11 research outputs found

    Sequential Randomized Algorithms for Convex Optimization in the Presence of Uncertainty

    Full text link
    In this paper, we propose new sequential randomized algorithms for convex optimization problems in the presence of uncertainty. A rigorous analysis of the theoretical properties of the solutions obtained by these algorithms, for full constraint satisfaction and partial constraint satisfaction, respectively, is given. The proposed methods allow to enlarge the applicability of the existing randomized methods to real-world applications involving a large number of design variables. Since the proposed approach does not provide a priori bounds on the sample complexity, extensive numerical simulations, dealing with an application to hard-disk drive servo design, are provided. These simulations testify the goodness of the proposed solution.Comment: 18 pages, Submitted for publication to IEEE Transactions on Automatic Contro

    On Repetitive Scenario Design

    Get PDF
    Repetitive Scenario Design (RSD) is a randomized approach to robust design based on iterating two phases: a standard scenario design phase that uses NN scenarios (design samples), followed by randomized feasibility phase that uses NoN_o test samples on the scenario solution. We give a full and exact probabilistic characterization of the number of iterations required by the RSD approach for returning a solution, as a function of NN, NoN_o, and of the desired levels of probabilistic robustness in the solution. This novel approach broadens the applicability of the scenario technology, since the user is now presented with a clear tradeoff between the number NN of design samples and the ensuing expected number of repetitions required by the RSD algorithm. The plain (one-shot) scenario design becomes just one of the possibilities, sitting at one extreme of the tradeoff curve, in which one insists in finding a solution in a single repetition: this comes at the cost of possibly high NN. Other possibilities along the tradeoff curve use lower NN values, but possibly require more than one repetition

    A Posteriori Probabilistic Bounds of Convex Scenario Programs with Validation Tests

    Full text link
    Scenario programs have established themselves as efficient tools towards decision-making under uncertainty. To assess the quality of scenario-based solutions a posteriori, validation tests based on Bernoulli trials have been widely adopted in practice. However, to reach a theoretically reliable judgement of risk, one typically needs to collect massive validation samples. In this work, we propose new a posteriori bounds for convex scenario programs with validation tests, which are dependent on both realizations of support constraints and performance on out-of-sample validation data. The proposed bounds enjoy wide generality in that many existing theoretical results can be incorporated as particular cases. To facilitate practical use, a systematic approach for parameterizing a posteriori probability bounds is also developed, which is shown to possess a variety of desirable properties allowing for easy implementations and clear interpretations. By synthesizing comprehensive information about support constraints and validation tests, improved risk evaluation can be achieved for randomized solutions in comparison with existing a posteriori bounds. Case studies on controller design of aircraft lateral motion are presented to validate the effectiveness of the proposed a posteriori bounds

    Stochastic AC Optimal Power Flow: A Data-Driven Approach

    Full text link
    There is an emerging need for efficient solutions to stochastic AC Optimal Power Flow ({AC-}OPF) to ensure optimal and reliable grid operations in the presence of increasing demand and generation uncertainty. This paper presents a highly scalable data-driven algorithm for stochastic AC-OPF that has extremely low sample requirement. The novelty behind the algorithm's performance involves an iterative scenario design approach that merges information regarding constraint violations in the system with data-driven sparse regression. Compared to conventional methods with random scenario sampling, our approach is able to provide feasible operating points for realistic systems with much lower sample requirements. Furthermore, multiple sub-tasks in our approach can be easily paralleled and based on historical data to enhance its performance and application. We demonstrate the computational improvements of our approach through simulations on different test cases in the IEEE PES PGLib-OPF benchmark library.Comment: a version of this paper will appear in the proceedings of the 21st Power Systems Computation Conference (PSCC 2020

    Repetitive Scenario Design

    Get PDF
    Repetitive Scenario Design (RSD) is a randomized approach to robust design based on iterating two phases: a standard scenario design phase that uses N scenarios (design samples), followed by randomized feasibility phase that uses No test samples on the scenario solution. We give a full and exact probabilistic characterization of the number of iterations required by the RSD approach for returning a solution, as a function of N, No, and of the desired levels of probabilistic robustness in the solution. This novel approach broadens the applicability of the scenario technology, since the user is now presented with a clear tradeoff between the number N of design samples and the ensuing expected number of repetitions required by the RSD algorithm. The plain (one-shot) scenario design becomes just one of the possibilities, sitting at one extreme of the tradeoff curve, in which one insists in finding a solution in a single repetition: this comes at the cost of possibly high N. Other possibilities along the tradeoff curve use lower N values, but possibly require more than one repetition

    Analysis of Theoretical and Numerical Properties of Sequential Convex Programming for Continuous-Time Optimal Control

    Full text link
    Sequential Convex Programming (SCP) has recently gained significant popularity as an effective method for solving optimal control problems and has been successfully applied in several different domains. However, the theoretical analysis of SCP has received comparatively limited attention, and it is often restricted to discrete-time formulations. In this paper, we present a unifying theoretical analysis of a fairly general class of SCP procedures for continuous-time optimal control problems. In addition to the derivation of convergence guarantees in a continuous-time setting, our analysis reveals two new numerical and practical insights. First, we show how one can more easily account for manifold-type constraints, which are a defining feature of optimal control of mechanical systems. Second, we show how our theoretical analysis can be leveraged to accelerate SCP-based optimal control methods by infusing techniques from indirect optimal control
    corecore