsules based on the agreement between their predictions
and the target vectors. Predictions made by capsule i in layer
l about the output of capsule j in layer l + 1 is computed:

ûj|i = Wijui (22)

In the equation above, ui is the activation vector of capsule i
and matrixWij is used to learn the part-to-whole relationship
between sub-objects and higher-level objects recognized by
the next layer. A weight matrix b stores the connection
weights between capsule i in layer l and capsule j in layer l+1
(entry bij). All entries of this matrix are initialized to 0. Then,
a fixed number of iterations is performed to update weights
for each layer. At each iteration the coupling coefficients are
computed as follows:

ci← softmax (bi), ∀ capsule i ∈ l (23)

Then, for each capsule j in layer l + 1, the weighted sum of
predictions made from capsules in layer l is computed. Here
the vector sj depends on the ‘‘guesses’’ of all lower capsules
i:

sj =
∑
i∈l

cijûj|i vj =
||sj ||2

1+ ||sj ||2
·

sj
||sj ||

(24)

The raw sum in sj creates an un-normalized vector with
values potentially bigger than 1. Since we want the vector
magnitude (norm-2) to represent the probability of the
capsule ‘‘being right’’ on the recognized part, a squashing
non-linear activation is applied to obtain vj , as in Equation 24.

To measure the agreement between capsules from subse-
quent layers, the dot product is computed between actual
output vj and predicted output ûj|i. This agreement score is
used to update the connection weights:

bij← bij + ûj|ivj (25)

This way, capsules in l that were more in agreement with
capsules in level l + 1 can send a stronger signal than

capsules that made a wrong prediction, with respect to higher-
level capsules. After a few update rounds for each layer l,
the algorithm proceeds to the next layer, until all capsule
connections are weighted. This routing mechanism has
been recently improved using the Expectation-Maximization
algorithm [332] in order to overcome some of the limitations
of the former approach.

ACKNOWLEDGMENT
(Matteo Marcuzzo and Alessandro Zangari are co-first
authors.)

REFERENCES
[1] P. Resnick and H. R. Varian, ‘‘Recommender systems,’’ Commun. ACM,

vol. 40, no. 3, pp. 56–58, 1997, doi: 10.1145/245108.245121.
[2] C. C. Aggarwal, Recommender Systems—The Textbook, 1st ed. Cham,

Switzerland S pringer, 2016, doi: 10.1007/978-3-319-29659-3.
[3] S. Rendle, Item Recommendation from Implicit Feedback. NewYork, NY,

USA: Springer, 2022, pp. 143–171, doi: 10.1007/978-1-0716-2197-4_4.
[4] G. Adomavicius and A. Tuzhilin, ‘‘Toward the next generation of

recommender systems: A survey of the state-of-the-art and possible
extensions,’’ IEEE Trans. Knowl. Data Eng., vol. 17, no. 6, pp. 734–749,
Jun. 2005, doi: 10.1109/TKDE.2005.99.

[5] L. Wu, X. He, X. Wang, K. Zhang, and M. Wang, ‘‘A survey on
accuracy-oriented neural recommendation: From collaborative filtering
to information-rich recommendation,’’ IEEE Trans. Knowl. Data Eng.,
early access, Jan. 25, 2022, doi: 10.1109/TKDE.2022.3145690.

[6] R. Chen, Q. Hua, Y.-S. Chang, B. Wei, L. Zhang, and X. Kong, ‘‘A survey
of collaborative filtering-based recommender systems: From traditional
methods to hybrid methods based on social networks,’’ IEEE Access,
vol. 6, pp. 64301–64320, 2018, doi: 10.1109/ACCESS.2018.2877208.

[7] S. Zhang, L. Yao, A. Sun, and Y. Tay, ‘‘Deep learning based recommender
system: A survey and new perspectives,’’ ACM Comput. Surv., vol. 52,
no. 1, pp. 1–38, Jan. 2020, doi: 10.1145/3285029.

[8] M. Quadrana, P. Cremonesi, and D. Jannach, ‘‘Sequence-aware recom-
mender systems,’’ ACMComput. Surv., vol. 51, no. 4, pp. 1–36, Jul. 2019,
doi: 10.1145/3190616.

[9] S. Wang, L. Cao, Y. Wang, Q. Z. Sheng, M. A. Orgun, and D. Lian,
‘‘A survey on session-based recommender systems,’’ACMComput. Surv.,
vol. 54, no. 7, pp. 1–38, Sep. 2022, doi: 10.1145/3465401.

[10] Y. Zhang and X. Chen, ‘‘Explainable recommendation: A survey and new
perspectives,’’ Found. Trends Inf. Retr., vol. 14, no. 1, pp. 1–101, 2020,
doi: 10.1561/1500000066.

[11] N. Silva, H. Werneck, T. Silva, A. C. M. Pereira, and L. Rocha, ‘‘Multi-
armed bandits in recommendation systems: A survey of the state-of-
the-art and future directions,’’ Expert Syst. Appl., vol. 197, Jul. 2022,
Art. no. 116669, doi: 10.1016/j.eswa.2022.116669.

[12] Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong, and Q. He,
‘‘A survey on knowledge graph-based recommender systems,’’ IEEE
Trans. Knowl. Data Eng., vol. 34, no. 8, pp. 3549–3568, Aug. 2022, doi:
10.1109/TKDE.2020.3028705.

[13] J. Liu and L. Duan, ‘‘A survey on knowledge graph-based recom-
mender systems,’’ in Proc. IEEE 5th Adv. Inf. Technol., Electron.
Automat. Control Conf. (IAEAC), vol. 5, Mar. 2021, pp. 2450–2453, doi:
10.1109/IAEAC50856.2021.9390863.

[14] S. Wang, L. Hu, Y. Wang, X. He, Q. Z. Sheng, M. A. Orgun, L. Cao,
F. Ricci, and P. S. Yu, ‘‘Graph learning based recommender systems: A
review,’’ in Proc. 13th Int. Joint Conf. Artif. Intell. (IJCAI), Z.-H. Zhou,
Ed. Montreal, QC, Canada: IJCAI, Aug. 2021, pp. 4644–4652, doi:
10.24963/ijcai.2021/630.

[15] J. K. Tarus, Z. Niu, andG.Mustafa, ‘‘Knowledge-based recommendation:
A review of ontology-based recommender systems for e-learning,’’ Artif.
Intell. Rev., vol. 50, no. 1, pp. 21–48, Jun. 2018, doi: 10.1007/s10462-
017-9539-5.

[16] X. Bai, M. Wang, I. Lee, Z. Yang, X. Kong, and F. Xia, ‘‘Scientific paper
recommendation: A survey,’’ IEEE Access, vol. 7, pp. 9324–9339, 2019,
doi: 10.1109/ACCESS.2018.2890388.

[17] A. Menk, L. Sebastia, and R. Ferreira, ‘‘Recommendation systems for
tourism based on social networks: A survey,’’ 2019, arXiv:1903.12099.

86614 VOLUME 10, 2022

http://dx.doi.org/10.1145/245108.245121
http://dx.doi.org/10.1007/978-3-319-29659-3
http://dx.doi.org/10.1007/978-1-0716-2197-4_4
http://dx.doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1109/TKDE.2022.3145690
http://dx.doi.org/10.1109/ACCESS.2018.2877208
http://dx.doi.org/10.1145/3285029
http://dx.doi.org/10.1145/3190616
http://dx.doi.org/10.1145/3465401
http://dx.doi.org/10.1561/1500000066
http://dx.doi.org/10.1016/j.eswa.2022.116669
http://dx.doi.org/10.1109/TKDE.2020.3028705
http://dx.doi.org/10.1109/IAEAC50856.2021.9390863
http://dx.doi.org/10.24963/ijcai.2021/630
http://dx.doi.org/10.1007/s10462-017-9539-5
http://dx.doi.org/10.1007/s10462-017-9539-5
http://dx.doi.org/10.1109/ACCESS.2018.2890388


M. Marcuzzo et al.: Recommendation Systems: An Insight Into Current Development and Future Research Challenges

[18] Z. Ali, P. Kefalas, K. Muhammad, B. Ali, and M. Imran, ‘‘Deep learning
in citation recommendation models survey,’’ Expert Syst. Appl., vol. 162,
Dec. 2020, Art. no. 113790, doi: 10.1016/j.eswa.2020.113790.

[19] K. Chaudhari and A. Thakkar, ‘‘A comprehensive survey on travel
recommender systems,’’ Arch. Comput. Methods Eng., vol. 27, no. 5,
pp. 1545–1571, Nov. 2020, doi: 10.1007/s11831-019-09363-7.

[20] T. Bogers, Tag-Based Recommendation. Cham, Switzerland: Springer,
2018, pp. 441–479, doi: 10.1007/978-3-319-90092-6_12.

[21] A. Ghannadrad, M. Arezoumandan, L. Candela, and D. Castelli,
‘‘Recommender systems for science: A basic taxonomy,’’ in Proc.
18th Italian Res. Conf. Digit. Libraries (IRCDL), Feb. 2022, pp. 1–8.
[Online]. Available: http://ircdl2022.dei.unipd.it/downloads/papers/
IRCDL_2022_paper_17.pdf

[22] N. Cheong, ‘‘Personalized learning in science recommendation system
based on learners’ preferences,’’ in Proc. 3rd Int. Conf. Educ. Develop.
Stud., New York, NY, USA, 2022, pp. 22–27, doi: 10.1145/3528137.
3528161.

[23] M. Ferrari Dacrema, P. Cremonesi, and D. Jannach, ‘‘Are we really mak-
ingmuch progress? Aworrying analysis of recent neural recommendation
approaches,’’ in Proc. 13th ACM Conf. Recommender Syst., New York,
NY, USA, Sep. 2019, pp. 101–109, doi: 10.1145/3298689.3347058.

[24] S. Rendle,W.Krichene, L. Zhang, and J. Anderson, ‘‘Neural collaborative
filtering vs. matrix factorization revisited,’’ in Proc. 14th ACM Conf.
Recommender Syst., New York, NY, USA, Sep. 2020, pp. 240–248, doi:
10.1145/3383313.3412488.

[25] S. Rendle, L. Zhang, and Y. Koren, ‘‘On the difficulty of evaluating
baselines: A study on recommender systems,’’ 2019, arXiv:1905.01395.

[26] M. Ferrari Dacrema, S. Boglio, P. Cremonesi, and D. Jannach, ‘‘A
troubling analysis of reproducibility and progress in recommender
systems research,’’ ACM Trans. Inf. Syst., vol. 39, no. 2, pp. 1–49,
Apr. 2021, doi: 10.1145/3434185.

[27] P. Cremonesi, Y. Koren, and R. Turrin, ‘‘Performance of recommender
algorithms on top-n recommendation tasks,’’ in Proc. 4th ACM Conf.
Recommender Syst. (RecSys), NewYork, NY, USA, 2010, pp. 39–46, doi:
10.1145/1864708.1864721.

[28] J. Bobadilla, F. Ortega, A. Hernando, and J. Bernal, ‘‘A collaborative
filtering approach to mitigate the new user cold start problem,’’ Knowl.-
Based Syst., vol. 26, pp. 225–238, Feb. 2012, doi: 10.1016/j.knosys.
2011.07.021.

[29] C. C. Aggarwal, J. L. Wolf, K.-L. Wu, and P. S. Yu, ‘‘Horting hatches an
egg: A new graph-theoretic approach to collaborative filtering,’’ in Proc.
5th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD),
New York, NY, USA, 1999, pp. 201–212, doi: 10.1145/312129.312230.

[30] G. Takács, I. Pilászy, B. Németh, and D. Tikk, ‘‘Scalable collaborative
filtering approaches for large recommender systems,’’ J. Mach. Learn.
Res., vol. 10, pp. 623–656, Dec. 2009.

[31] Y. Koren and R. Bell, Advances in Collaborative Filtering. Boston, MA,
USA: Springer, 2015, pp. 77–118, doi: 10.1007/978-1-4899-7637-6_3.

[32] S. Rendle, W. Krichene, L. Zhang, and Y. Koren, ‘‘IALS++: Speeding
up matrix factorization with subspace optimization,’’ 2021, arXiv:2110.
14044.

[33] G. Blanc and S. Rendle, ‘‘Adaptive sampled softmax with kernel
based sampling,’’ in Proc. 35th Int. Conf. Mach. Learn. (Proceedings
of Machine Learning Research), vol. 80, J. Dy and A. Krause, Eds.
Stockholm, Sweden: PMLR, 10–15, Jul. 2018, pp. 590–599. [Online].
Available: https://proceedings.mlr.press/v80/blanc18a.html

[34] Y. Bai, S. Goldman, and L. Zhang, ‘‘TAPAS: Two-pass approximate
adaptive sampling for softmax,’’ 2017, arXiv:1707.03073.

[35] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, ‘‘BPR:
Bayesian personalized ranking from implicit feedback,’’ in Proc. 25th
Conf. Uncertainty Artif. Intell. Arlington, VA, USA: AUAI Press, 2009,
pp. 452–461.

[36] S. Balakrishnan and S. Chopra, ‘‘Collaborative ranking,’’ in Proc. 5th
ACM Int. Conf. Web Search Data Mining (WSDM), New York, NY, USA,
2012, pp. 143–152, doi: 10.1145/2124295.2124314.

[37] S. Bruch, X. Wang, M. Bendersky, and M. Najork, ‘‘An analysis of the
softmax cross entropy loss for learning-to-rank with binary relevance,’’
in Proc. ACM SIGIR Int. Conf. Theory Inf. Retr., New York, NY, USA,
Sep. 2019, pp. 75–78, doi: 10.1145/3341981.3344221.

[38] M. Taylor, J. Guiver, S. Robertson, and T. Minka, ‘‘SoftRank: Optimizing
non-smooth rank metrics,’’ in Proc. Int. Conf. Web Search Web Data
Mining (WSDM), New York, NY, USA, 2008, pp. 77–86, doi: 10.1145/
1341531.1341544.

[39] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li, ‘‘Learning to rank:
From pairwise approach to listwise approach,’’ in Proc. 24th Int. Conf.
Mach. Learn. (ICML), New York, NY, USA, 2007, pp. 129–136, doi:
10.1145/1273496.1273513.

[40] L. Wu, C.-J. Hsieh, and J. Sharpnack, ‘‘SQL-rank: A listwise approach
to collaborative ranking,’’ in Proc. 35th Int. Conf. Mach. Learn.
(Proceedings of Machine Learning Research), vol. 80, J. Dy and
A. Krause, Eds. PMLR, Jul. 2018, pp. 5315–5324. [Online]. Available:
https://proceedings.mlr.press/v80/wu18c.html

[41] S. E. Robertson, ‘‘The probability ranking principle in IR,’’ J. Document.,
vol. 33, pp. 294–304, Apr. 1977, doi: 10.1108/eb026647.

[42] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and
G. Hullender, ‘‘Learning to rank using gradient descent,’’ in Proc. 22nd
Int. Conf. Mach. Learn. (ICML), New York, NY, USA, 2005, pp. 89–96,
doi: 10.1145/1102351.1102363.

[43] P. Covington, J. Adams, and E. Sargin, ‘‘Deep neural networks
for Youtube recommendations,’’ in Proc. 10th ACM Conf. Recom-
mender Syst., New York, NY, USA, Sep. 2016, pp. 191–198, doi:
10.1145/2959100.2959190.

[44] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong,
V. Jain, X. Liu, and H. Shah, ‘‘Wide & deep learning for recommender
systems,’’ in Proc. 1st Workshop Deep Learn. Recommender Syst.,
New York, NY, USA, 2016, pp. 7–10, doi: 10.1145/2988450.2988454.

[45] Y. Shi, M. Larson, and A. Hanjalic, ‘‘Collaborative filtering beyond
the user-item matrix: A survey of the state of the art and future
challenges,’’ ACM Comput. Surv., vol. 47, no. 1, pp. 1–45, Jul. 2014, doi:
10.1145/2556270.

[46] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, ‘‘Using collaborative
filtering to weave an information tapestry,’’ Commun. ACM, vol. 35,
no. 12, pp. 61–70, 1992, doi: 10.1145/138859.138867.

[47] P. Lops, M. de Gemmis, and G. Semeraro, Content-Based Recommender
Systems: State of the Art and Trends. Boston, MA, USA: Springer, 2011,
pp. 73–105, doi: 10.1007/978-0-387-85820-3_3.

[48] R. Burke, ‘‘Hybrid recommender systems: Survey and experiments,’’
User Model. User-Adapted Interact., vol. 12, no. 4, pp. 331–370,
Nov. 2002, doi: 10.1023/A:1021240730564.

[49] Y. Hu, Y. Koren, and C. Volinsky, ‘‘Collaborative filtering for implicit
feedback datasets,’’ in Proc. 8th IEEE Int. Conf. Data Mining, Dec. 2008,
pp. 263–272, doi: 10.1109/ICDM.2008.22.

[50] D. Oard and J. Kim, ‘‘Implicit feedback for recommender systems,’’ in
Proc. AAAI Workshop Recommender Syst., 1998, pp. 81–83.

[51] J. S. Breese, D. Heckerman, and C. Kadie, ‘‘Empirical analysis of
predictive algorithms for collaborative filtering,’’ in Proc. 14th Conf.
Uncertainty Artif. Intell. San Francisco, CA, USA: Morgan Kaufmann
Publishers, 1998, pp. 43–52, doi: 10.48550/arXiv.1301.7363.

[52] J. Wang, A. P. de Vries, and M. J. T. Reinders, ‘‘Unifying user-
based and item-based collaborative filtering approaches by similarity
fusion,’’ in Proc. 29th Annu. Int. ACM SIGIR Conf. Res. Develop.
Inf. Retr. (SIGIR), New York, NY, USA, 2006, pp. 501–508, doi:
10.1145/1148170.1148257.

[53] G. Linden, B. Smith, and J. York, ‘‘Amazon.com recommendations: Item-
to-item collaborative filtering,’’ IEEE Internet Comput., vol. 7, no. 1,
pp. 76–80, Jan./Feb. 2003, doi: 10.1109/MIC.2003.1167344.

[54] J. Bennett and S. Lanning, ‘‘The Netflix prize,’’ in Proc. KDD Cup
Workshop, Aug. 2007, pp. 1–4.

[55] Y. Koren, R. Bell, and C. Volinsky, ‘‘Matrix factorization techniques
for recommender systems,’’ IEEE Comput., vol. 42, no. 8, pp. 30–37,
Aug. 2009, doi: 10.1109/MC.2009.263.

[56] S. Funk. (2006). Netflix Update: Try This at Home. Accessed:
Mar. 25, 2022. [Online]. Available: https://sifter.org/simon/journal/
20061211.html

[57] Y. Koren, ‘‘Factorization meets the neighborhood: A multifaceted
collaborative filtering model,’’ in Proc. 14th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining (KDD), New York, NY, USA, 2008,
pp. 426–434, doi: 10.1145/1401890.1401944.

[58] Y. Koren, ‘‘Collaborative filteringwith temporal dynamics,’’ inProc. 15th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, New York, NY,
USA, 2009, pp. 447–456, doi: 10.1145/1557019.1557072.

[59] F. Fouss, A. Pirotte, and M. Saerens, ‘‘A novel way of computing
similarities between nodes of a graph, with application to collaborative
recommendation,’’ in Proc. IEEE/WIC/ACM Int. Conf. Web Intell. (WI),
Sep. 2005, pp. 550–556, doi: 10.1109/WI.2005.9.

VOLUME 10, 2022 86615

http://dx.doi.org/10.1016/j.eswa.2020.113790
http://dx.doi.org/10.1007/s11831-019-09363-7
http://dx.doi.org/10.1007/978-3-319-90092-6_12
http://dx.doi.org/10.1145/3528137.3528161
http://dx.doi.org/10.1145/3528137.3528161
http://dx.doi.org/10.1145/3298689.3347058
http://dx.doi.org/10.1145/3383313.3412488
http://dx.doi.org/10.1145/3434185
http://dx.doi.org/10.1145/1864708.1864721
http://dx.doi.org/10.1016/j.knosys.2011.07.021
http://dx.doi.org/10.1016/j.knosys.2011.07.021
http://dx.doi.org/10.1145/312129.312230
http://dx.doi.org/10.1007/978-1-4899-7637-6_3
http://dx.doi.org/10.1145/2124295.2124314
http://dx.doi.org/10.1145/3341981.3344221
http://dx.doi.org/10.1145/1341531.1341544
http://dx.doi.org/10.1145/1341531.1341544
http://dx.doi.org/10.1145/1273496.1273513
http://dx.doi.org/10.1108/eb026647
http://dx.doi.org/10.1145/1102351.1102363
http://dx.doi.org/10.1145/2959100.2959190
http://dx.doi.org/10.1145/2988450.2988454
http://dx.doi.org/10.1145/2556270
http://dx.doi.org/10.1145/138859.138867
http://dx.doi.org/10.1007/978-0-387-85820-3_3
http://dx.doi.org/10.1023/A:1021240730564
http://dx.doi.org/10.1109/ICDM.2008.22
http://dx.doi.org/10.48550/arXiv.1301.7363
http://dx.doi.org/10.1145/1148170.1148257
http://dx.doi.org/10.1109/MIC.2003.1167344
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1145/1401890.1401944
http://dx.doi.org/10.1145/1557019.1557072
http://dx.doi.org/10.1109/WI.2005.9


M. Marcuzzo et al.: Recommendation Systems: An Insight Into Current Development and Future Research Challenges

[60] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens, ‘‘Random-walk
computation of similarities between nodes of a graph with application to
collaborative recommendation,’’ IEEE Trans. Knowl. Data Eng., vol. 19,
no. 3, pp. 355–369, Mar. 2007, doi: 10.1109/TKDE.2007.46.

[61] C. Cooper, S. H. Lee, T. Radzik, and Y. Siantos, ‘‘Random walks in
recommender systems: Exact computation and simulations,’’ in Proc.
23rd Int. Conf. World Wide Web, New York, NY, USA, Apr. 2014,
pp. 811–816, doi: 10.1145/2567948.2579244.

[62] B. Paudel, F. Christoffel, C. Newell, and A. Bernstein, ‘‘Updatable, accu-
rate, diverse, and scalable recommendations for interactive applications,’’
ACM Trans. Interact. Intell. Syst., vol. 7, no. 1, pp. 1–34, Mar. 2017, doi:
10.1145/2955101.

[63] P. Lops, D. Jannach, C. Musto, T. Bogers, and M. Koolen, ‘‘Trends
in content-based recommendation: Preface to the special issue on
recommender systems based on rich item descriptions,’’ User Model.
User-Adapted Interact., vol. 29, no. 2, pp. 239–249, Mar. 2019, doi:
10.1007/s11257-019-09231-w.

[64] X. Li, J. Yang, and J. Ma, ‘‘Recent developments of content-based image
retrieval (CBIR),’’ Neurocomputing, vol. 452, pp. 675–689, Sep. 2021,
doi: 10.1016/j.neucom.2020.07.139.

[65] P. Adamopoulos and A. Tuzhilin, ‘‘On over-specialization and concen-
tration bias of recommendations: Probabilistic neighborhood selection
in collaborative filtering systems,’’ in Proc. 8th ACM Conf. Recom-
mender Syst. (RecSys), New York, NY, USA, 2014, pp. 153–160, doi:
10.1145/2645710.2645752.

[66] S. Rendle, ‘‘Factorization machines,’’ in Proc. IEEE Int. Conf.
Data Mining, New York, NY, USA, Dec. 2010, pp. 995–1000, doi:
10.1109/ICDM.2010.127.

[67] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, Sep. 1997, doi: 10.1007/BF00994018.

[68] S. Rendle, Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme, ‘‘Fast
context-aware recommendations with factorization machines,’’ in Proc.
34th Int. ACM SIGIR Conf. Res. Develop. Inf. (SIGIR), New York, NY,
USA, 2011, pp. 635–644, doi: 10.1145/2009916.2010002.

[69] S. Rendle, ‘‘Factorization machines with libFM,’’ ACM Trans.
Intell. Syst. Technol., vol. 3, no. 3, pp. 1–22, May 2012, doi:
10.1145/2168752.2168771.

[70] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. 31st Int.
Conf. Neural Inf. Process. Syst. Red Hook, NY, USA: Curran Associates,
Dec. 2017, pp. 6000–6010. [Online]. Available: https://proceedings.
neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-
Paper.pdf

[71] A. Gasparetto, M. Marcuzzo, A. Zangari, and A. Albarelli, ‘‘A survey
on text classification algorithms: From text to predictions,’’ Information,
vol. 13, no. 2, p. 83, Feb. 2022, doi: 10.3390/info13020083.

[72] A. Gasparetto, A. Zangari, M. Marcuzzo, and A. Albarelli, ‘‘A survey
on text classification: Practical perspectives on the Italian language,’’
PLoS ONE, vol. 17, no. 7, pp. 1–46, Jul. 2022, doi: 10.1371/jour-
nal.pone.0270904.

[73] P. Sun, L. Wu, K. Zhang, Y. Fu, R. Hong, and M. Wang, ‘‘Dual learning
for explainable recommendation: Towards unifying user preference
prediction and review generation,’’ in Proc. Web Conf., New York, NY,
USA, 2020, pp. 837–847, doi: 10.1145/3366423.3380164.

[74] L. Zheng, V. Noroozi, and P. S. Yu, ‘‘Joint deep modeling of users and
items using reviews for recommendation,’’ in Proc. 10th ACM Int. Conf.
Web Search Data Mining, New York, NY, USA, Feb. 2017, pp. 425–434,
doi: 10.1145/3018661.3018665.

[75] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel, ‘‘Image-based
recommendations on styles and substitutes,’’ in Proc. 38th Int. ACM
SIGIR Conf. Res. Develop. Inf. Retr., New York, NY, USA, Aug. 2015,
pp. 43–52, doi: 10.1145/2766462.2767755.

[76] X. Yang, Y. Ma, L. Liao, M. Wang, and T.-S. Chua, ‘‘TransNFCM:
Translation-based neural fashion compatibility modeling,’’ Proc. AAAI
Conf. Artif. Intell., Jul. 2019, vol. 33, no. 1, pp. 403–410. [Online].
Available: https://ojs.aaai.org/index.php/AAAI/article/view/3811

[77] A. Gasparetto, L. Cosmo, E. Rodola, M. Bronstein, and A. Torsello,
‘‘Spatial maps: From low rank spectral to sparse spatial functional rep-
resentations,’’ in Proc. Int. Conf. 3D Vis. (3DV), Oct. 2017, pp. 477–485,
doi: 10.1109/3DV.2017.00061.

[78] M. Pistellato, L. Cosmo, F. Bergamasco, A. Gasparetto, and
A. Albarelli, ‘‘Adaptive albedo compensation for accurate phase-
shift coding,’’ in Proc. 24th Int. Conf. Pattern Recognit. (ICPR),
Aug. 2018, pp. 2450–2455, doi: 10.1109/ICPR.2018.8545465.

[79] A. Gasparetto, G. Minello, and A. Torsello, ‘‘Non-parametric spectral
model for shape retrieval,’’ in Proc. Int. Conf. 3D Vis., Oct. 2015,
pp. 344–352, doi: 10.1109/3DV.2015.46.

[80] J. Lee and S. Abu-El-Haija, ‘‘Large-scale content-only video recommen-
dation,’’ in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017, pp. 987–995,
doi: 10.1109/ICCVW.2017.121.

[81] J. Lee, S. Abu-El-Haija, B. Varadarajan, and A. Natsev, ‘‘Collaborative
deep metric learning for video understanding,’’ in Proc. 24th ACM
SIGKDD Int. Conf. Knowl. Discovery DataMining, NewYork, NY, USA,
Jul. 2018, pp. 481–490, doi: 10.1145/3219819.3219856.

[82] H.Ma, H. Yang, M. R. Lyu, and I. King, ‘‘SoRec: Social recommendation
using probabilistic matrix factorization,’’ in Proc. 17th ACM Conf. Inf.
Knowl. Mining (CIKM), New York, NY, USA, 2008, pp. 931–940, doi:
10.1145/1458082.1458205.

[83] L.Wu, P. Sun, R. Hong, Y. Ge, andM.Wang, ‘‘Collaborative neural social
recommendation,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 51, no. 1,
pp. 464–476, Jan. 2021, doi: 10.1109/TSMC.2018.2872842.

[84] L. Wu, J. Li, P. Sun, R. Hong, Y. Ge, and M.Wang, ‘‘DiffNet++: A neural
influence and interest diffusion network for social recommendation,’’
IEEE Trans. Knowl. Data Eng., early access, Dec. 31, 2021, doi:
10.1109/TKDE.2020.3048414.

[85] L. Ehrlinger and W. Wöß, ‘‘Towards a definition of knowledge graphs,’’
inProc. Joint Posters&Demos@SEMANTiCSWorkshop Co-Located 12th
Int. Conf. Semantic Syst. (SuCCESS), vol. 1695, Sep. 2016, pp. 1–4.
[Online]. Available: http://ceur-ws.org/Vol-1695/paper4.pdf

[86] X. Wang, D. Wang, C. Xu, X. He, Y. Cao, and T.-S. Chua, ‘‘Explainable
reasoning over knowledge graphs for recommendation,’’ in Proc. 33rd
AAAI Conf. Artif. Intell. 31st Innov. Appl. Artif. Intell. Conf. 9th AAAI
Symp. Educ. Adv. Artif. Intell., Feb. 2019, pp. 1–8. [Online]. Available:
https://doi.org/10.1609/aaai.v33i01.33015329

[87] Y. Cao, X. Wang, X. He, Z. Hu, and T.-S. Chua, ‘‘Unifying knowledge
graph learning and recommendation: Towards a better understanding of
user preferences,’’ in Proc. World Wide Web Conf., New York, NY, USA,
May 2019, pp. 151–161, doi: 10.1145/3308558.3313705.

[88] P. Dourish, ‘‘What we talk about when we talk about context,’’
Pers. Ubiquitous Comput., vol. 8, no. 1, pp. 19–30, Feb. 2004, doi:
10.1007/s00779-003-0253-8.

[89] N. Hariri, B. Mobasher, and R. Burke, ‘‘Context-aware music recommen-
dation based on latenttopic sequential patterns,’’ in Proc. 6th ACM Conf.
Recommender Syst. (RecSys), New York, NY, USA, 2012, pp. 131–138,
doi: 10.1145/2365952.2365979.

[90] N. Natarajan, D. Shin, and I. S. Dhillon, ‘‘Which app will you use next?:
Collaborative filtering with interactional context,’’ in Proc. 7th ACM
Conf. Recommender systems, New York, NY, USA, 2013, pp. 201–208.
[Online]. Available: https://doi.org/10.1145/2507157.2507186

[91] T. G. Kolda and B. W. Bader, ‘‘Tensor decompositions and applications,’’
SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009, doi: 10.1137/07070111X.

[92] P. G. Campos, F. Díez, and I. Cantador, ‘‘Time-aware recommender
systems: A comprehensive survey and analysis of existing evaluation
protocols,’’ User Model. User-Adapted Interact., vol. 24, nos. 1–2,
pp. 67–119, 2014, doi: 10.1007/s11257-012-9136-x.

[93] H. Fang, D. Zhang, Y. Shu, and G. Guo, ‘‘Deep learning for sequential
recommendation: Algorithms, influential factors, and evaluations,’’ ACM
Trans. Inf. Syst., vol. 39, no. 1, pp. 1–42, Jan. 2021, doi: 10.1145/3426723.

[94] D. Jannach, B. Mobasher, and S. Berkovsky, ‘‘Research directions
in session-based and sequential recommendation,’’ User Model. User-
Adapted Interact., vol. 30, no. 4, pp. 609–616, Sep. 2020, doi:
10.1007/s11257-020-09274-4.

[95] M. Quadrana, A. Karatzoglou, B. Hidasi, and P. Cremonesi, ‘‘Personal-
izing session-based recommendations with hierarchical recurrent neural
networks,’’ in Proc. 11th ACM Conf. Recommender Syst., New York, NY,
USA, Aug. 2017, pp. 130–137, doi: 10.1145/3109859.3109896.

[96] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, ‘‘Factorizing
personalized Markov chains for next-basket recommendation,’’ in Proc.
19th Int. Conf. World Wide Web (WWW), New York, NY, USA, 2010,
pp. 811–820, doi: 10.1145/1772690.1772773.

[97] F. Yu, Y. Zhu, Q. Liu, S. Wu, L. Wang, and T. Tan, ‘‘TAGNN: Target
attentive graph neural networks for session-based recommendation,’’ in
Proc. 43rd Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., New York, NY,
USA, Jul. 2020, pp. 1921–1924, doi: 10.1145/3397271.3401319.

[98] R. Qiu, H. Yin, Z. Huang, and T. Chen, ‘‘GAG: Global attributed graph
neural network for streaming session-based recommendation,’’ in Proc.
43rd Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., New York, NY, USA,
Jul. 2020, pp. 669–678, doi: 10.1145/3397271.3401109.

86616 VOLUME 10, 2022

http://dx.doi.org/10.1109/TKDE.2007.46
http://dx.doi.org/10.1145/2567948.2579244
http://dx.doi.org/10.1145/2955101
http://dx.doi.org/10.1007/s11257-019-09231-w
http://dx.doi.org/10.1016/j.neucom.2020.07.139
http://dx.doi.org/10.1145/2645710.2645752
http://dx.doi.org/10.1109/ICDM.2010.127
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1145/2009916.2010002
http://dx.doi.org/10.1145/2168752.2168771
http://dx.doi.org/10.3390/info13020083
http://dx.doi.org/10.1371/journal.pone.0270904
http://dx.doi.org/10.1371/journal.pone.0270904
http://dx.doi.org/10.1145/3366423.3380164
http://dx.doi.org/10.1145/3018661.3018665
http://dx.doi.org/10.1145/2766462.2767755
http://dx.doi.org/10.1109/3DV.2017.00061
http://dx.doi.org/10.1109/ICPR.2018.8545465
http://dx.doi.org/10.1109/3DV.2015.46
http://dx.doi.org/10.1109/ICCVW.2017.121
http://dx.doi.org/10.1145/3219819.3219856
http://dx.doi.org/10.1145/1458082.1458205
http://dx.doi.org/10.1109/TSMC.2018.2872842
http://dx.doi.org/10.1109/TKDE.2020.3048414
http://dx.doi.org/10.1145/3308558.3313705
http://dx.doi.org/10.1007/s00779-003-0253-8
http://dx.doi.org/10.1145/2365952.2365979
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1007/s11257-012-9136-x
http://dx.doi.org/10.1145/3426723
http://dx.doi.org/10.1007/s11257-020-09274-4
http://dx.doi.org/10.1145/3109859.3109896
http://dx.doi.org/10.1145/1772690.1772773
http://dx.doi.org/10.1145/3397271.3401319
http://dx.doi.org/10.1145/3397271.3401109


M. Marcuzzo et al.: Recommendation Systems: An Insight Into Current Development and Future Research Challenges

[99] T. Chen and R. C.-W. Wong, ‘‘Handling information loss of graph
neural networks for session-based recommendation,’’ in Proc. 26th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, New
York, NY, USA, Aug. 2020, pp. 1172–1180, doi: 10.1145/3394486.
3403170.

[100] O. Gouvert, T. Oberlin, and C. Févotte, ‘‘Ordinal non-negative matrix
factorization for recommendation,’’ in Proc. 37th Int. Conf. Mach. Learn.
(Proceedings of Machine Learning Research), vol. 119. H. D. III and
A. Singh, Eds. PMLR, Jul. 2020, pp. 3680–3689. [Online]. Available:
https://proceedings.mlr.press/v119/gouvert20a.html

[101] K. Liu, X. Li, Z. Zhu, L. Brand, and H. Wang, ‘‘Factor-bounded
nonnegative matrix factorization,’’ ACM Trans. Knowl. Discovery Data,
vol. 15, no. 6, pp. 1–18, May 2021, doi: 10.1145/3451395.

[102] Y. Bao, H. Fang, and J. Zhang, ‘‘TopicMF: Simultaneously exploiting
ratings and reviews for recommendation,’’ in Proc. 28th AAAI Conf. Artif.
Intell., 2014, pp. 2–8, doi: 10.1609/aaai.v28i1.8715.

[103] Y. Lu, R. Dong, and B. Smyth, ‘‘Convolutional matrix factorization
for recommendation explanation,’’ in Proc. 23rd Int. Conf. Intell.
User Interfaces Companion, New York, NY, USA, Mar. 2018, doi:
10.1145/3180308.3180343.

[104] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, ‘‘Neural col-
laborative filtering,’’ in Proc. 26th Int. Conf. World Wide Web, New York,
NY, USA, Apr. 2017, pp. 173–182, doi: 10.1145/3038912.3052569.

[105] S. Geuens, ‘‘Factorization machines for hybrid recommendation systems
based on behavioral, product, and customer data,’’ inProc. 9th ACMConf.
Recommender Syst., New York, NY, USA, Sep. 2015, pp. 379–382, doi:
10.1145/2792838.2796542.

[106] M. Kula, ‘‘Metadata embeddings for user and item cold-start rec-
ommendations,’’ in Proc. 2nd Workshop New Trends Content-Based
Recommender Syst., Vienna, Austria, Sep. 2015, pp. 1–8.

[107] G. Jiang, H. Wang, J. Chen, H. Wang, D. Lian, and E. Chen, ‘‘xLightFM:
Extremely memory-efficient factorization machine,’’ in Proc. 44th Int.
ACM SIGIR Conf. Res. Develop. Inf. Retr., New York, NY, USA,
Jul. 2021, pp. 337–346, doi: 10.1145/3404835.3462941.

[108] X. Wang, R. Zhang, Y. Sun, and J. Qi, ‘‘Doubly robust joint learning for
recommendation on data missing not at random,’’ in Proc. 36th Int. Conf.
Mach. Learn. (Proceedings of Machine Learning Research), vol. 97,
K. Chaudhuri and R. Salakhutdinov, Eds. Long Beach, CA, USA: PMLR,
Jun. 2019, pp. 6638–6647. [Online]. Available: https://proceedings.
mlr.press/v97/wang19n.html

[109] J. Xiao, H. Ye, X. He, H. Zhang, F. Wu, and T.-S. Chua, ‘‘Attentional
factorization machines: Learning the weight of feature interactions via
attention networks,’’ inProc. 26th Int. Joint Conf. Artif. Intell., Aug. 2017,
pp. 3119–3125.

[110] L. Chen, Y. Liu, Z. Zheng, and P. Yu, ‘‘Heterogeneous neural attentive
factorization machine for rating prediction,’’ in Proc. 27th ACM Int. Conf.
Inf. Knowl. Manage., New York, NY, USA, Oct. 2018, pp. 833–842, doi:
10.1145/3269206.3271759.

[111] C. Chen, M. Zhang, W. Ma, Y. Liu, and S. Ma, ‘‘Efficient non-sampling
factorization mach. for optim. context-aware recommendation,’’ in
Proc. Web Conf., New York, NY, USA, 2020, pp. 2400–2410, doi:
10.1145/3366423.3380303.

[112] M. R. Joglekar, C. Li, M. Chen, T. Xu, X. Wang, J. K. Adams,
P. Khaitan, J. Liu, and Q. V. Le, ‘‘Neural input search for large scale
recommendation models,’’ in Proc. 26th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, New York, NY, USA, 2020, pp. 2387–2397, doi:
10.1145/3394486.3403288.

[113] S. Bin and G. Sun, ‘‘Matrix factorization recommendation algorithm
based on multiple social relationships,’’Math. Problems Eng., vol. 2021,
Feb. 2021, Art. no. 6610645, doi: 10.1155/2021/6610645.

[114] Y. Xu, Y. Wu, H. Gao, S. Song, Y. Yin, and X. Xiao, ‘‘Collaborative
Apis recommendation for artificial intelligence of things with information
fusion,’’ Future Gener. Comput. Syst., vol. 125, pp. 471–479, Dec. 2021,
doi: 10.1016/j.future.2021.07.004.

[115] Y. Xu, H. Zhang, H. Gao, S. Song, Y. Yin, L. Hei, Y. Ding, and
R. J. D. Barroso, ‘‘Preference discovery from wireless social media data
in Apis recommendation,’’Wireless Netw., vol. 27, no. 5, pp. 3441–3451,
Jul. 2021, doi: 10.1007/s11276-021-02543-z.

[116] R. Chen, Y.-S. Chang, Q. Hua, Q. Gao, X. Ji, and B. Wang,
‘‘An enhanced social matrix factorization model for recommendation
based on social networks using social interaction factors,’’ Multimedia
Tools Appl., vol. 79, nos. 19–20, pp. 14147–14177, May 2020, doi:
10.1007/s11042-020-08620-3.

[117] H. Tahmasbi, M. Jalali, and H. Shakeri, ‘‘TSCMF: Temporal and social
collectivematrix factorizationmodel for recommender systems,’’ J. Intell.
Inf. Syst., vol. 56, no. 1, pp. 169–187, Feb. 2021, doi: 10.1007/s10844-
020-00613-w.

[118] M. Davtalab and A. A. Alesheikh, ‘‘A POI recommendation approach
integrating social spatio-temporal information into probabilistic matrix
factorization,’’ Knowl. Inf. Syst., vol. 63, no. 1, pp. 65–85, Jan. 2021, doi:
10.1007/s10115-020-01509-5.

[119] C. Xu, A. S. Ding, and K. Zhao, ‘‘A novel POI recommendation method
based on trust relationship and spatial–temporal factors,’’ Electron.
Commerce Res. Appl., vol. 48, Jul./Aug. 2021, Art. no. 101060, doi:
10.1016/j.elerap.2021.101060.

[120] D. D. Lee and H. S. Seung, ‘‘Learning the parts of objects by non-negative
matrix factorization,’’Nature, vol. 401, no. 6755, pp. 788–791, Oct. 1999,
doi: 10.1038/44565.

[121] L. Zhang and S. Zhang, ‘‘A general joint matrix factorization framework
for data integration and its systematic algorithmic exploration,’’ IEEE
Trans. Fuzzy Syst., vol. 28, no. 9, pp. 1971–1983, Sep. 2020, doi:
10.1109/TFUZZ.2019.2928518.

[122] A. Babkin, ‘‘Incorporating side information into robust matrix
factorization with Bayesian quantile regression,’’ Statist. Probab.
Lett., vol. 165, Oct. 2020, Art. no. 108847. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167715220301504

[123] D. Kim, C. Park, J. Oh, S. Lee, and H. Yu, ‘‘Convolutional matrix fac-
torization for document context-aware recommendation,’’ in Proc. 10th
ACMConf. Recommender Syst., NewYork, NY,USA, 2016, pp. 233–240.
[Online]. Available: https://doi.org/10.1145/2959100.2959165

[124] R. Salakhutdinov and A. Mnih, ‘‘Probabilistic matrix factorization,’’ in
Proc. 20th Int. Conf. Neural Inf. Process. Syst. Red Hook, NY, USA:
Curran Associates, Dec. 2007, pp. 1257–1264.

[125] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation
of word representations in vector space,’’ in Proc. 1st Int. Conf. Learn.
Represent. (ICLR), Workshop Track, Y. Bengio and Y. LeCun, Eds.
Scottsdale, AZ, USA, May 2013, pp. 1–12.

[126] Q. Le and T. Mikolov, ‘‘Distributed representations of sentences and
documents,’’ in Proc. 31st Int. Conf. Int. Conf. Mach. Learn., vol. 3, 2014,
pp. II-1188–II-1196.

[127] H. Guo, R. Tang, Y. Ye, Z. Li, X. He, and Z. Dong, ‘‘DeepFM: An
end-to-end wide & deep learning framework for CTR prediction,’’ 2018,
arXiv:1804.04950.

[128] M. Volkovs, G. Yu, and T. Poutanen, ‘‘DropoutNet: Addressing cold
start in recommender systems,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. RedHook, NY,USA: CurranAsso-
ciates, 2017, pp. 1–10. [Online]. Available: https://proceedings.neurips.
cc/paper/2017/file/dbd22ba3bd0df8f385bdac3e9f8be207-Paper.pdf

[129] M. Naumov et al., ‘‘Deep learning recommendation model for personal-
ization and recommendation systems,’’ 2019, arXiv:1906.00091.

[130] C. Gao, Q. Yao, D. Jin, and Y. Li, ‘‘Efficient data-specific model search
for collaborative filtering,’’ in Proc. 27th ACM SIGKDD Conf. Knowl.
Discovery Data Mining, New York, NY, USA, Aug. 2021, pp. 415–425,
doi: 10.1145/3447548.3467399.

[131] H. Wang, F. Zhang, M. Zhao, W. Li, X. Xie, and M. Guo, ‘‘Multi-
task feature learning for knowledge graph enhanced recommendation,’’
in Proc. World Wide Web Conf., New York, NY, USA, May 2019,
pp. 2000–2010, doi: 10.1145/3308558.3313411.

[132] B. Liu, C. Zhu, G. Li, W. Zhang, J. Lai, R. Tang, X. He, Z. Li, and Y. Yu,
‘‘AutoFIS: Automatic feature interaction selection in factorizationmodels
for click-through rate prediction,’’ in Proc. 26th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, New York, NY, USA, Aug. 2020,
pp. 2636–2645, doi: 10.1145/3394486.3403314.

[133] W. Song, C. Shi, Z. Xiao, Z. Duan, Y. Xu, M. Zhang, and J. Tang,
‘‘AutoInt: Automatic feature interaction learning via self-attentive neural
networks,’’ in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage., New York,
NY, USA, Nov. 2019, pp. 1161–1170, doi: 10.1145/3357384.3357925.

[134] M. Dong, F. Yuan, L. Yao, X. Xu, and L. Zhu, ‘‘MAMO: Memory-
augmented meta-optimization for cold-start recommendation,’’ in Proc.
26th ACM SIGKDD Int. Conf. Knowl. Discovery DataMining, NewYork,
NY, USA, Aug. 2020, pp. 688–697, doi: 10.1145/3394486.3403113.

[135] Y. Lu, Y. Fang, and C. Shi, ‘‘Meta-learning on heterogeneous information
networks for cold-start recommendation,’’ in Proc. 26th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, New York, NY, USA, 2020,
pp. 1563–1573, doi: 10.1145/3394486.3403207.

VOLUME 10, 2022 86617

http://dx.doi.org/10.1145/3394486.3403170
http://dx.doi.org/10.1145/3394486.3403170
http://dx.doi.org/10.1145/3451395
http://dx.doi.org/10.1609/aaai.v28i1.8715
http://dx.doi.org/10.1145/3180308.3180343
http://dx.doi.org/10.1145/3038912.3052569
http://dx.doi.org/10.1145/2792838.2796542
http://dx.doi.org/10.1145/3404835.3462941
http://dx.doi.org/10.1145/3269206.3271759
http://dx.doi.org/10.1145/3366423.3380303
http://dx.doi.org/10.1145/3394486.3403288
http://dx.doi.org/10.1155/2021/6610645
http://dx.doi.org/10.1016/j.future.2021.07.004
http://dx.doi.org/10.1007/s11276-021-02543-z
http://dx.doi.org/10.1007/s11042-020-08620-3
http://dx.doi.org/10.1007/s10844-020-00613-w
http://dx.doi.org/10.1007/s10844-020-00613-w
http://dx.doi.org/10.1007/s10115-020-01509-5
http://dx.doi.org/10.1016/j.elerap.2021.101060
http://dx.doi.org/10.1038/44565
http://dx.doi.org/10.1109/TFUZZ.2019.2928518
http://dx.doi.org/10.1145/3447548.3467399
http://dx.doi.org/10.1145/3308558.3313411
http://dx.doi.org/10.1145/3394486.3403314
http://dx.doi.org/10.1145/3357384.3357925
http://dx.doi.org/10.1145/3394486.3403113
http://dx.doi.org/10.1145/3394486.3403207


M. Marcuzzo et al.: Recommendation Systems: An Insight Into Current Development and Future Research Challenges

[136] L. Briand, G. Salha-Galvan, W. Bendada, M. Morlon, and V.-A. Tran,
‘‘A semi-personalized system for user cold start recommendation on
music streaming apps,’’ in Proc. 27th ACM SIGKDD Conf. Knowl. Dis-
covery Data Mining, New York, NY, USA, Aug. 2021, pp. 2601–2609,
doi: 10.1145/3447548.3467110.

[137] Y. Xian, T. Zhao, J. Li, J. Chan, A. Kan, J. Ma, X. L. Dong, C. Faloutsos,
G. Karypis, S. Muthukrishnan, and Y. Zhang, ‘‘EX3: Explainable
attribute-aware item-set recommendations,’’ in Proc. 15th ACM Conf.
Recommender Syst., New York, NY, USA, 2021, pp. 484–494. [Online].
Available: https://doi.org/10.1145/3460231.3474240

[138] H. Zhu, D. Chang, Z. Xu, P. Zhang, X. Li, J. He, H. Li,
J. Xu, and K. Gai, ‘‘Joint optimization of tree-based index and deep
model for recommender systems,’’ in Adv. Neural Inf. Process. Syst.,
vol. 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, and R. Garnett, Eds. Red Hook, NY, USA: Curran Associates,
2019, pp. 1–10. [Online]. Available: https://proceedings.neurips.cc/
paper/2019/file/1c6a0198177bfcc9bd93f6aab94aad3c-Paper.pdf

[139] J. Shen, H. Wang, S. Gui, J. Tan Z. Wang, and J. Liu, ‘‘UMEC:
Unifiedmodel and embedding compression for efficient recommendation
systems,’’ in Proc. Int. Conf. Learn. Represent., May 2021, pp. 1–13.
[Online]. Available: https://openreview.net/forum?id=BM—bH_RSh

[140] H.-J.-M. Shi, D. Mudigere, M. Naumov, and J. Yang, ‘‘Compositional
embeddings using complementary partitions for memory-efficient rec-
ommendation systems,’’ in Proc. 26th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, New York, NY, USA, Aug. 2020, pp. 165–175,
doi: 10.1145/3394486.3403059.

[141] W.-C. Kang, D. Z. Cheng, T. Yao, X. Yi, T. Chen, L. Hong, and
E. H. Chi, ‘‘Learning to embed categorical features without embedding
tables for recommendation,’’ in Proc. 27th ACM SIGKDD Conf. Knowl.
Discovery Data Mining, New York, NY, USA, Aug. 2021, pp. 840–850,
doi: 10.1145/3447548.3467304.

[142] D. Lian, H. Wang, Z. Liu, J. Lian, E. Chen, and X. Xie, ‘‘LightRec:
A memory and search-efficient recommender system,’’ in Proc. Web
Conf., New York, NY, USA, 2020, pp. 695–705, doi: 10.1145/3366423.
3380151.

[143] J. C. Cepeda-Pacheco and M. C. Domingo, ‘‘Deep learning and Internet
of Things for tourist attraction recommendations in smart cities,’’
Neural Comput. Appl., vol. 34, no. 10, pp. 7691–7709, May 2022, doi:
10.1007/s00521-021-06872-0.

[144] D. Khattar, V. Kumar, V. Varma, and M. Gupta, ‘‘Weave&Rec: A word
embedding based 3-D convolutional network for news recommendation,’’
in Proc. 27th ACM Int. Conf. Inf. Knowl. Manage., New York, NY, USA,
2018, pp. 1855–1858, doi: 10.1145/3269206.3269307.

[145] T. X. Tuan and T. M. Phuong, ‘‘3D convolutional networks for session-
based recommendation with content features,’’ in Proc. 11th ACM Conf.
Recommender Syst., New York, NY, USA, Aug. 2017, pp. 138–146, doi:
10.1145/3109859.3109900.

[146] C. Wu, F. Wu, M. An, J. Huang, Y. Huang, and X. Xie, ‘‘NPA: Neural
news recommendation with personalized attention,’’ in Proc. 25th ACM
SIGKDD Int. Conf. Knowl. Discovery DataMining, NewYork, NY, USA,
Jul. 2019, pp. 2576–2584, doi: 10.1145/3292500.3330665.

[147] H. Liu, F. Wu, W. Wang, X. Wang, P. Jiao, C. Wu, and X. Xie, ‘‘NRPA:
Neural recommendation with personalized attention,’’ in Proc. 42nd
Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., New York, NY, USA,
Jul. 2019, pp. 1233–1236, doi: 10.1145/3331184.3331371.

[148] W. Guo, C. Zhang, H. Guo, R. Tang, and X. He, ‘‘Multi-branch
convolutional network for context-aware recommendation,’’ inProc. 43rd
Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., New York, NY, USA,
Jul. 2020, pp. 1709–1712, doi: 10.1145/3397271.3401218.

[149] C. Xu, P. Zhao, Y. Liu, J. Xu, V. S. S. S. Sheng, Z. Cui,
X. Zhou, and H. Xiong, ‘‘Recurrent convolutional neural network for
sequential recommendation,’’ in Proc. World Wide Web Conf. (WWW),
New York, NY, USA, 2019, pp. 3398–3404, doi: 10.1145/3308558.
3313408.

[150] M. An, F. Wu, C. Wu, K. Zhang, Z. Liu, and X. Xie, ‘‘Neural news
recommendationwith long- and short-term user representations,’’ inProc.
57th Annu. Meeting Assoc. Comput. Linguistics, 2019, pp. 336–345.
[Online]. Available: https://aclanthology.org/P19-1033

[151] J. Tang and K. Wang, ‘‘Personalized top-N sequential recommendation
via convolutional sequence embedding,’’ in Proc. 11th ACM Int.
Conf. Web Search Data Mining, New York, NY, USA, Feb. 2018,
pp. 565–573. [Online]. Available: https://doi.org/10.1145/3159652.
3159656

[152] F. Yuan, A. Karatzoglou, I. Arapakis, J. M. Jose, and X. He, ‘‘A simple
convolutional generative network for next item recommendation,’’ in
Proc. 12th ACM Int. Conf.Web SearchDataMining, NewYork, NY,USA,
Jan. 2019, pp. 582–590, doi: 10.1145/3289600.3290975.

[153] F. Yuan, X. He, H. Jiang, G. Guo, J. Xiong, Z. Xu, and Y. Xiong,
‘‘Future data helps training: Modeling future contexts for session-based
recommendation,’’ in Proc. Web Conf., New York, NY, USA, Apr. 2020,
pp. 303–313, doi: 10.1145/3366423.3380116.

[154] M. Chen, T. Ma, and X. Zhou, ‘‘CoCNN: Co-occurrence CNN
for recommendation,’’ Expert Syst. Appl., vol. 195, Jun. 2022,
Art. no. 116595. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0957417422000902

[155] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics: Hum. Lang.
Technol., Minneapolis, MN, USA, vol. 1, Jun. 2019, pp. 4171–4186.
[Online]. Available: https://aclanthology.org/N19-1423

[156] O. Barkan, N. Koenigstein, E. Yogev, and O. Katz, ‘‘CB2CF: A
neural multiview content-to-collaborative filtering model for completely
cold item recommendations,’’ in Proc. 13th ACM Conf. Recom-
mender Syst., New York, NY, USA, Sep. 2019, pp. 228–236, doi:
10.1145/3298689.3347038.

[157] Y. Ma, B. Narayanaswamy, H. Lin, and H. Ding, ‘‘Temporal-contextual
recommendation in real-time,’’ in Proc. 26th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, New York, NY, USA, Aug. 2020,
pp. 2291–2299, doi: 10.1145/3394486.3403278.

[158] J. Wu, R. Cai, and H. Wang, ‘‘Déjà vu: A contextualized temporal
attention mechanism for sequential recommendation,’’ in Proc.
Web Conf., New York, NY, USA, 2020, pp. 2199–2209, doi:
10.1145/3366423.3380285.

[159] M. Wang, P. Ren, L. Mei, Z. Chen, J. Ma, and M. de Rijke,
‘‘A collaborative session-based recommendation approach with par-
allel memory modules,’’ in Proc. 42nd Int. ACM SIGIR Conf. Res.
Develop. Inf. Retr., New York, NY, USA, Jul. 2019, pp. 345–354, doi:
10.1145/3331184.3331210.

[160] P. Li, Z. Jiang, M. Que, Y. Hu, and A. Tuzhilin, ‘‘Dual attentive sequential
learning for cross-domain click-through rate prediction,’’ in Proc. 27th
ACM SIGKDD Conf. Knowl. Discovery Data Mining, New York, NY,
USA, Aug. 2021, pp. 3172–3180, doi: 10.1145/3447548.3467140.

[161] Z. Chen, X. Wang, X. Xie, T. Wu, G. Bu, Y. Wang, and E. Chen,
‘‘Co-attentive multi-task learning for explainable recommendation,’’ in
Proc. 28th Int. Joint Conf. Artif. Intell., Aug. 2019, pp. 2137–2143, doi:
10.24963/ijcai.2019/296.

[162] F. Yu, L. Cui, W. Guo, X. Lu, Q. Li, and H. Lu, ‘‘A category-aware deep
model for successive POI recommendation on sparse check-in data,’’ in
Proc. Web Conf., New York, NY, USA, Apr. 2020, pp. 1264–1274, doi:
10.1145/3366423.3380202.

[163] Y. Liu, Z. Ren, W.-N. Zhang, W. Che, T. Liu, and D. Yin, ‘‘Keywords
generation improves E-commerce session-based recommendation,’’ in
Proc. Web Conf., New York, NY, USA, Apr. 2020, pp. 1604–1614, doi:
10.1145/3366423.3380232.

[164] F. Lv, T. Jin, C. Yu, F. Sun, Q. Lin, K. Yang, andW.Ng, ‘‘SDM: Sequential
deep matching model for online large-scale recommender system,’’ in
Proc. 28th ACM Int. Conf. Inf. Knowl. Manage., New York, NY, USA,
Nov. 2019, pp. 2635–2643, doi: 10.1145/3357384.3357818.

[165] L. Guo, H. Yin, Q. Wang, T. Chen, A. Zhou, and N. Quoc Viet
Hung, ‘‘Streaming session-based recommendation,’’ in Proc. 25th ACM
SIGKDD Int. Conf. Knowl. Discovery DataMining, NewYork, NY, USA,
Jul. 2019, pp. 1569–1577, doi: 10.1145/3292500.3330839.

[166] S. Liu and Y. Zheng, ‘‘Long-tail session-based recommendation,’’ in
Proc. 14th ACM Conf. Recommender Syst., New York, NY, USA,
Sep. 2020, pp. 509–514, doi: 10.1145/3383313.3412222.

[167] B. Choe, T. Kang, and K. Jung, ‘‘Recommendation system with hierar-
chical recurrent neural network for long-term time series,’’ IEEE Access,
vol. 9, pp. 72033–72039, 2021, doi: 10.1109/ACCESS.2021.3079922.

[168] Y. Cui, H. Sun, Y. Zhao, H. Yin, and K. Zheng, ‘‘Sequential-knowledge-
aware next POI recommendation: A meta-learning approach,’’
ACM Trans. Inf. Syst., vol. 40, no. 2, pp. 1–22, Apr. 2022, doi:
10.1145/3460198.

[169] H. Xu, W. Ding, W. Shen, J. Wang, and Z. Yang, ‘‘Deep convolutional
recurrent model for region recommendation with spatial and temporal
contexts,’’ Ad Hoc Netw., vol. 129, Apr. 2022, Art. no. 102545, doi:
10.1016/j.adhoc.2021.102545.

86618 VOLUME 10, 2022

http://dx.doi.org/10.1145/3447548.3467110
http://dx.doi.org/10.1145/3394486.3403059
http://dx.doi.org/10.1145/3447548.3467304
http://dx.doi.org/10.1145/3366423.3380151
http://dx.doi.org/10.1145/3366423.3380151
http://dx.doi.org/10.1007/s00521-021-06872-0
http://dx.doi.org/10.1145/3269206.3269307
http://dx.doi.org/10.1145/3109859.3109900
http://dx.doi.org/10.1145/3292500.3330665
http://dx.doi.org/10.1145/3331184.3331371
http://dx.doi.org/10.1145/3397271.3401218
http://dx.doi.org/10.1145/3308558.3313408
http://dx.doi.org/10.1145/3308558.3313408
http://dx.doi.org/10.1145/3289600.3290975
http://dx.doi.org/10.1145/3366423.3380116
http://dx.doi.org/10.1145/3298689.3347038
http://dx.doi.org/10.1145/3394486.3403278
http://dx.doi.org/10.1145/3366423.3380285
http://dx.doi.org/10.1145/3331184.3331210
http://dx.doi.org/10.1145/3447548.3467140
http://dx.doi.org/10.24963/ijcai.2019/296
http://dx.doi.org/10.1145/3366423.3380202
http://dx.doi.org/10.1145/3366423.3380232
http://dx.doi.org/10.1145/3357384.3357818
http://dx.doi.org/10.1145/3292500.3330839
http://dx.doi.org/10.1145/3383313.3412222
http://dx.doi.org/10.1109/ACCESS.2021.3079922
http://dx.doi.org/10.1145/3460198
http://dx.doi.org/10.1016/j.adhoc.2021.102545


M. Marcuzzo et al.: Recommendation Systems: An Insight Into Current Development and Future Research Challenges

[170] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’
Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997, doi:
10.1162/neco.1997.9.8.1735.

[171] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio,
‘‘On the properties of neural machine translation: Encoder–decoder
approaches,’’ in Proc. 8th Workshop Syntax, Semantics Struct. Stat.
Transl. (SSST), Doha, Qatar, Oct. 2014, pp. 103–111. [Online].
Available: https://aclanthology.org/W14-4012

[172] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation by
jointly learning to align and translate,’’ 2014, arXiv:1409.0473.

[173] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, ‘‘Neural
attentive session-based recommendation,’’ in Proc. ACM Conf. Inf.
Knowl. Manage., New York, NY, USA, Nov. 2017, pp. 1419–1428, doi:
10.1145/3132847.3132926.

[174] R. Cai, J. Wu, A. San, C. Wang, and H. Wang, ‘‘Category-aware
collaborative sequential recommendation,’’ in Proc. 44th Int. ACM
SIGIR Conf. Res. Develop. Inf. Retr., New York, NY, USA, Jul. 2021,
pp. 388–397, doi: 10.1145/3404835.3462832.

[175] C. Chen, M. Zhang, Y. Liu, and S. Ma, ‘‘Social attentional memory net-
work:Modeling aspect- and friend-level differences in recommendation,’’
in Proc. 12th ACM Int. Conf. Web Search Data Mining, New York, NY,
USA, Jan. 2019, pp. 177–185, doi: 10.1145/3289600.3290982.

[176] C. Chen, M. Zhang, C. Wang, W. Ma, M. Li, Y. Liu, and S. Ma,
‘‘An efficient adaptive transfer neural network for social-aware
recommendation,’’ in Proc. 42nd Int. ACM SIGIR Conf. Res.
Develop. Inf. Retr., New York, NY, USA, Jul. 2019, pp. 225–234,
doi: 10.1145/3331184.3331192.

[177] X. Xin, X. He, Y. Zhang, Y. Zhang, and J. Jose, ‘‘Relational collaborative
filtering:Modelingmultiple item relations for recommendation,’’ inProc.
42nd Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., NewYork, NY, USA,
Jul. 2019, pp. 125–134, doi: 10.1145/3331184.3331188.

[178] Q. Zhang, Q. Jia, C. Wang, J. Li, Z. Wang, and X. He, ‘‘AMM: Attentive
multi-field matching for news recommendation,’’ in Proc. 44th Int. ACM
SIGIR Conf. Res. Develop. Inf. Retr., New York, NY, USA, Jul. 2021,
pp. 1588–1592, doi: 10.1145/3404835.3463232.

[179] Z. Liu, Z. Fan, Y. Wang, and P. S. Yu, ‘‘Augmenting sequential
recommendation with pseudo-prior items via reversely pre-training
transformer,’’ in Proc. 44th Int. ACM SIGIR Conf. Res. Develop. Inf. Retr.,
New York, NY, USA, Jul. 2021, pp. 1608–1612, doi: 10.1145/3404835.
3463036.

[180] J. Zhang, B. Bai, Y. Lin, J. Liang, K. Bai, and F. Wang, ‘‘General-
purpose user embeddings based on mobile app usage,’’ in Proc.
26th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, New
York, NY, USA, Aug. 2020, pp. 2831–2840, doi: 10.1145/3394486.
3403334.

[181] D. Lian, Y. Wu, Y. Ge, X. Xie, and E. Chen, ‘‘Geography-aware
sequential location recommendation,’’ in Proc. 26th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, New York, NY, USA, Aug. 2020,
pp. 2009–2019, doi: 10.1145/3394486.3403252.

[182] Y. Luo, Q. Liu, and Z. Liu, ‘‘STAN: Spatio-temporal attention
network for next location recommendation,’’ in Proc. Web Conf., New
York, NY, USA, Apr. 2021, pp. 2177–2185, doi: 10.1145/3442381.
3449998.

[183] L. Wu, S. Li, C.-J. Hsieh, and J. Sharpnack, ‘‘SSE-PT: Sequential
Recommendation Via Personalized Transformer,’’ in Proc. 14th ACM
Conf. Recommender Syst., New York, NY, USA, Sep. 2020, pp. 328–337,
doi: 10.1145/3383313.3412258.

[184] W.-C. Kang and J. McAuley, ‘‘Self-attentive sequential recommenda-
tion,’’ in Proc. IEEE Int. Conf. Data Mining (ICDM), Nov. 2018,
pp. 197–206, doi: 10.1109/ICDM.2018.00035.

[185] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, ‘‘Self-
attention with functional time representation learning,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 32. H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds.
Red Hook, NY, USA: Curran Associates, 2019, pp. 1–11. [Online].
Available: https://proceedings.neurips.cc/paper/2019/file/cf34645d98a7
630e2bcca98b3e29c8f2-Paper.pdf

[186] C. Chen, H. Geng, N. Yang, J. Yan, D. Xue, J. Yu, and X. Yang, ‘‘Learning
self-modulating attention in continuous time space with applications
to sequential recommendation,’’ in Proc. 38th Int. Conf. Mach. Learn.
(Proceedings of Machine Learning Research), vol. 139. M. Meila and
T. Zhang, Eds. PMLR, Jul. 2021, pp. 1606–1616. [Online]. Available:
https://proceedings.mlr.press/v139/chen21h.html

[187] H. Chen, Y. Chen, X. Wang, R. Xie, R. Wang, F. Xia, and W. Zhu,
‘‘Curriculum disentangled recommendation with noisy multi-feedback,’’
in Proc. Adv. Neural Inf. Process. Syst., vol. 34. Red Hook, NY, USA:
Curran, Dec. 2021, pp. 26924–26936. [Online]. Available: https://
proceedings.neurips.cc/paper/2021/file/e242660df1b69b74dcc7
fde711f924ff-Paper.pdf

[188] J. Ma, C. Zhou, H. Yang, P. Cui, X. Wang, and W. Zhu, ‘‘Disentangled
self-supervision in sequential recommenders,’’ in Proc. 26th ACM
SIGKDD Int. Conf. Knowl. Discovery DataMining, NewYork, NY, USA,
Aug. 2020, pp. 483–491, doi: 10.1145/3394486.3403091.

[189] Q. Guo and J. Qi, ‘‘SANST: A self-attentive network for next Point-of-
Interest recommendation,’’ 2020, arXiv:2001.10379.

[190] C. Pei, Y. Zhang, Y. Zhang, F. Sun, X. Lin, H. Sun, J. Wu, P. Jiang,
J. Ge,W. Ou, and D. Pei, ‘‘Personalized re-ranking for recommendation,’’
in Proc. 13th ACM Conf. Recommender Syst., New York, NY, USA,
Sep. 2019, pp. 3–11, doi: 10.1145/3298689.3347000.

[191] G. de Souza Pereira Moreira, S. Rabhi, J. M. Lee, R. Ak, and
E. Oldridge, ‘‘Transformers4Rec: Bridging the gap between NLP and
sequential/session-based recommendation,’’ in Proc. 15th ACM Conf.
Recommender Syst., New York, NY, USA, Sep. 2021, pp. 143–153, doi:
10.1145/3460231.3474255.

[192] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang,
‘‘BERT4Rec: Sequential recommendation with bidirectional encoder
representations from transformer,’’ in Proc. 28th ACM Int. Conf. Inf.
Knowl. Manage., New York, NY, USA, Nov. 2019, pp. 1441–1450, doi:
10.1145/3357384.3357895.

[193] T. Wolf, L. Debut, V. Sanh, and J. Chaumond, ‘‘Transformers: State-of-
the-art natural language processing,’’ in Proc. Conf. Empirical Methods
Natural Lang. Process., Syst. Demonstrations, Oct. 2020, pp. 38–45.
[Online]. Available: https://aclanthology.org/2020.emnlp-demos.6

[194] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, ‘‘Neural graph
collaborative filtering,’’ in Proc. 42nd Int. ACM SIGIR Conf. Res.
Develop. Inf. Retr., New York, NY, USA, Jul. 2019, pp. 165–174, doi:
10.1145/3331184.3331267.

[195] X. Guo, C. Shi, and C. Liu, ‘‘Intention modeling from ordered
and unordered facets for sequential recommendation,’’ in Proc.
Web Conf., New York, NY, USA, Apr. 2020, pp. 1127–1137, doi:
10.1145/3366423.3380190.

[196] J. Chang, C. Gao, X. He, D. Jin, and Y. Li, ‘‘Bundle recommendation with
graph convolutional networks,’’ in Proc. 43rd Int. ACM SIGIR Conf. Res.
Develop. Inf. Retr., New York, NY, USA, Jul. 2020, pp. 1673–1676, doi:
10.1145/3397271.3401198.

[197] F. Liu, Z. Cheng, L. Zhu, Z. Gao, and L. Nie, ‘‘Interest-aware message-
passing GCN for recommendation,’’ in Proc. Web Conf., New York, NY,
USA, Apr. 2021, pp. 1296–1305, doi: 10.1145/3442381.3449986.

[198] H. Wang, F. Zhang, M. Zhang, J. Leskovec, M. Zhao, W. Li, and
Z. Wang, ‘‘Knowledge-aware graph neural networks with label smooth-
ness regularization for recommender systems,’’ in Proc. 25th ACM
SIGKDD Int. Conf. Knowl. Discovery DataMining, NewYork, NY, USA,
Jul. 2019, pp. 968–977, doi: 10.1145/3292500.3330836.

[199] Z. Wang, G. Lin, H. Tan, Q. Chen, and X. Liu, ‘‘CKAN: Collaborative
knowledge-aware attentive network for recommender systems,’’ in Proc.
43rd Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., New York, NY, USA,
Jul. 2020, pp. 219–228, doi: 10.1145/3397271.3401141.

[200] X. Wang, T. Huang, D. Wang, Y. Yuan, Z. Liu, X. He, and T.-S.
Chua, ‘‘Learning intents behind interactions with knowledge graph for
recommendation,’’ in Proc. Web Conf., New York, NY, USA, Apr. 2021,
pp. 878–887, doi: 10.1145/3442381.3450133.

[201] H. Wang, M. Zhao, X. Xie, W. Li, and M. Guo, ‘‘Knowledge graph
convolutional networks for recommender systems,’’ in Proc. World Wide
Web Conf. (WWW), New York, NY, USA, 2019, pp. 3307–3313, doi:
10.1145/3308558.3313417.

[202] B. Jin, C. Gao, X. He, D. Jin, and Y. Li, ‘‘Multi-behavior recommendation
with graph convolutional networks,’’ in Proc. 43rd Int. ACM SIGIR Conf.
Res. Develop. Inf. Retr., New York, NY, USA, Jul. 2020, pp. 659–668,
doi: 10.1145/3397271.3401072.

[203] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang,
‘‘LightGCN: Simplifying and powering graph convolution network
for recommendation,’’ in Proc. 43rd Int. ACM SIGIR Conf. Res.
Develop. Inf. Retr., New York, NY, USA, Jul. 2020, pp. 639–648,
doi: 10.1145/3397271.3401063.

[204] J. Wu, X. Wang, F. Feng, X. He, L. Chen, J. Lian, and X. Xie, ‘‘Self-
supervised graph learning for recommendation,’’ in Proc. 44th Int. ACM
SIGIR Conf. Res. Develop. Inf. Retr., New York, NY, USA, Jul. 2021,
pp. 726–735, doi: 10.1145/3404835.3462862.

VOLUME 10, 2022 86619

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1145/3132847.3132926
http://dx.doi.org/10.1145/3404835.3462832
http://dx.doi.org/10.1145/3289600.3290982
http://dx.doi.org/10.1145/3331184.3331192
http://dx.doi.org/10.1145/3331184.3331188
http://dx.doi.org/10.1145/3404835.3463232
http://dx.doi.org/10.1145/3404835.3463036
http://dx.doi.org/10.1145/3404835.3463036
http://dx.doi.org/10.1145/3394486.3403334
http://dx.doi.org/10.1145/3394486.3403334
http://dx.doi.org/10.1145/3394486.3403252
http://dx.doi.org/10.1145/3442381.3449998
http://dx.doi.org/10.1145/3442381.3449998
http://dx.doi.org/10.1145/3383313.3412258
http://dx.doi.org/10.1109/ICDM.2018.00035
http://dx.doi.org/10.1145/3394486.3403091
http://dx.doi.org/10.1145/3298689.3347000
http://dx.doi.org/10.1145/3460231.3474255
http://dx.doi.org/10.1145/3357384.3357895
http://dx.doi.org/10.1145/3331184.3331267
http://dx.doi.org/10.1145/3366423.3380190
http://dx.doi.org/10.1145/3397271.3401198
http://dx.doi.org/10.1145/3442381.3449986
http://dx.doi.org/10.1145/3292500.3330836
http://dx.doi.org/10.1145/3397271.3401141
http://dx.doi.org/10.1145/3442381.3450133
http://dx.doi.org/10.1145/3308558.3313417
http://dx.doi.org/10.1145/3397271.3401072
http://dx.doi.org/10.1145/3397271.3401063
http://dx.doi.org/10.1145/3404835.3462862


M. Marcuzzo et al.: Recommendation Systems: An Insight Into Current Development and Future Research Challenges

[205] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, ‘‘Graph convolutional neural networks for web-scale
recommender systems,’’ in Proc. 24th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, New York, NY, USA, Jul. 2018, pp. 974–983,
doi: 10.1145/3219819.3219890.

[206] Y. Xie, Z. Wang, Y. Li, B. Ding, N. M. Gürel, C. Zhang, M. Huang,
W. Lin, and J. Zhou, ‘‘FIVES: Feature interaction via edge search
for large-scale tabular data,’’ in Proc. 27th ACM SIGKDD Conf.
Knowl. Discovery Data Mining, New York, NY, USA, Aug. 2021,
pp. 3795–3805, doi: 10.1145/3447548.3467066.

[207] J. Zheng, Q. Ma, H. Gu, and Z. Zheng, ‘‘Multi-view denoising graph
auto-encoders on heterogeneous information networks for cold-start
recommendation,’’ in Proc. 27th ACM SIGKDD Conf. Knowl. Discovery
Data Mining, New York, NY, USA, Aug. 2021, pp. 2338–2348, doi:
10.1145/3447548.3467427.

[208] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, ‘‘KGAT: Knowledge
graph attention network for recommendation,’’ in Proc. 25th ACM
SIGKDD Int. Conf. Knowl. Discovery DataMining, NewYork, NY, USA,
Jul. 2019, pp. 950–958, doi: 10.1145/3292500.3330989.

[209] W. Guo, R. Su, R. Tan, H. Guo, Y. Zhang, Z. Liu, R. Tang, and
X. He, ‘‘Dual graph enhanced embedding neural network for CTR
prediction,’’ in Proc. 27th ACM SIGKDD Conf. Knowl. Discovery
Data Mining, New York, NY, USA, Aug. 2021, pp. 496–504, doi:
10.1145/3447548.3467384.

[210] T. Huang, Y. Dong, M. Ding, Z. Yang, W. Feng, X. Wang, and J. Tang,
‘‘MixGCF: An improved training method for graph neural network-
based recommender systems,’’ in Proc. 27th ACM SIGKDDConf. Knowl.
Discovery Data Mining, New York, NY, USA, Aug. 2021, pp. 665–674,
doi: 10.1145/3447548.3467408.

[211] M. Wang, Y. Lin, G. Lin, K. Yang, and X.-M. Wu, ‘‘M2GRL: A
multi-task multi-view graph representation learning framework for web-
scale recommender systems,’’ in Proc. 26th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, New York, NY, USA, Aug. 2020,
pp. 2349–2358, doi: 10.1145/3394486.3403284.

[212] J. Xu, Z. Zhu, J. Zhao, X. Liu, M. Shan, and J. Guo, ‘‘Gemini: A
novel and universal heterogeneous graph information fusing framework
for online recommendations,’’ in Proc. 26th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, New York, NY, USA, Aug. 2020,
pp. 3356–3365, doi: 10.1145/3394486.3403388.

[213] J. Jin, J. Qin, Y. Fang, K. Du,W. Zhang, Y. Yu, Z. Zhang, and A. J. Smola,
‘‘An efficient neighborhood-based interaction model for recommendation
on heterogeneous graph,’’ in Proc. 26th ACM SIGKDD Int. Conf. Knowl.
Discovery DataMining, NewYork, NY, USA, Aug. 2020, pp. 75–84, doi:
10.1145/3394486.3403050.

[214] J. Sun, W. Guo, D. Zhang, Y. Zhang, F. Regol, Y. Hu, H. Guo,
R. Tang, H. Yuan, X. He, and M. Coates, ‘‘A framework for recommend-
ing accurate and diverse items using Bayesian graph convolutional neural
networks,’’ in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, New York, NY, USA, Aug. 2020, pp. 2030–2039, doi:
10.1145/3394486.3403254.

[215] W. Yu and Z. Qin, ‘‘Graph convolutional network for recommendation
with low-pass collaborative filters,’’ in Proc. 37th Int. Conf. Mach. Learn.
(Proceedings of Machine Learning Research), vol. 119, H. D. III and
A. Singh, Eds. PMLR, Jul. 2020, pp. 10936–10945. [Online]. Available:
https://proceedings.mlr.press/v119/yu20e.html

[216] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, ‘‘Graph
neural networks for social recommendation,’’ in Proc. World Wide
Web Conf. (WWW), New York, NY, USA, 2019, pp. 417–426, doi:
10.1145/3308558.3313488.

[217] Q. Wu, H. Zhang, X. Gao, J. Yan, and H. Zha, ‘‘Towards open-
world recommendation: An inductive model-based collaborative fil-
tering approach,’’ in Proc. 38th Int. Conf. Mach. Learn. (Pro-
ceedings of Machine Learning Research), vol. 139, M. Meila and
T. Zhang, Eds. PMLR, Jul. 2021, pp. 11329–11339. [Online]. Available:
https://proceedings.mlr.press/v139/wu21j.html

[218] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, ‘‘Session-based
recommendation with graph neural networks,’’ in Proc. AAAI Conf.
Artif. Intell., Jul. 2019, vol. 33, no. 1, pp. 346–353. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/3804

[219] M. Schiavinato, A. Gasparetto, and A. Torsello, ‘‘Transitive assign-
ment kernels for structural classification,’’ in Similarity-Based Pattern
Recognition, vol. 9370, A. Feragen, M. Pelillo, and M. Loog, Eds.
Cham, Switzerland: Springer, 2015, pp. 146–159, doi: 10.1007/978-3-
319-24261-3_12.

[220] T. N. Kipf and M. Welling, ‘‘Semi-supervised classification with graph
convolutional networks,’’ 2016, arXiv:1609.02907.

[221] A. Torsello, A. Gasparetto, L. Rossi, L. Bai, and E. Hancock, ‘‘Transitive
state alignment for the quantum Jensen-Shannon kernel,’’ in Structural,
Syntactic, and Statistical Pattern Recognition (LectureNotes in Computer
Science), vol. 8621. Berlin, Germany: Springer, 2014, pp. 22–31, doi:
10.1007/978-3-662-44415-3_3.

[222] H. Connamacher, N. Pancha, R. Liu, and S. Ray, ‘‘Rankboost+: An
improvement to Rankboost,’’ Mach. Learn., vol. 109, no. 1, pp. 51–78,
Jan. 2020, doi: 10.1007/s10994-019-05826-x.

[223] B. Askari, J. Szlichta, and A. Salehi-Abari, ‘‘Variational autoencoders for
top-K recommendation with implicit feedback,’’ in Proc. 44th Int. ACM
SIGIR Conf. Res. Develop. Inf. Retr., New York, NY, USA, Jul. 2021,
pp. 2061–2065, doi: 10.1145/3404835.3462986.

[224] C. Wang, H. Zhu, C. Zhu, C. Qin, and H. Xiong, ‘‘SetRank: A
Setwise Bayesian approach for collaborative ranking from implicit
feedback,’’ in Proc. 34th AAAI Conf. Artif. Intell., Feb. 2020,
vol. 34, no. 4, pp. 6127–6136. [Online]. Available: https://ojs.aaai.org/
index.php/AAAI/article/view/6077

[225] L. Chen, L. Wu, K. Zhang, R. Hong, and M. Wang, ‘‘Set2setRank:
Collaborative set to set ranking for implicit feedback based recommen-
dation,’’ in Proc. 44th Int. ACM SIGIR Conf. Res. Develop. Inf. Retr.,
New York, NY, USA, Jul. 2021, pp. 585–594, doi: 10.1145/3404835.
3462886.

[226] K. Christakopoulou and A. Banerjee, ‘‘Collaborative ranking with
a push at the top,’’ in Proc. 24th Int. Conf. World Wide Web,
Geneva, Switzerland, May 2015, pp. 205–215, doi: 10.1145/2736277.
2741678.

[227] M. Chen and X. Zhou, ‘‘DeepRank: Learning to rank with neural
networks for recommendation,’’Knowl.-Based Syst., vol. 209, Dec. 2020,
Art. no. 106478, doi: 10.1016/j.knosys.2020.106478.

[228] Y. Shi, M. Larson, and A. Hanjalic, ‘‘List-wise learning to rank with
matrix factorization for collaborative filtering,’’ in Proc. 4th ACM Conf.
Recommender Syst. (RecSys), New York, NY, USA, 2010, pp. 269–272,
doi: 10.1145/1864708.1864764.

[229] T.-Y. Liu, ‘‘Learning to rank for information retrieval,’’ Found. Trends Inf.
Retr., vol. 3, no. 3, pp. 225–331, 2009, doi: 10.1561/1500000016.

[230] M. Weimer, A. Karatzoglou, Q. V. Le, and A. Smola, ‘‘COFI RANK—
Maximum margin matrix factorization for collaborative ranking,’’ in
Proc. 20th Int. Conf. Neural Inf. Process. Syst. Red Hook, NY, USA:
Curran Associates, Dec. 2007, pp. 1593–1600.

[231] C. J. C. Burges, R. Ragno, and Q. V. Le, ‘‘Learning to rank with
nonsmooth cost functions,’’ in Proc. 19th Int. Conf. Neural Inf. Process.
Syst. Cambridge, MA, USA: MIT Press, Dec. 2006, pp. 193–200.

[232] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, ‘‘An efficient boosting
algorithm for combining preferences,’’ J. Mach. Learn. Res., vol. 4,
pp. 933–969, Nov. 2003.

[233] C. Burges, ‘‘From ranknet to lambdarank to lambdamart: An overview,’’
Microsoft Res., Redmond, WA, USA, Tech. Rep. MSR-TR-2010-
82, Jun. 2010. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-
overview/

[234] S. Bruch, ‘‘An alternative cross entropy loss for learning-to-rank,’’ in
Proc. Web Conf., New York, NY, USA, Apr. 2021, pp. 118–126, doi:
10.1145/3442381.3449794.

[235] H.-J. Xue, X. Dai, J. Zhang, S. Huang, and J. Chen, ‘‘Deep matrix
factorization models for recommender systems,’’ in Proc. 26th Int.
Joint Conf. Artif. Intell. (IJCAI), Aug. 2017, pp. 3203–3209, doi:
10.24963/ijcai.2017/447.

[236] O. Sakhi, S. Bonner, D. Rohde, and F. Vasile, ‘‘BLOB: A proba-
bilistic model for recommendation that combines organic and bandit
signals,’’ in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, New York, NY, USA, Aug. 2020, pp. 783–793, doi:
10.1145/3394486.3403121.

[237] J. Ma, C. Zhou, P. Cui, H. Yang, and W. Zhu, ‘‘Learning disentangled
representations for recommendation,’’ in Proc. 33rd Int. Conf. Neural
Inf. Process. Syst. Red Hook, NY, USA: Curran Associates, Dec. 2019,
pp. 1–12.

[238] H. Steck, ‘‘Embarrassingly shallow autoencoders for sparse data,’’ in
Proc. World Wide Web Conf. (WWW), New York, NY, USA, 2019,
pp. 3251–3257, doi: 10.1145/3308558.3313710.

[239] D. P. Kingma and M.Welling, ‘‘Auto-encoding variational Bayes,’’ 2013,
arXiv:1312.6114.

86620 VOLUME 10, 2022

http://dx.doi.org/10.1145/3219819.3219890
http://dx.doi.org/10.1145/3447548.3467066
http://dx.doi.org/10.1145/3447548.3467427
http://dx.doi.org/10.1145/3292500.3330989
http://dx.doi.org/10.1145/3447548.3467384
http://dx.doi.org/10.1145/3447548.3467408
http://dx.doi.org/10.1145/3394486.3403284
http://dx.doi.org/10.1145/3394486.3403388
http://dx.doi.org/10.1145/3394486.3403050
http://dx.doi.org/10.1145/3394486.3403254
http://dx.doi.org/10.1145/3308558.3313488
http://dx.doi.org/10.1007/978-3-319-24261-3_12
http://dx.doi.org/10.1007/978-3-319-24261-3_12
http://dx.doi.org/10.1007/978-3-662-44415-3_3
http://dx.doi.org/10.1007/s10994-019-05826-x
http://dx.doi.org/10.1145/3404835.3462986
http://dx.doi.org/10.1145/3404835.3462886
http://dx.doi.org/10.1145/3404835.3462886
http://dx.doi.org/10.1145/2736277.2741678
http://dx.doi.org/10.1145/2736277.2741678
http://dx.doi.org/10.1016/j.knosys.2020.106478
http://dx.doi.org/10.1145/1864708.1864764
http://dx.doi.org/10.1561/1500000016
http://dx.doi.org/10.1145/3442381.3449794
http://dx.doi.org/10.24963/ijcai.2017/447
http://dx.doi.org/10.1145/3394486.3403121
http://dx.doi.org/10.1145/3308558.3313710


M. Marcuzzo et al.: Recommendation Systems: An Insight Into Current Development and Future Research Challenges

[240] C. Li, Z. Liu, M. Wu, Y. Xu, H. Zhao, P. Huang, G. Kang, Q.
Chen, W. Li, and D. L. Lee, ‘‘Multi-interest network with dynamic
routing for recommendation at tmall,’’ in Proc. 28th ACM Int. Conf. Inf.
Knowl. Manage., New York, NY, USA, Nov. 2019, pp. 2615–2623, doi:
10.1145/3357384.3357814.

[241] C. Li, C. Quan, L. Peng, Y. Qi, Y. Deng, and L. Wu, ‘‘A capsule network
for recommendation and explaining what you like and dislike,’’ in Proc.
42nd Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., NewYork, NY, USA,
Jul. 2019, pp. 275–284, doi: 10.1145/3331184.3331216.

[242] Y. Cen, J. Zhang, X. Zou, C. Zhou, H. Yang, and J. Tang, ‘‘Controllable
multi-interest framework for recommendation,’’ in Proc. 26th ACM
SIGKDD Int. Conf. Knowl. Discovery DataMining, NewYork, NY, USA,
Aug. 2020, pp. 2942–2951, doi: 10.1145/3394486.3403344.

[243] Y. Lu, S. Zhang, Y. Huang, L. Wang, X. Yu, Z. Zhao, and F. Wu,
‘‘Future-aware diverse trends framework for recommendation,’’ in Proc.
Web Conf., New York, NY, USA, Apr. 2021, pp. 2992–3001, doi:
10.1145/3442381.3449791.

[244] G. E. Hinton, A. Krizhevsky, and S. D. Wang, ‘‘Transforming auto-
encoders,’’ in Artificial Neural Networks and Machine Learning–
(ICANN), T. Honkela, W. Duch, M. Girolami, and S. Kaski, Eds. Berlin,
Germany: Springer, 2011, pp. 44–51, doi: 10.1007/978-3-642-21735-
7_6.

[245] S. Sabour, N. Frosst, and G. E. Hinton, ‘‘Dynamic routing between
capsules,’’ in Proc. 31st Int. Conf. Neural Inf. Process. Syst. Red Hook,
NY, USA: Curran Associates, Dec. 2017, pp. 3859–3869.

[246] M. Pistellato, F. Bergamasco, A. Albarelli, L. Cosmo, A. Gasparetto,
and A. Torsello, ‘‘Robust phase unwrapping by probabilistic consensus,’’
Opt. Lasers Eng., vol. 121, pp. 428–440, Oct. 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0143816618317044

[247] Y. Ban, J. He, and C. B. Cook, ‘‘Multi-facet contextual bandits: A
neural network perspective,’’ in Proc. 27th ACM SIGKDD Conf. Knowl.
Discovery DataMining, NewYork, NY, USA, Aug. 2021, pp. 35–45, doi:
10.1145/3447548.3467299.

[248] J. Sanz-Cruzado, P. Castells, and E. López, ‘‘A simple multi-armed
nearest-neighbor bandit for interactive recommendation,’’ in Proc. 13th
ACM Conf. Recommender Syst., New York, NY, USA, Sep. 2019,
pp. 358–362, doi: 10.1145/3298689.3347040.

[249] S. Zhang, D. Yao, Z. Zhao, T.-S. Chua, and F. Wu, ‘‘CauseRec:
Counterfactual user sequence synthesis for sequential recommendation,’’
in Proc. 44th Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., New York,
NY, USA, Jul. 2021, pp. 367–377, doi: 10.1145/3404835.3462908.

[250] H. Hu, X. He, J. Gao, and Z.-L. Zhang, ‘‘Modeling personalized item
frequency information for next-basket recommendation,’’ in Proc. 43rd
Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., New York, NY, USA,
Jul. 2020, pp. 1071–1080, doi: 10.1145/3397271.3401066.

[251] C. Ma, L. Ma, Y. Zhang, R. Tang, X. Liu, and M. Coates, ‘‘Prob-
abilistic metric learning with adaptive margin for top-K recommen-
dation,’’ in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, New York, NY, USA, Aug. 2020, pp. 1036–1044, doi:
10.1145/3394486.3403147.

[252] K. Balog, F. Radlinski, and S. Arakelyan, ‘‘Transparent, scrutable and
explainable user models for personalized recommendation,’’ in Proc.
42nd Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., NewYork, NY, USA,
Jul. 2019, pp. 265–274, doi: 10.1145/3331184.3331211.

[253] R. He and J. McAuley, ‘‘Ups and downs: Modeling the visual evolution
of fashion trends with one-class collaborative filtering,’’ in Proc. 25th Int.
Conf. World Wide Web, New York, NY, USA, Apr. 2016, pp. 507–517,
doi: 10.1145/2872427.2883037.

[254] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel, ‘‘Image-based
recommendations on styles and substitutes,’’ in Proc. 38th Int. ACM
SIGIR Conf. Res. Develop. Inf. Retr., New York, NY, USA, Aug. 2015,
pp. 43–52, doi: 10.1145/2766462.2767755.

[255] F. M. Harper and J. A. Konstan, ‘‘The MovieLens datasets: History
and context,’’ ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, pp. 1–19,
Jan. 2016, doi: 10.1145/2827872.

[256] I. Cantador, P. Brusilovsky, and T. Kuflik, ‘‘Secondworkshop on informa-
tion heterogeneity and fusion in recommender systems (HetRec2011),’’
in Proc. 5th ACM Conf. Recommender Syst., New York, NY, USA,
Oct. 2011, pp. 387–388, doi: 10.1145/2043932.2044016.

[257] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King, ‘‘Recommender systems
with social regularization,’’ in Proc. 4th ACM Int. Conf. Web Search
Data Mining (WSDM), New York, NY, USA, 2011, pp. 287–296, doi:
10.1145/1935826.1935877.

[258] J. Tang, H. Gao, and H. Liu, ‘‘MTrust: Discerning multi-faceted trust
in a connected world,’’ in Proc. 5th ACM Int. Conf. Web Search
Data Mining (WSDM), New York, NY, USA, 2012, pp. 93–102, doi:
10.1145/2124295.2124309.

[259] P. Zhao, K. Xiao, Y. Zhang, K. Bian, and W. Yan, ‘‘AMEIR: Automatic
behavior modeling, interaction exploration and MLP investigation in the
recommender system,’’ 2020, arXiv:2006.05933.

[260] Criteo Research Datasets. Criteo AI Lab. Accessed: Mar. 25, 2022.
[Online]. Available: https://ailab.criteo.com/ressources

[261] S. Liu, C. Gao, Y. Chen, D. Jin, and Y. Li, ‘‘Learnable embedding sizes
for recommender systems,’’ 2021, arXiv:2101.07577.

[262] J. Qin, W. Zhang, X. Wu, J. Jin, Y. Fang, and Y. Yu, ‘‘User behavior
retrieval for click-through rate prediction,’’ in Proc. 43rd Int. ACM
SIGIR Conf. Res. Develop. Inf. Retr., New York, NY, USA, Jul. 2020,
pp. 2347–2356, doi: 10.1145/3397271.3401440.

[263] Alibaba Cloud. IJCAI-15 Contest. Accessed: Mar. 25, 2022. [Online].
Available: https://tianchi.aliyun.com/dataset/dataDetail?dataId=42

[264] E. Cho, S. A. Myers, and J. Leskovec, ‘‘Friendship and mobility:
User movement in location-based social networks,’’ in Proc. 17th ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), New York,
NY, USA, 2011, pp. 1082–1090, doi: 10.1145/2020408.2020579.

[265] User Behavior Data From Taobao for Recommendation. Alibaba Cloud.
Accessed: Mar. 25, 2022. [Online]. Available: https://tianchi.aliyun.
com/dataset/dataDetail?dataId=649

[266] D. Yang, D. Zhang, V. W. Zheng, and Z. Yu, ‘‘Modeling user activity
preference by leveraging user spatial temporal characteristics in LBSNs,’’
IEEE Trans. Syst., Man, Cybern., Syst., vol. 45, no. 1, pp. 129–142,
Jan. 2015, doi: 10.1109/TSMC.2014.2327053.

[267] D. Yang. Foursquare Dataset. Accessed: Mar. 25, 2022. [Online]. Avail-
able: https://sites.google.com/site/yangdingqi/home/foursquare-dataset

[268] F. Wu, Y. Qiao, J.-H. Chen, C. Wu, T. Qi, J. Lian, D. Liu, X. Xie, J. Gao,
W. Wu, and M. Zhou, ‘‘MIND: A large-scale dataset for news recom-
mendation,’’ in Proc. 58th Annu. Meeting Assoc. Comput. Linguistics,
Jul. 2020, pp. 3597–3606, doi: 10.18653/v1/2020.acl-main.331.

[269] J. A. Gulla, L. Zhang, P. Liu, Ö. Özgöbek, andX. Su, ‘‘The adressa dataset
for news recommendation,’’ inProc. Int. Conf. Web Intell., NewYork, NY,
USA, Aug. 2017, pp. 1042–1048, doi: 10.1145/3106426.3109436.

[270] Z. Wang, J. Zhang, H. Xu, X. Chen, Y. Zhang, W. X. Zhao, and
J.-R. Wen, ‘‘Counterfactual data-augmented sequential recommenda-
tion,’’ in Proc. 44th Int. ACM SIGIR Conf. Res. Develop. Inf. Retr.,
New York, NY, USA, Jul. 2021, pp. 347–356, doi:
10.1145/3404835.3462855.

[271] Yelp Open Dataset: An All-Purpose Dataset for Learning. Accessed:
Mar. 25, 2022. [Online]. Available: https://www.yelp.com/dataset

[272] D. Ben-Shimon, A. Tsikinovsky, M. Friedmann, B. Shapira, L. Rokach,
and J. Hoerle, ‘‘RecSys challenge 2015 and the YOOCHOOSE dataset,’’
in Proc. 9th ACM Conf. Recommender Syst., New York, NY, USA,
Sep. 2015, pp. 357–358, doi: 10.1145/2792838.2798723.

[273] M. Wan and J. McAuley, ‘‘Item recommendation on monotonic behavior
chains,’’ in Proc. 12th ACM Conf. Recommender Syst., New York, NY,
USA, Sep. 2018, pp. 86–94, doi: 10.1145/3240323.3240369.

[274] A. Pathak, K. Gupta, and J. McAuley, ‘‘Generating and personalizing
bundle recommendations on steam,’’ in Proc. 40th Int. ACM SIGIR Conf.
Res. Develop. Inf. Retr., NewYork, NY, USA, Aug. 2017, pp. 1073–1076,
doi: 10.1145/3077136.3080724.

[275] B. M. Marlin and R. S. Zemel, ‘‘Collaborative prediction and ranking
with non-random missing data,’’ in Proc. 3rd ACM Conf. Recom-
mender Syst. (RecSys), New York, NY, USA, 2009, pp. 5–12, doi:
10.1145/1639714.1639717.

[276] B. Marlin, ‘‘Collaborative filtering: A machine learning perspec-
tive,’’ M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto,
ON, Canada, 2004. [Online]. Available: https://api.semanticscholar.
org/CorpusID:11455170

[277] Y. Wang, L. Wang, Y. Li, D. He, T.-Y. Liu, and W. Chen, ‘‘A theoretical
analysis of NDCG type ranking measures,’’ in Proc. 26th Annu. Conf.
Learn. Theory, vol. 30, S. Shalev-Shwartz and I. Steinwart, Eds.
Princeton, NJ, USA: PMLR, Jun. 2013, pp. 25–54. [Online]. Available:
https://proceedings.mlr.press/v30/Wang13.html

[278] T. Calders and S. Jaroszewicz, ‘‘Efficient AUC optimization for
classification,’’ in Proc. 11th Eur. Conf. Princ. Data Mining Knowl.
Discovery, vol. 4702, Sep. 2007, pp. 42–53, doi: 10.1007/978-3-540-
74976-9_8.

[279] D. Hand, ‘‘Measuring classifier performance: A coherent alternative to
the area under the ROC curve,’’Mach. Learn., vol. 77, no. 1, pp. 103–123,
2009, doi: 10.1007/s10994-009-5119-5.

VOLUME 10, 2022 86621

http://dx.doi.org/10.1145/3357384.3357814
http://dx.doi.org/10.1145/3331184.3331216
http://dx.doi.org/10.1145/3394486.3403344
http://dx.doi.org/10.1145/3442381.3449791
http://dx.doi.org/10.1007/978-3-642-21735-7_6
http://dx.doi.org/10.1007/978-3-642-21735-7_6
http://dx.doi.org/10.1145/3447548.3467299
http://dx.doi.org/10.1145/3298689.3347040
http://dx.doi.org/10.1145/3404835.3462908
http://dx.doi.org/10.1145/3397271.3401066
http://dx.doi.org/10.1145/3394486.3403147
http://dx.doi.org/10.1145/3331184.3331211
http://dx.doi.org/10.1145/2872427.2883037
http://dx.doi.org/10.1145/2766462.2767755
http://dx.doi.org/10.1145/2827872
http://dx.doi.org/10.1145/2043932.2044016
http://dx.doi.org/10.1145/1935826.1935877
http://dx.doi.org/10.1145/2124295.2124309
http://dx.doi.org/10.1145/3397271.3401440
http://dx.doi.org/10.1145/2020408.2020579
http://dx.doi.org/10.1109/TSMC.2014.2327053
http://dx.doi.org/10.18653/v1/2020.acl-main.331
http://dx.doi.org/10.1145/3106426.3109436
http://dx.doi.org/10.1145/3404835.3462855
http://dx.doi.org/10.1145/2792838.2798723
http://dx.doi.org/10.1145/3240323.3240369
http://dx.doi.org/10.1145/3077136.3080724
http://dx.doi.org/10.1145/1639714.1639717
http://dx.doi.org/10.1007/978-3-540-74976-9_8
http://dx.doi.org/10.1007/978-3-540-74976-9_8
http://dx.doi.org/10.1007/s10994-009-5119-5


M. Marcuzzo et al.: Recommendation Systems: An Insight Into Current Development and Future Research Challenges

[280] W. Krichene and S. Rendle, ‘‘On sampled metrics for item recom-
mendation,’’ in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, New York, NY, USA, Aug. 2020, pp. 1748–1757, doi:
10.1145/3394486.3403226.

[281] S. Rendle, ‘‘Evaluation metrics for item recommendation under sam-
pling,’’ 2019, arXiv:1912.02263.

[282] D. Li, R. Jin, J. Gao, and Z. Liu, ‘‘On sampling top-K recommendation
evaluation,’’ in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, New York, NY, USA, Aug. 2020, pp. 2114–2124, doi:
10.1145/3394486.3403262.

[283] V. W. Anelli, A. Bellogin, A. Ferrara, D. Malitesta, F. A. Merra, C. Pomo,
F. M. Donini, and T. Di Noia, ‘‘Elliot: A comprehensive and rigorous
framework for reproducible recommender systems evaluation,’’ in Proc.
44th Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., New York, NY, USA,
Jul. 2021, pp. 2405–2414, doi: 10.1145/3404835.3463245.

[284] R. Jin, D. Li, B. Mudrak, J. Gao, and Z. Liu, ‘‘On estimating
recommendation evaluation metrics under sampling,’’ in Proc. 35th AAAI
Conf. Artif. Intell., May 2021, vol. 35, no. 5, pp. 4147–4154. [Online].
Available: https://ojs.aaai.org/index.php/AAAI/article/view/16537

[285] H. Liu, J. Wen, L. Jing, and J. Yu, ‘‘Deep generative ranking
for personalized recommendation,’’ in Proc. 13th ACM Conf. Rec-
ommender Syst., New York, NY, USA, Sep. 2019, pp. 34–42, doi:
10.1145/3298689.3347012.

[286] W. Wang, F. Feng, X. He, X. Wang, and T.-S. Chua, ‘‘Deconfounded
recommendation for alleviating bias amplification,’’ in Proc. 27th ACM
SIGKDD Conf. Knowl. Discovery Data Mining, New York, NY, USA,
Aug. 2021, pp. 1717–1725, doi: 10.1145/3447548.3467249.

[287] Q. Pi, W. Bian, G. Zhou, X. Zhu, and K. Gai, ‘‘Practice on long
sequential user behavior modeling for click-through rate prediction,’’ in
Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
New York, NY, USA, Jul. 2019, pp. 2671–2679, doi: 10.1145/3292500.
3330666.

[288] P. V. S. Avinesh, Y. Ren, C. M. Meyer, J. Chan, Z. Bao, and
M. Sanderson, ‘‘J3R: Joint multi-task learning of ratings and review sum-
maries for explainable recommendation,’’ in Proc. Mach. Learn. Knowl.
Discovery Databases, Würzburg, Germany, U. Brefeld, E. Fromont,
A. Hotho, A. Knobbe, M. Maathuis, and C. Robardet, Eds. Berlin,
Germany: Springer, Sep. 2020, pp. 339–355. [Online]. Available:
https://dl.acm.org/doi/abs/10.1007/978-3-030-46133-1_21

[289] W. Liu, J. Su, C. Chen, and X. Zheng, ‘‘Leveraging distribution alignment
via stein path for cross-domain cold-start recommendation,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 34, M. Ranzato, A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, Eds. Red Hook, NY, USA:
Curran Associates, 2021, pp. 19223–19234. [Online]. Available:
https://proceedings.neurips.cc/paper/2021/file/a0443c8c8c3372d66
2e9173c18faaa2c-Paper.pdf

[290] T. Chen, H. Yin, Y. Zheng, Z. Huang, Y. Wang, and M. Wang, ‘‘Learning
elastic embeddings for customizing on-device recommenders,’’ in Proc.
27th ACM SIGKDD Conf. Knowl. Discovery Data Mining, New York,
NY, USA, Aug. 2021, pp. 138–147, doi: 10.1145/3447548.3467220.

[291] X. Li, W. Jiang, W. Chen, J. Wu, G. Wang, and K. Li, ‘‘Directional and
explainable serendipity recommendation,’’ inProc.WebConf., NewYork,
NY, USA, Apr. 2020, pp. 122–132, doi: 10.1145/3366423.3380100.

[292] X. Chen, S. Li, H. Li, S. Jiang, Y. Qi, and L. Song, ‘‘Generative adversarial
user model for reinforcement learning based recommendation system,’’ in
Proc. 36th Int. Conf. Mach. Learn. (Proceedings of Machine Learning
Research), vol. 97, K. Chaudhuri and R. Salakhutdinov, Eds. Long
Beach, CA, USA: PMLR, Jun. 2019, pp. 1052–1061. [Online]. Available:
https://proceedings.mlr.press/v97/chen19f.html

[293] K. Muhammad, Q. Wang, D. O’Reilly-Morgan, E. Tragos, B. Smyth, N.
Hurley, J. Geraci, and A. Lawlor, ‘‘FedFast: Going beyond average for
faster training of federated recommender systems,’’ in Proc. 26th ACM
SIGKDD Int. Conf. Knowl. Discovery DataMining, NewYork, NY, USA,
Aug. 2020, pp. 1234–1242, doi: 10.1145/3394486.3403176.

[294] Y. Zhou, J. Xu, J. Wu, Z. Taghavi, E. Korpeoglu, K. Achan, and
J. He, ‘‘PURE: Positive-unlabeled recommendation with generative
adversarial network,’’ in Proc. 27th ACM SIGKDD Conf. Knowl. Discov-
ery Data Mining, New York, NY, USA, Aug. 2021, pp. 2409–2419, doi:
10.1145/3447548.3467234.

[295] W. Lei, G. Zhang, X. He, Y. Miao, X. Wang, L. Chen, and
T.-S. Chua, ‘‘Interactive path reasoning on graph for conversational rec-
ommendation,’’ in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, New York, NY, USA, Aug. 2020, pp. 2073–2083, doi:
10.1145/3394486.3403258.

[296] M. Li, S. Zhang, F. Zhu, W. Qian, L. Zang, J. Han, and S. Hu,
‘‘Symmetric metric learning with adaptive margin for recommenda-
tion,’’ in Proc. 34th AAAI Conf. Artif. Intell., Feb. 2020, vol. 34,
no. 4, pp. 4634–4641. [Online]. Available: https://ojs.aaai.org/index.php/
AAAI/article/view/5894

[297] R. Zhang, T. Yu, Y. Shen, H. Jin, and C. Chen, ‘‘Text-based interactive
recommendation via constraint-augmented reinforcement learning,’’
in Proc. Adv. Neural Inf. Process. Syst., H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds.,
vol. 32. Red Hook, NY, USA: Curran Associates, 2019, pp. 1–11.
[Online]. Available: https://proceedings.neurips.cc/paper/2019/file/
52130c418d4f02c74f74a5bc1f8020b2-Paper.pdf

[298] C. Wu, F. Wu, T. Qi, Y. Huang, and X. Xie, ‘‘Fastformer: Additive
attention can be all you need,’’ 2021, arXiv:2108.09084.

[299] Z. Chai, Y. Li, and S. Zhu, ‘‘P-MOIA-RS: A multi-objective optimization
and decision-making algorithm for recommendation systems,’’ J. Ambi-
ent Intell. Humanized Comput., vol. 12, no. 1, pp. 443–454, Jan. 2021,
doi: 10.1007/s12652-020-01997-x.

[300] G. Hiranandani, W. Vijitbenjaronk, S. Koyejo, and P. Jain,
‘‘Optimization and analysis of the pAp@k metric for recommender
systems,’’ in Proc. 37th Int. Conf. Mach. Learn. (Proceedings of
Machine Learning Research), vol. 119, H. D. III and A. Singh,
Eds. PMLR, Jul. 2020, pp. 4260–4270. [Online]. Available:
https://proceedings.mlr.press/v119/hiranandani20a.html

[301] E. Shulman and L.Wolf, ‘‘Meta decision trees for explainable recommen-
dation systems,’’ in Proc. AAAI/ACM Conf. AI, Ethics, Soc., New York,
NY, USA, 2020, pp. 365–371, doi: 10.1145/3375627.3375876.

[302] O. Gouvert, T. Oberlin, and C. Févotte, ‘‘Recommendation from raw
data with adaptive compound Poisson factorization,’’ in Proc. Conf.
Uncertainty Artif. Intell. (UAI), Tel Aviv, Israel, Jul. 2019, pp. 1–11.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-02392075

[303] M. Tsang, D. Cheng, H. Liu, X. Feng, E. Zhou, and Y. Liu, ‘‘Feature
interaction interpretability: A case for explaining ad-recommendation
systems via neural interaction detection,’’ in Proc. Int. Conf. Learn.
Represent., 2020, pp. 1–19.

[304] M. M. Tanjim, C. Su, E. Benjamin, D. Hu, L. Hong, and J.
McAuley, ‘‘Attentive sequential models of latent intent for next item
recommendation,’’ in Proc. Web Conf., New York, NY, USA, Apr. 2020,
pp. 2528–2534, doi: 10.1145/3366423.3380002.

[305] S. Kang, J. Hwang, W. Kweon, and H. Yu, ‘‘Topology distillation
for recommender system,’’ in Proc. 27th ACM SIGKDD Conf. Knowl.
Discovery Data Mining, New York, NY, USA, Aug. 2021, pp. 829–839,
doi: 10.1145/3447548.3467319.

[306] S. Zhang, H. Chen, X. Ming, L. Cui, H. Yin, and G. Xu, ‘‘Where
are we in embedding spaces?’’ in Proc. 27th ACM SIGKDD Conf.
Knowl. Discovery Data Mining, New York, NY, USA, Aug. 2021,
pp. 2223–2231, doi: 10.1145/3447548.3467421.

[307] S. Feng, L. V. Tran, G. Cong, L. Chen, J. Li, and F. Li, ‘‘HME: A
hyperbolic metric embedding approach for next-POI recommendation,’’
in Proc. 43rd Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., New
York, NY, USA, Jul. 2020, pp. 1429–1438, doi: 10.1145/3397271.
3401049.

[308] F. Mi, X. Lin, and B. Faltings, ‘‘ADER: Adaptively distilled exemplar
replay towards continual learning for session-based recommendation,’’
in Proc. 14th ACM Conf. Recommender Syst., New York, NY, USA,
Sep. 2020, pp. 408–413, doi: 10.1145/3383313.3412218.

[309] M. Mladenov, E. Creager, O. Ben-Porat, K. Swersky, R. Zemel, and
C. Boutilier, ‘‘Optimizing long-term social welfare in recommender
systems: A constrained matching approach,’’ in Proc. 37th Int. Conf.
Mach. Learn. (Proceedings of Machine Learning Research), vol. 119,
H. D. III and A. Singh, Eds. PMLR, Jul. 2020, pp. 6987–6998. [Online].
Available: https://proceedings.mlr.press/v119/mladenov20a.html

[310] Z. Jiang, C. Chi, and Y. Zhan, ‘‘Let knowledge make recommenda-
tions for you,’’ IEEE Access, vol. 9, pp. 118194–118204, 2021, doi:
10.1109/ACCESS.2021.3106914.

[311] Z. Meng, R. McCreadie, C. Macdonald, and I. Ounis, ‘‘Exploring
data splitting strategies for the evaluation of recommendation models,’’
in Proc. 14th ACM Conf. Recommender Syst., New York, NY, USA,
Sep. 2020, pp. 681–686, doi: 10.1145/3383313.3418479.

[312] A. Maksai, F. Garcin, and B. Faltings, ‘‘Predicting online performance of
news recommender systems through richer evaluation metrics,’’ in Proc.
9th ACM Conf. Recommender Syst., New York, NY, USA, Sep. 2015,
pp. 179–186, doi: 10.1145/2792838.2800184.

86622 VOLUME 10, 2022

http://dx.doi.org/10.1145/3394486.3403226
http://dx.doi.org/10.1145/3394486.3403262
http://dx.doi.org/10.1145/3404835.3463245
http://dx.doi.org/10.1145/3298689.3347012
http://dx.doi.org/10.1145/3447548.3467249
http://dx.doi.org/10.1145/3292500.3330666
http://dx.doi.org/10.1145/3292500.3330666
http://dx.doi.org/10.1145/3447548.3467220
http://dx.doi.org/10.1145/3366423.3380100
http://dx.doi.org/10.1145/3394486.3403176
http://dx.doi.org/10.1145/3447548.3467234
http://dx.doi.org/10.1145/3394486.3403258
http://dx.doi.org/10.1007/s12652-020-01997-x
http://dx.doi.org/10.1145/3375627.3375876
http://dx.doi.org/10.1145/3366423.3380002
http://dx.doi.org/10.1145/3447548.3467319
http://dx.doi.org/10.1145/3447548.3467421
http://dx.doi.org/10.1145/3397271.3401049
http://dx.doi.org/10.1145/3397271.3401049
http://dx.doi.org/10.1145/3383313.3412218
http://dx.doi.org/10.1109/ACCESS.2021.3106914
http://dx.doi.org/10.1145/3383313.3418479
http://dx.doi.org/10.1145/2792838.2800184


M. Marcuzzo et al.: Recommendation Systems: An Insight Into Current Development and Future Research Challenges

[313] M. Rossetti, F. Stella, and M. Zanker, ‘‘Contrasting offline and online
results when evaluating recommendation algorithms,’’ in Proc. 10th ACM
Conf. Recommender Syst., New York, NY, USA, Sep. 2016, pp. 31–34,
doi: 10.1145/2959100.2959176.

[314] Z. Sun, D. Yu, H. Fang, J. Yang, X. Qu, J. Zhang, and C. Geng,
‘‘Are we evaluating rigorously? Benchmarking recommendation for
reproducible evaluation and fair comparison,’’ in Proc. 14th ACM Conf.
Recommender Syst., New York, NY, USA, Sep. 2020, pp. 23–32, doi:
10.1145/3383313.3412489.

[315] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael,
F. Hill, O. Levy, and S. Bowman, ‘‘Superglue: A stickier benchmark for
general-purpose language understanding systems,’’ in Proc. Adv. Neural
Inf. Process. Syst., vol. 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett, Eds. RedHook, NY, USA: Curran
Associates, 2019. [Online]. Available: https://proceedings.neurips.cc/
paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf

[316] W. X. Zhao, S. Mu, Y. Hou, Z. Lin, Y. Chen, X. Pan, K. Li, Y. Lu,
H. Wang, C. Tian, Y. Min, Z. Feng, X. Fan, X. Chen, P. Wang, W. Ji,
Y. Li, X. Wang, and J.-R. Wen, ‘‘RecBole: Towards a unified, com-
prehensive and efficient framework for recommendation algorithms,’’ in
Proc. 30th ACM Int. Conf. Inf. Knowl. Manage., New York, NY, USA,
Oct. 2021, pp. 4653–4664, doi: 10.1145/3459637.3482016.

[317] J. Chen, H. Dong, X. Wang, F. Feng, M. Wang, and X. He, ‘‘Bias and
debias in recommender system: A survey and future directions,’’ 2020,
arXiv:2010.03240.

[318] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan,
‘‘A survey on bias and fairness in machine learning,’’ACMComput. Surv.,
vol. 54, no. 6, pp. 1–35, Jul. 2021, doi: 10.1145/3457607.

[319] Y. Huang, W. Wang, L. Zhang, and R. Xu, ‘‘Sliding spectrum
decomposition for diversified recommendation,’’ in Proc. 27th ACM
SIGKDD Conf. Knowl. Discovery Data Mining, New York, NY, USA,
Aug. 2021, pp. 3041–3049, doi: 10.1145/3447548.3467108.

[320] A. Jain, P. K. Singh, and J. Dhar, ‘‘Multi-objective item evalua-
tion for diverse as well as novel item recommendations,’’ Expert
Syst. Appl., vol. 139, Jan. 2020, Art. no. 112857. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417419305597

[321] M. Abdool, M. Haldar, P. Ramanathan, T. Sax, L. Zhang, A. Manaswala,
L. Yang, B. Turnbull, Q. Zhang, and T. Legrand, ‘‘Managing diversity in
airbnb search,’’ in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, New York, NY, USA, Aug. 2020, pp. 2952–2960, doi:
10.1145/3394486.3403345.

[322] J.Möller, D. Trilling, N. Helberger, and B. van Es, ‘‘Do not blame it on the
algorithm: An empirical assessment of multiple recommender systems
and their impact on content diversity,’’ Inf., Commun. Soc., vol. 21, no. 7,
pp. 959–977, Jul. 2018, doi: 10.1080/1369118X.2018.1444076.

[323] D. Kotkov, J. Veijalainen, and S. Wang, ‘‘How does serendipity
affect diversity in recommender systems? A serendipity-oriented greedy
algorithm,’’ Computing, vol. 102, no. 2, pp. 393–411, Feb. 2020, doi:
10.1007/s00607-018-0687-5.

[324] A. Vultureanu-Albişi and C. Bădică, ‘‘A survey on effects of adding
explanations to recommender systems,’’ Concurrency Comput., Pract.
Exper., vol. 34, no. 20, p. e6834, Jan. 2022, doi: 10.1002/cpe.6834.

[325] O. Barkan, Y. Fuchs, A. Caciularu, and N. Koenigstein, ‘‘Explainable
recommendations via attentive multi-persona collaborative filtering,’’
in Proc. 14th ACM Conf. Recommender Syst., New York, NY, USA,
Sep. 2020, pp. 468–473, doi: 10.1145/3383313.3412226.

[326] T. Chen, H. Yin, G. Ye, Z. Huang, Y. Wang, and M. Wang, ‘‘Try this
instead: Personalized and interpretable substitute recommendation,’’ in
Proc. 43rd Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., New York, NY,
USA, Jul. 2020, pp. 891–900, doi: 10.1145/3397271.3401042.

[327] F. K. Khan, A. Flanagan, K. E. Tan, Z. Alamgir, and M. Ammad-ud-Din,
‘‘A payload optimization method for federated recommender systems,’’
in Proc. 15th ACM Conf. Recommender Syst., New York, NY, USA,
Sep. 2021, pp. 432–442, doi: 10.1145/3460231.3474257.

[328] D. Chai, L. Wang, K. Chen, and Q. Yang, ‘‘Secure federated matrix fac-
torization,’’ IEEE Intell. Syst., vol. 36, no. 5, pp. 11–20, Sep./Oct. 2021,
doi: 10.1109/MIS.2020.3014880.

[329] J. Han, Y. Ma, Q. Mei, and X. Liu, ‘‘DeepRec: On-device deep learning
for privacy-preserving sequential recommendation inmobile commerce,’’
in Proc. Web Conf., New York, NY, USA, Apr. 2021, pp. 900–911, doi:
10.1145/3442381.3449942.

[330] C. Wu, F. Wu, T. Qi, Y. Huang, and X. Xie, ‘‘FedAttack: Effective
and covert poisoning attack on federated recommendation via hard
sampling,’’ 2022, arXiv:2202.04975.

[331] E. Xi, S. Bing, and Y. Jin, ‘‘Capsule network performance on complex
data,’’ 2017, arXiv:1712.03480.

[332] G. E. Hinton, S. Sabour, and N. Frosst, ‘‘Matrix capsules with EM
routing,’’ in Proc. Int. Conf. Learn. Represent., 2018, pp. 1–15. [Online].
Available: https://openreview.net/forum?id=HJWLfGWRb

MATTEO MARCUZZO received the bachelor’s
degree in computer games technology from the
University of the West of Scotland, Paisley, U.K.,
and the master’s degree in computer science from
the University of Padua, Italy. He is an Associate
Researcher with Digital Strategy Innovation. His
research interests include natural language pro-
cessing, representation learning, interpretable AI,
and high performance computing.

ALESSANDRO ZANGARI received the master’s
degree in computer science from the University
of Padua, in 2020. He is an Associate Researcher
with Digital Strategy Innovation and a Machine
Learning Engineer with the Ca’ Foscari University
of Venice. His current research interests include
deep learning applications for natural language
processing algorithms, recommendation systems,
computer vision, and interpretability of AI.

ANDREA ALBARELLI is currently a Profes-
sor for the multidisciplinary master program in
data analytics for business and society with the
Ca’ Foscari University of Venice, where he is
responsible for the artificial intelligence teaching.
He is a Researcher in the field of artificial
intelligence, with a special focus on the design of
disruptive data-driven methodologies to be applied
on real-world scenarios. To this end, he works
in close collaboration with companies willing to

undertake a radical digital transformation process. His approach is end-to-
end, spanning from the co-design of digital-first business models to the
scientific advising needed to fulfill their methodological and technological
infrastructure. He has led several technological transfer projects, resulting
in research papers published in top international journals and presented in
key engineering conferences. He received several scientific and industrial
recognitions, including the NVIDIA Best Paper Award, for his research on
3D data processing; and innovation grants from companies like Electrolux
and TIM, for the technical contributions.

ANDREA GASPARETTO received the M.Sc.
degree in computer science from the University
of Venice, Italy, in 2012, and the Ph.D. degree in
computer science from the Ca’ Foscari University
of Venice. Since 2016, he has been a Researcher
and a Teaching Assistant with the Management
Department, Ca’ Foscari University of Venice.
His research interests include in the artificial
intelligence field, and more precisely in computer
vision, shape analysis, retrieval and classification,
and non-vectorial data models.

VOLUME 10, 2022 86623

http://dx.doi.org/10.1145/2959100.2959176
http://dx.doi.org/10.1145/3383313.3412489
http://dx.doi.org/10.1145/3459637.3482016
http://dx.doi.org/10.1145/3457607
http://dx.doi.org/10.1145/3447548.3467108
http://dx.doi.org/10.1145/3394486.3403345
http://dx.doi.org/10.1080/1369118X.2018.1444076
http://dx.doi.org/10.1007/s00607-018-0687-5
http://dx.doi.org/10.1002/cpe.6834
http://dx.doi.org/10.1145/3383313.3412226
http://dx.doi.org/10.1145/3397271.3401042
http://dx.doi.org/10.1145/3460231.3474257
http://dx.doi.org/10.1109/MIS.2020.3014880
http://dx.doi.org/10.1145/3442381.3449942

