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Repetitive Scenario Design
Giuseppe C. Calafiore, Senior Member, IEEE

Abstract—Repetitive Scenario Design (RSD) is a randomized
approach to robust design based on iterating two phases: a
standard scenario design phase that uses N scenarios (design
samples), followed by randomized feasibility phase that uses No
test samples on the scenario solution. We give a full and exact
probabilistic characterization of the number of iterations required
by the RSD approach for returning a solution, as a function of
N , No, and of the desired levels of probabilistic robustness in
the solution. This novel approach broadens the applicability of
the scenario technology, since the user is now presented with
a clear tradeoff between the number N of design samples and
the ensuing expected number of repetitions required by the RSD
algorithm. The plain (one-shot) scenario design becomes just one
of the possibilities, sitting at one extreme of the tradeoff curve, in
which one insists in finding a solution in a single repetition: this
comes at the cost of possibly high N . Other possibilities along
the tradeoff curve use lower N values, but possibly require more
than one repetition.

Keywords—Scenario design, probabilistic robustness, randomized
algorithms, random convex programs.

I. INTRODUCTION

The purpose of the approach described in this paper is to
obtain a probabilistically reliable solution for some design
problem affected by uncertainty. The concept of “probabilistic
design” has been discussed extensively in the control commu-
nity in the last two decades, and it is now well accepted as
a standard tool for tackling difficult robust design problems;
we refer the reader to the survey paper [5] and to the book
[18] for many pointers to the related literature. The essential
elements of a probabilistic design approach are the following
ones:

1) A spec function, f(θ, q) : Rn × Q → R, which
associates a real value to each pair (θ, q) of a design
parameter θ ∈ Rn and uncertainty instance q ∈ Q,
where Q ⊆ Rnq . Function f represents the design
constraints and specifications of the problem and, in
particular, we shall say that a design θ is a robust
design, if f(θ, q) ≤ 0, ∀q ∈ Q. In this paper, we make
the standing assumption that f is convex in θ, while
arbitrary dependence in q is allowed.

2) A probability measure Prob defined on Q, which de-
scribes the probability distribution of the uncertainty.

Equipped with these two essential elements, for given ε ∈
(0, 1), and given design vector θ, we are in position to define
the probability of violation for the spec function at θ:

V (θ)
.
= Prob{q ∈ Q : f(θ, q) > 0}. (1)
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We say that θ is an ε-probabilistic robust design, if it holds
that V (θ) ≤ ε. Further, a designer also typically seeks to
minimize some cost function of θ (which can be considered
of the linear form c>θ, without loss of generality; see, e.g.,
Section 8.3.4.4 in [6]), while guaranteeing that V (θ) ≤ ε.
Finding such an ε-probabilistic robust design amounts to
solving a so-called chance-constrained optimization problem,
which is computationally hard in general, and perhaps harder
than finding a classical deterministic robust design. Chance-
constrained optimization problems can be solved exactly only
in very restrictive cases (e.g., when f is linear, and q has
some specific distribution, such as Normal; see, e.g., [16]).
Deterministic convex approximations of chance-constrained
problems are discussed in [13] for some special classes of
problems where f is affine in q and the entries of q are
independent. Also, the sampling average approximation (SAA)
method replaces the probability constraint V (θ) ≤ ε with one
involving the empirical probability of violation based on N
sampled values of q; see, e.g., [12], [14]. The optimization
problem resulting from SAA, however, is non-convex and
intractable, in general, even when the original function f is
convex in θ, as it is assumed in the present work.

A. The standard scenario theory
While effective approximation schemes for chance-

constrained optimization problems remain to date hard to
tackle numerically, an alternative and efficient randomized
scheme emerged in the last decade for finding ε-probabilistic
robust designs. This technique, which is now a well-established
technology (see, e.g., the recent surveys [9], [15]) in the
area of robust control, is called “scenario design,” and was
introduced in [3]. In scenario design one considers N i.i.d.
random samples of the uncertainty {q(1), . . . , q(N)} .= ω, and
builds a scenario random convex program (RCP):

min
θ∈Θ

c>θ (2)

s.t.: f(θ, q(i)) ≤ 0, i = 1, . . . , N,

where Θ is some given convex and compact domain, and c is
the given objective direction. An optimal solution θ∗ to this
problem, if it exists, is a random variable which depends on
the multiextraction ω, i.e., θ∗ = θ∗(ω). As a consequence, the
violation probability relative to a scenario solution, V (θ∗), is
itself, a priori, a random variable.

Scenario design lies somewhere in between worst-case ro-
bust design (where c>θ is minimized subject to f(θ, q) ≤ 0
for all q ∈ Q) and chance-constrained design (where c>θ is
minimized subject to V (θ) ≤ ε). Indeed, the optimal objective
value resulting from a scenario design is lower than the
worst-case optimal objective, and it is (with high probability)
higher than the optimal objective a related chance-constrained
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problem (see, e.g., Section 6 in [2]). Moreover, a fundamental
feature of scenario design is that its optimal solution θ∗(ω)
is feasible with high probability for the chance-constrained
problem. This key result is recalled next for the sake of clarity.
We shall work under the following simplifying assumption,
which is routinely made in the literature on scenario design;
see [3], [7].

Assumption 1: With probability (w.p.) one with respect to
the multi-extraction ω = {q(1), . . . , q(N)}, problem (2) is
feasible and it attains a unique optimal solution θ∗(ω). ?

Also, we need the following standard definition (see, e.g.,
Definition 4 in [3]).

Definition 1: Let J∗ = c>θ∗ denote the optimal objective
value of problem (2). Also, for j = 1, . . . , N , define

J∗j
.
= min

θ∈Θ
c>θ

s.t.: f(θ, q(i)) ≤ 0, i ∈ {1, . . . , N} \ j.

The j-th constraint in (2) is said to be a support constraint if
J∗j < J∗. ?

A key fact is that, regardless of the problem structure and
of N , the number of support constraints for problem (2)
cannot exceed n (the number of decision variables); see, e.g.,
Theorem 3 in [3]. If an instance of problem (2) happens to
have precisely n support constraints, then the problem instance
is said to be fully supported (f.s.); see Definition 3 in [7],
and Definition 2.5 in [2]. If the instances of problem (2)
are fully supported almost surely with respect to the random
extraction ω of the N constraints, then we say that problem
(2) is fully supported w.p. one. The following key result holds,
see Theorem 1 in [7], and Corollary 3.4 in [2].

Theorem 1: Let Assumption 1 hold. Then, for given ε ∈
[0, 1] and N ≥ n, it holds that

FV (ε)
.
= ProbN{ω : V (θ∗(ω)) ≤ ε} (3)

≥
N∑
i=n

(
N

i

)
εi(1− ε)N−i (4)

.
= 1− βε(N).

Moreover, the bound (4) is tight, since it holds with equality for
the class of problems of the form (2) that are fully supported
with probability one. ?

A remarkable feature of the result in (4) is that it holds
irrespective of the probability distribution assumed on q, and
that it depends on the problem structure only through the
dimension parameter n. Notice that the quantity βε(N) repre-
sents a Binomial cumulative distribution, as formally defined
later in Eq. (6).

B. Scenario problems and Bernoulli trials

For given ε ∈ [0, 1] and N ≥ n, let us consider the following
Bernoulli variable associated to problem (2):

z = z(ω) =

{
1, if V (θ∗(ω)) ≤ ε
0, otherwise.

By the definition in Eq. (3), the event z = 1 happens w.p.
FV (ε). One interpretation of Eq. (4) is thus that each time we
solve a scenario problem (2) we have an a priori probability
≥ 1 − βε(N) of realizing a “successful design,” that is of
finding a solution θ∗ which is an ε-probabilistic robust design,
and a probability ≤ βε(N) of realizing a “failure,” that is of
finding a solution θ∗ which is not ε-probabilistic robust.

In the classical scenario theory it is usually prescribed
to choose N so to make βε(N) very small (values as
low as 10−12 are common). This guarantees that the event
{V (θ∗(ω)) ≤ ε} will happen with “practical certainty.” In
other words, in such a regime, the scenario problem will
return an ε-probabilistic robust solution with practical certainty.
Moreover, a key feature of scenario theory is that such high
level of confidence can be reached at a relatively “cheap” com-
putational price. Indeed, considering the condition βε(N) ≤ β
for some given desired probability level β ∈ (0, 1), and using
some fairly standard techniques for bounding the Binomial tail
(see, e.g., Corollary 5.1 in [2] for the details), one can prove
that the condition is satisfied for1

N ≥ 2

ε

(
lnβ−1 + n− 1

)
. (5)

Since β−1 appears in the above bound under a logarithm, we
indeed see that N grows gracefully with the required certainty
level β−1. However, there are cases in which the number
N of constraints prescribed by (5) for reaching the desired
confidence levels is just too high for practical numerical
solution. Convex optimization solvers are certainly efficient,
but there are practical limits on the number of constraints they
can deal with; these limits depend on the actual type of convex
problem (say, a linear program (LP), or a semidefinite program
(SDP)) one deals with. A critical situation is, for instance,
when problem (2) is a semidefinite program (formally, f can
be taken as the maximum eigenvalue function of the matrices
describing the linear inequality constraints), since dealing with
SDP problems with many thousands of LMI constraints can
pose serious practical issues.

C. Contribution

In this paper we discuss how a variation of the scenario
approach can be used for obtaining an ε-probabilistic robust
solution with high confidence, using “small” values of N .
More precisely, we are interested in using scenario optimiza-
tion in a regime of N for which the right-hand side of Eq. (4)
is not close to one. We shall do so by solving repeatedly
instances of the scenario problem, and checking the result
via a suitable “violation oracle.” This novel approach, named
repetitive scenario design (RSD), is discussed in Section II,
which contains all the relevant results. Section III describes
two numerical examples of robust control design where the
proposed approach is applied. For improving readability, tech-
nical proofs are reported in the Appendix.

1Notice that the expression in (5) may be conservative; the exact minimal
value of N can be easily found numerically by searching for the least integer
N such that

∑N
i=n

(N
i

)
εi(1− ε)N−i ≥ 1− β.
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D. Notation and preliminaries
We shall make intensive use of the beta and related prob-

ability distributions. Some definitions and standard facts are
recalled next. We denote by beta(α, β) the beta density func-
tion with parameters α > 0, β > 0:

beta(α, β; t)
.
=

1

B(α, β)
tα−1(1− t)β−1, t ∈ [0, 1],

where B(α, β)
.
= Γ(α)Γ(β)

Γ(α+β) , and Γ is the Gamma function (for
α, β integers, it holds that B(α, β)−1 = α

(
α+β−1
β−1

)
). Also, we

denote by Fbeta(α, β) the cumulative distribution function of
the beta(α, β) density:

Fbeta(α, β; t)
.
=

∫ t

0

beta(α, β;ϑ)dϑ, t ∈ [0, 1].

Fbeta(α, β; t) is the regularized incomplete beta function, and
a standard result establishes that, for α, β integers, it holds that

Fbeta(α, β; t) =

α+β−1∑
i=α

(
α+ β − 1

i

)
ti(1− t)α+β−1−i.

The number x of successes in d independent Bernoulli trials,
each having success probability p, is a random variable with
Binomial distribution (which we denote by Bin(d, p)); its
cumulative distribution is given by

Prob{x ≤ z} = Prob{x ≤ bzc} =

bzc∑
i=0

(
d

i

)
ti(1− t)d−i

= 1−
d∑

i=bzc+1

(
d

i

)
ti(1− t)d−i

= 1− Fbeta(bzc+ 1, d− bzc; t)
≤ 1− Fbeta(z + 1, d− z; t) (6)
= Fbeta(d− z, z + 1; 1− t),

where bzc denotes the largest integer no larger than z. The
number x of successes in d binary trials, where each trial has
success probability p, and p is itself a random variable with
beta(α, β) distribution, is a random variable with a so-called
beta-Binomial distribution fbb: for i = 0, 1, . . . , d,

fbb(d, α, β; i)
.
=

(
d

i

)
B(i+ α, d− i+ β)

B(α, β)
. (7)

The cumulative distribution of a beta-Binomial random vari-
able is given by (see, e.g., [11], [19])

F bb(d, α, β; z)
.
= Prob{x ≤ z} =

bzc∑
i=0

fbb(d, α, β; i)

= 1− 1

d+ 1

B(β + d− z − 1, α+ z + 1)

B(α, β)B(d− z, z + 2)
Fd(a, b; z),

where Fd(a, b; z) is the generalized hypergeometric function

3F2(1, α+ z + 1,−n+ z + 1; z + 2,−β − n+ z + 2; 1).

II. REPETITIVE SCENARIO DESIGN

This section develops the main idea of this paper. By
repetitive scenario design (RSD) we here mean an iterative
computational approach in which, at each iteration k, the
scenario problem (2) is solved and then the ensuing solution
θ∗k is checked by a violation oracle (either deterministic, or
randomized, as illustrated next). If the oracle returns false,
another iteration is performed; if instead the oracle returns
true, the algorithm is terminated and the current solution θ∗k
is returned.

In the RSD the user selects a desired probabilistic feasibility
level ε ∈ (0, 1), and a number N ≥ n of scenarios to be used
in (2). We have from Theorem 1 that, at any iteration k, it
holds that

ProbN{ω(k) : V (θ∗k) ≤ ε} = FV (ε) ≥ 1− βε(N), (8)

where ω(k) denotes the multisample {q(1)
k , . . . , q

(N)
k }. In very

elementary terms, each iteration of the RSD method can be
thought of as a biased “coin toss,” where the probability of a
success in a toss (that is, of getting θ∗k such that V (θ∗k) ≤ ε)
is at least 1− βε(N). In our setting, this probability need not
be too close to one: the simple idea behind the RSD method
is to repeat the coin toss until we obtain a success, where
success is detected by the violation oracle. As one may easily
argue intuitively, the probability of obtaining a success at some
point in the algorithm is much higher than the probability of
obtaining a success in a single toss. A similar idea has been
recently proposed in [8], where the authors solve repeatedly
a “reduced-size” scenario problem, followed by a randomized
test of feasibility. The approach and the results in [8], however,
are distinctively different from the ones proposed here. In
[8], the scenario problems are solved using a number Nk
of scenarios that grows with the iteration count k, up to the
value Nplain that corresponds to the plain, one-shot, scenario
design. The major shortcoming of the approach in [8] is that
no theoretical analysis is offered for the number of iterations
required by their algorithm, and no tradeoff curve is proposed
for the choice of Nk in function of the expected running time
of the algorithm. As a result, there is no a-priori deterministic
or probabilistic guarantee that the algorithm does not reach the
final iteration, in which Nk equals Nplain, hence the worst-
case complexity of the algorithm in [8] can be worse than
the one of the plain scenario design method, and an actual
reduction of the number of design samples is not theoretically
guaranteed by the approach in [8].

We shall next analyze the probabilistic features of our RSD
algorithm in two cases. In the first case we assume that an
ideal exact feasibility oracle is available for checking the
current solution θ∗k; this case may be unrealistic in general,
but serves for providing an insightful preliminary analysis
of the RSD approach. In the second case, we analyze the
RSD approach when a practically implementable randomized
feasibility oracle is used.

A. Violation oracles
A deterministic ε-violation oracle (ε-DVO) is a “black box”

which, when given in input a value of the design variable θ,
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returns as output a flag value which is true if V (θ) ≤ ε,
and false otherwise. Such an oracle may not be realizable
computationally in practice, since computing the probability in
(1) is numerically hard, in general. For this reason, we next also
introduce a randomized ε′-violation oracle (ε′-RVO), which is
defined by means of the randomized scheme described next.

ε′-RVO (Randomized ε′-violation oracle) Input data: integer
No, level ε′ ∈ [0, 1], and θ ∈ Rn. Output data: a logic flag,
true or false.

1) Generate No i.i.d. samples ωo
.
= {q(1), . . . , q(No)},

according to Prob.
2) For i = 1, . . . , No, let vi = 1 if f(θ, q(i)) > 0 and

vi = 0 otherwise.
3) If

∑
i vi ≤ ε′No, return true, else return false.

The ε′-RVO simply evaluates the empirical probability of
violation on No test samples, and returns true if it is below ε′,
and false otherwise. A similar type of randomized feasibility
oracle has been previously introduced in [4], and used in a
probabilistic design setting also in [5]; see also Section 11.1
in [18], and the “validation” step proposed in [8]. However,
the ε′-RVO we propose in this paper is different from the one
used in the cited references: the latter exits with a false flag
as soon as one infeasible sample is found, whereas the ε′-RVO
allows up to bε′Noc infeasible samples before exit. Also, the
kind of a priori analysis we develop here for the repetitive
scenario design based on the ε′-RVO is entirely novel.

B. Repetitive scenario design with ideal oracle

We consider the following RSD algorithm, in which each
repetition consists of a plain scenario optimization step, fol-
lowed by a feasibility check of the ensuing solution, performed
by an exact feasibility oracle.

Algorithm 1 (RSD with ε-DVO): Input data: integer N ≥
n, level ε ∈ [0, 1]. Output data: solution θ∗. Initialization: set
iteration counter to k = 1.

1) (Scenario step) Generate N i.i.d. samples ω(k) .
=

{q(1)
k , . . . , q

(N)
k } according to Prob, and solve scenario

problem (2). Let θ∗k be the resulting optimal solution.
2) (ε-DVO step) If V (θ∗k) ≤ ε, then set flag to true, else

set it to false.
3) (Exit condition) If flag is true, then exit and return

current solution θ∗ ← θ∗k; else set k ← k + 1 and
goto 1.

?
The following theorem holds.

Theorem 2: Let Assumption 1 hold. Given ε ∈ [0, 1] and
N ≥ n, define the running time K of Algorithm 1 as the value
of the iteration counter k when the algorithm exits. Then:

1) The solution θ∗ returned by Algorithm 1 is an ε-
probabilistic robust design, i.e., V (θ∗) ≤ ε.

2) The expected running time of Algorithm 1 is ≤ (1 −
βε(N))−1, and equality holds if the scenario problem
is f.s. w.p. 1.

3) The running time of Algorithm 1 is≤ k with probability
≥ 1 − βε(N)k, and equality holds if the scenario
problem is f.s. w.p. 1.

?
See Section A in the Appendix for a proof of Theorem 2.

Remark 1 (Potential and limits of the RSD approach):
The preliminary results in Theorem 2 show the potential
of the RSD approach. Suppose that N is chosen so that
βε(N) is, say, 0.4. This means that a plain (i.e., one-shot)
scenario approach has only at least a 0.6 chance of returning
a “good” solution (that is, a 0.6 probability of returning an
ε-probabilistic robust design, i.e., a θ∗ such that V (θ∗) ≤ ε).
However, we see from point 3 of Theorem 2 that there is, for
instance, more than 1 − 10−9 probability that Algorithm 1
returns an ε-probabilistic robust design within 23 iterations.
Further, the eventual outcome of Algorithm 1 is ε-probabilistic
robust with probability one, and the expected number of
iterations of the RSD algorithm is just (1− 0.4)−1 = 1.67, in
the worst case of a f.s. problem.

Theorem 2 also shows a fundamental limit of the RSD
approach: we can decrease N (and hence increase βε(N)) with
respect to a plain scenario design approach, but we cannot
decrease N too much, for otherwise βε(N) → 1, and the
expected number of iterations of Algorithm 1 tends to ∞.
There is thus a fundamental tradeoff between the reduction of
N (which reduces the effort needed for solving the scenario
problem) and the increase of the number of iterations of
Algorithm 1. This tradeoff can be fully captured by plotting
the expected running time bound (1 − βε(N))−1 versus the
number N of scenarios.

C. Repetitive scenario design with randomized oracle
This section contains the main contribution of this paper.

Here, we consider a realistically implementable version of the
RSD approach, in which a randomized oracle is used instead
of the ideal deterministic one.

Algorithm 2 (RSD with ε′-RVO): Input data: integers N ,
No, level ε′ ∈ [0, 1]. Output data: solution θ∗. Initialization:
set iteration counter to k = 1.

1) (Scenario step) Generate N i.i.d. samples ω(k) .
=

{q(1)
k , . . . , q

(N)
k } according to Prob, and solve scenario

problem (2). Let θ∗k be the resulting optimal solution.
2) (ε′-RVO step) Call the ε′-RVO with current θ∗k as input,

and set flag to true or false according to the output
of the ε′-RVO.

3) (Exit condition) If flag is true, then exit and return
current solution θ∗ ← θ∗k; else set k ← k + 1 and goto
1.

?
A generic iteration, or stage, k, of Algorithm 2 is illustrated
in Figure 1.
We next analyze Algorithm 2 along two directions. First, we
observe that, contrary to Algorithm 1, the present Algorithm 2
may exit with a solution which is not ε-probabilistic robust.
This is due to the randomized nature of the oracle, which
may detect a “false positive,” by misclassifying as “good” a



5

‘

( )

( )

Fig. 1. Generic stage k of Algorithm 2.

solution θ∗k for which instead V (θ∗k) > ε. We show that the
probability of such a “bad exit” event can be made arbitrarily
small. Second, we fully characterize the probabilistic running
time (iterations to exit) of the algorithm. We start with the
following key preliminary lemma, which is the backbone of
the whole paper.

Lemma 1: Let Assumption 1 hold and, for any given itera-
tion k of Algorithm 2, define the events

True = {ε′-RVO returns true}
GoodTrue = {ε′-RVO returns true ∩ V (θ∗k) ≤ ε}

BadTrue = {ε′-RVO returns true ∩ V (θ∗k) > ε}

Let

fbb(No, n,N + 1− n; i)

.
=

(
No
i

)
B(i+ n,No − i+N − n+ 1)

B(n,N + 1− n)
,

Hε,ε′(N,No)

.
= 1−

bε′Noc∑
i=0

fbb(No, n,N + 1− n; i) ·

·Fbeta(n+ i,N +No − n− i+ 1; ε),

H1,ε′(N,No)

.
= 1−

bε′Noc∑
i=0

fbb(No, n,N + 1− n; i),

β̄ε,ε′(N,No)
.
= Fbeta(N + (1− ε′)No − n+ 1, n+ ε′No; 1− ε).

At any iteration k of Algorithm 2, it holds that

ProbN+No{True} ≥ 1−H1,ε′(N,No), (9)
ProbN+No{GoodTrue} ≥ 1−Hε,ε′(N,No) (10)

≥ (1− β̄ε,ε′(N,No))(1−H1,ε′(N,No)). (11)
ProbN+No{BadTrue} (12)

≤ Fbeta((1− ε′)No, ε′No + 1; 1− ε)βε(N).

Moreover, if problem (2) is f.s. w.p. one, then bounds (9) and
(10) hold with equality, and

ProbN+No{BadTrue} = Hε,ε′(N,No)−H1,ε′(N,No)

≤ β̄ε,ε′(N,No)(1−H1,ε′(N,No)). (13)

?

See Section B in the Appendix for a proof of Lemma 1.

We can now state the main result concerning Algorithm 2.

Theorem 3: Let Assumption 1 hold. Let ε, ε′ ∈ [0, 1], ε′ ≤ ε,
and N ≥ n be given. Let all the notation be set as in
Lemma 1, and let Prob×× denote the product probability
ProbN+No × ProbN+No × · · · . Define the event BadExit in
which Algorithm 2 exits returning a “bad” solution θ∗:

BadExit
.
= {Algorithm 2 returns θ∗: V (θ∗) > ε}.

The following statements hold.
1)

Prob××{BadExit} (14)

≤ Fbeta((1− ε′)No, ε′No + 1; 1− ε)
1−H1,ε′(N,No)

βε(N).

If problem (2) is f.s. w.p. one, then it actually holds
that

Prob××{BadExit} ≤ β̄ε,ε′(N,No)). (15)

2) The expected running time of Algorithm 2 is ≤ (1 −
H1,ε′(N,No))

−1, and equality holds if the scenario
problem is f.s. w.p. 1.

3) The running time of Algorithm 2 is≤ k with probability
≥ 1−H1,ε′(N,No)

k, and equality holds if the scenario
problem is f.s. w.p. 1.

?
See Section C in the Appendix for a proof of Theorem 3.

1) Asymptotic bounds: A key quantity related to the ex-
pected running time of Algorithm 2 is H1,ε′(N,No), which
is the upper tail of a beta-Binomial distribution. This quantity
is related to the hypergeometric function 3F2, and to ratios of
Gamma functions, which may be delicate to evaluate numer-
ically for large values of the arguments. It is therefore useful
to have a more “manageable,” albeit approximate, expression
for H1,ε′(N,No). The following corollary gives an asymptotic
expression for H1,ε′(N,No), see Section D in the Appendix
for a proof.

Corollary 1: For No →∞ it holds that

H1,ε′(N,No)→ βε′(N). (16)

?
An interesting consequence of Corollary 1 is that, for large
No, and ε′ ≤ ε, we have H1,ε′(N,No) ' βε′(N) ≥ βε(N),
from which we conclude that

K̂
.
=

1

1−H1,ε′(N,No)
' 1

1− βε′(N)
≥ 1

1− βε(N)
. (17)

This last equation gives us an approximate, asymptotic, ex-
pression for the upper bound K̂ on the expected running time
of Algorithm 2, and also tells us that, for ε′ ≤ ε, this bound
cannot be better (smaller) than the corresponding bound of the
“ideal” Algorithm 1.



6

D. Practical dimensioning of the scenario and oracle blocks

In a typical probabilistic design problem we are given the
dimension n of the decision variable and the level ε ∈ (0, 1)
of probabilistic robustness we require from our design. If we
intend to use a randomized approach, we also set a confidence
level 1− β ∈ (0, 1), which is the a-priori level of probability
with which our randomized approach will be successfull in
returning an ε-probabilistic robust design. In a plain (i.e., non
repetitive) scenario design setting, this requires dimensioning
the number N of scenarios so to guarantee that βε(N) ≤ β;
this can be done, for instance, by using the bound in (5),
or via a simple numerical search over N . However, if the
required N turns out to be too large in practice (e.g., the
ensuing scenario optimization problem becomes impractical to
deal with numerically), we can switch to a repetitive scenario
design approach. In such a case, we suggest the following route
for designing the scenario and oracle blocks. Let us first select
a level ε′ ≤ ε to be used in the oracle. Qualitatively, decreasing
ε′ increases the expected running time K and decreases the
required No, and the converse happens for increasing ε′. We
may suggest setting ε′ in the range [0.5, 0.9]ε.

1) Dimensioning the scenario block: Guidelines for the
choice of N cannot be given in general terms, since the
actual choice of a suitable N will depend on the specific
type of optimization problem one deals with, and also on the
software/hardware environment available for solving it. For
instance, if the scenario problem is a linear program (LP),
then larger values of N may be admissible, whereas if the
scenario problem is an SDP then they user may not want to
exceed with the value of N . Once this additional problem-
specific and environment-specific information is available, we
can dimension the scenario optimization block by choosing
N so as to achieve a good tradeoff between the specific
complexity of the scenario program (which grows with N )
and the expected number of iterations required by the RSD
approach (which decreases with N ). This choice can be made,
for instance, by plotting the approximate expression (which
becomes exact as No → ∞) in (17) for the upper bound on
the expected running time of Algorithm 2, (1−βε′(N))−1, as
a function of N , and selecting a value of N that achieves the
desired tradeoff.

2) Dimensioning the oracle block: Once N has been se-
lected according to the approach described above, we consider
point 1 and point 2 in Theorem 3 and we dimension the ε′-
RVO block by searching numerically for an No such that the
right-hand side of (14) (or of (15), if the problem is f.s.) is
≤ β.

Remark 2: We observe that, in general, the bound in (14)
should be used for the design of the ε′-RVO block. However,
the expression in (15) is easier to deal with than the one in
(14). It is hence advisable to use the former in a preliminary di-
mensioning phase; the so-obtained values can then be verified
ex-post against the actual bound in (14). Another advantage of
(15) is that, using a bounding technique analogous to the one
described in Section 5 of [2], we can “invert” the condition
β̄ε,ε′(N,No) ≤ β, finding (after some manipulation) that this

condition is satisfied if

Noδ+N(δ/2+ε′) ≥ ε

δ
lnβ−1+n−1, δ

.
= ε−ε′ > 0. (18)

With a choice of the pair (N,No) such that (18) is satisfied,
we guarantee a priori that our randomized Algorithm 2 may
fail in returning an ε-probabilistic robust design w.p. at most
β, as desired (rigorously, this only holds under the assumption
that the scenario problem is f.s. w.p. one). The nice feature
highlighted by (18) is that now the “workload” necessary to
achieve the desired failure level β is subdivided between N
(samples in the scenario problem) and No (samples in the
oracle): a lower complexity scenario problem can be employed,
as long as it is paired with a randomized oracle having a
suitable No. Notice, however, that, in making the choice of the
(N,No) pair, the expected running time of Algorithm 2 should
also be taken into account, and that this places a lower limit on
how small N can be, see also the discussion in Section II-C1.

Remark 3: We further observe that, in typical cases, dealing
with large No is a milder problem than dealing with large N .
This is due to the fact that merely checking satisfaction of
inequality f(θ∗k, q

(i)) ≤ 0, for i = 1, . . . , No, is generally
easier than solving a related optimization problem with as
many constraints. Also, we remark that the ε′-RVO algorithm
is inherently parallel, so an M -fold speedup can potentially
be gained if M processors are available in parallel for the
randomized feasibility test. Actually, the whole approach can
be formulated in a fully parallel – instead of sequential – form,
where W workers solve in parallel W instances of scenario
problems, and each worker has its own M parallel sub-workers
to be used in the randomized oracle. Such a parallel version of
the RSD method can be easily analyzed using the probabilistic
tools developed in this paper.

III. NUMERICAL EXAMPLES

We exemplify the steps of the RSD approach, from algo-
rithm dimensioning to numerical results, using two examples
of robust control design. The first example deals with robust
finite-horizon input design for an uncertain linear system,
while the second example deals with robust performance
design for a positive linear system.

A. Robust finite-horizon input design
We consider a system of the form

x(t+ 1) = A(q)x(t) +Bu(t), t = 0, 1, . . . ; x(0) = 0,

where u(t) is a scalar input signal, and A(q) ∈ Rna,na is an
interval uncertain matrix of the form

A(q) = A0 +

na∑
i,j=1

qijeie
>
j , |qij | ≤ ρ, ρ > 0,

where ei is a vector of all zeros, except for a one in the i-
th entry. Given a final time T ≥ 1 and a target state x̄, the
problem is to determine an input sequence {u(0), . . . , u(T −
1)} such that (i) the state x(T ) is robustly contained in a
small ball around the target state x̄, and (ii) the input energy



7

A0 =


−0.7214 −0.0578 0.2757 0.7255 0.2171 0.3901
0.5704 0.1762 0.3684 −0.0971 0.6822 −0.5604
−1.3983 −0.1795 0.1511 1.0531 −0.1601 0.9031
−0.6308 −0.0058 0.4422 0.8169 0.512 0.2105
0.7539 0.1423 0.2039 −0.3757 0.5088 −0.6081
−1.3571 −0.1769 0.1076 1.0032 −0.1781 0.9151

 , B =


0
1
0
1
0
1



∑
k u(k)2 is not too large. We write x(T ) = x(T ; q) = R(q)u,

where R(q) is the T -reachability matrix of the system (for a
given q), and u

.
= (u(0), . . . , u(T − 1)). Then, we formally

express our design goals in the form of minimization of a level
γ such that

‖x(T ; q)− x̄‖22 + λ

T−1∑
t=0

u(t)2 ≤ γ,

where λ ≥ 0 is a tradeoff parameter. Letting θ = (u, γ), the
problem is formally stated in our framework by setting

f(θ, q) ≤ 0, where f(θ, q)
.
= ‖R(q)u− x̄‖22 + λ‖u‖22 − γ.

Assuming that the uncertain parameter q is random and uni-
formly distributed in the hypercube Q = [−ρ, ρ]na×na , our
scenario design problem takes the form

min
θ=(u,γ)

γ

s.t.: f(θ, q(i)) ≤ 0, i = 1, . . . , N.

a) Dimensioning the RSD algorithm: We set T = 10,
thus the size of the decision variable θ = (u, γ) of the scenario
problem is n = 11. We set the desired level of probabilistic
robustness to 1−ε = 0.995, i.e., ε = 0.005, and require a level
of failure of the randomized method below β = 10−12, that is,
we require the randomized method to return a good solution
with “practical certainty.” Using a plain (one-shot) scenario
approach, imposing βε(N) ≤ β would require N ≥ 10440
scenarios. Let us now see how we can reduce this N figure
by resorting to a repetitive scenario design approach.

Let us fix ε′ = 0.7ε = 0.0035, thus δ = ε − ε′ = 0.0015.
A plot of the (asymptotic) bound on expected number of
iterations, (1 − βε′(N))−1, as a function of N is shown in
Figure 2. A value of, say, N = 2000 is workable for the
specific optimization problem at hand, and we see from the
plot in Figure 2 that such choice would correspond to a value
of about 10 for the upper bound on the expected number of
iterations in Algorithm 2. Let then us choose the value of
N = 2000 for the scenario block.

For β = 10−12, the simplified condition in (18) tells us that
No ≥ 62403. Let us choose No = 63000 samples to be used
in the oracle. With the above choices we have H1,ε′(N,No) =
0.8963, thus the algorithm’s upper bound on average running
time is K̂ = (1 − H1,ε′(N,No))

−1 = 9.64. Notice that this
upper bound is tight for f.s. problems, but it is conservative
for problems that are not necessarily f.s. Thus, in general, we
may expect a performance that is in practice better than the
one predicted by the theoretical worst-case bound.

103 104
100

101

102

103

Fig. 2. Example in Section III-A: Log-log plot of (1− βε′ (N))−1 vs. N .

b) Numerical test: We considered the nominal matrix A0

of dimension na = 6 and B matrix shown on top of this
page, with target state x̄ = [1,−1/2, 2, 1,−1, 2]>, ρ = 0.001,
and λ = 0.005. We run Algorithm 2 for 100 times, and on
each test run we recorded the number of iterations and the
solution returned upon exit. Figure 3(a) shows the number of
repetitions in the test runs: we see that the algorithm exited
most of the times in a single repetition, with a maximum of 4
repetitions, which is below the figure predicted by the upper
bound K̂ = 9.64: practical performance was thus better than
predicted, which suggests that the problem at hand is not fully
supported w.p. 1. Figure 3(b) shows the level of empirical
violation probability evaluated by the oracle upon exit. Finally,
Figure 4(a) shows the optimal γ level returned by the algorithm
in the test runs, and Figure 4(b) shown the optimal input signal
returned by the algorithm, averaged over the 100 test runs.

c) Computational improvements: In this example, the
RSD approach permitted a substantial reduction of the number
of design samples (from the 10440 samples required by the
plain scenario method, to just 2000 samples), at the price of a
very moderate number of repetitions (the average number of
repetitions in the 100 test runs was 1.27).

The numerical experiments were carried out on an Intel
Xeon X5650 machine using CVX under Matlab; [10]. On
average over the 100 test experiments, the RSD method (with
N = 2000, No = 63000) required 224 s to return a solution.
For comparison purposes, we also run a plain, one-shot,
scenario optimization with the N = 10440 scenarios that
are required to attain the desired β = 10−12 level: the time
required for obtaining such a solution was 2790 s. Using the
RSD approach instead of a plain one-shot scenario design thus
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Fig. 3. Example in Section III-A: (a) Repetitions of Algorithm 2 in the 100 test runs. (b) Levels of empirical violation probability evaluated by the oracle
upon exit, in the 100 test runs.
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Fig. 4. Example in Section III-A: (a) Optimal γ level returned by Algorithm 2 in the 100 test runs. (b) Average over the 100 test runs of the optimal input
u(t) returned by Algorithm 2.

yielded a reduction in computing time of about one order of
magnitude. The reason for this improvement is due to the fact
that the scenario optimization problem in the RSD approach
(which uses N = 2000 scenarios) took about 173 s to be
solved on a typical run, and the subsequent randomized oracle
test (with No = 63000) is computationally cheap, taking only
about 3.16 s.

B. An uncertain linear transportation network

As a second example, we consider a variation on a trans-
portation network model introduced in Section 3 of [17]; see
Figure 5.

The model is described by state equations where the states
xi, i = 1, . . . , 4, represent the contents of four buffers, the
parameters `ij ≥ 0 represent the rate of transfer from buffer
j to buffer i, w(t) ≥ 0 is an input flow on the second buffer,

x1

x2

x4

x3

w

Fig. 5. Example in Section III-B: A network model.

and we take as output y the total content of the buffers; see
Eq. (19)-(20).
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ẋ =

 −1− `31 `12 0 0
0 −`12 − `32 `23 0
`31 `32 −`23 − `43 `34

0 0 `43 −4− `34

x+

 0
1
0
0

w (19)

y = [ 1 1 1 1 ]x. (20)

We consider the situation in which `31 = 2 + q1, `34 =
1 + q2, `43 = 2 + q3, where ` = [`12 `23 `32]> ∈ [0, 1]3 is a
vector of parameters to be designed, and q = [q1 q2 q3]> is an
uncertainty term, which is assumed to be a truncated Normal
random vector with zero mean, covariance matrix Σ = 0.22I ,
and ‖q‖∞ ≤ 1. This system has the form ẋ = A(`, q)x +
Bw, y = Cx, where B ≥ 0, C ≥ 0 (element-wise), and the
A(`, q) matrix is Metzler (i.e., the off-diagonal entries of A
are nonnegative). Theorem 4 in [17] states that, for given `, q,
this system is stable and the peak-to-peak gain from w to y
is smaller that some given γ if and only if there exist ξ ≥ 0
such that [

A(`, q) B
C 0

] [
ξ
1

]
<

[
0
γ1

]
,

where 1 is a vector of ones. By taking N i.d.d. samples q(i)

of q, a scenario design problem is one in which one seeks
to minimize the peak-to-peak gain γ subject to the above
constraint on the scenarios; see Eq. (21). This problem is a
“robustified” version of the one discussed in Section V of
[17]. The problem as stated is not convex, due to the product
terms between entries in ξ and `. However, by introducing new
variables µ12 = `12ξ2, µ32 = `32ξ2, µ23 = `23ξ3, we rewrite
the problem as an LP in the variables ξ, µ = [µ12 µ32 µ23]>,
and γ; see Eq. (22).

d) Dimensioning the RSD algorithm: The size of the
decision variable θ = (ξ, µ, γ) of the scenario problem is
n = 8. As in the previous example, we set the desired level
of probabilistic robustness to 1 − ε = 0.995, i.e., ε = 0.005,
and require a level of failure of the randomized method below
β = 10−12. Using a plain (one-shot) scenario approach,
imposing βε(N) ≤ β would require N ≥ 9197 scenarios. We
next reduce this N figure by resorting to a repetitive scenario
design approach.

Let us fix ε′ = 0.7ε = 0.0035, thus δ = ε − ε′ = 0.0015.
Plotting the asymptotic bound on expected number of itera-
tions, (1−βε′(N))−1 as a function of N (as we did in Figure 2
for the previous example), we see that the choice N = 1340
corresponds to a value of about 10 for the upper bound on the
expected number of iterations in Algorithm 2. Let us choose
this value of N for the scenario block.

For β = 10−12, the simplified condition in (18) tells us that
No ≥ 62273 samples can be used in the randomized feasibility
oracle. With the above choices we have H1,ε′(N,No) =
0.8931, thus the algorithm’s upper bound on average running
time is K̂ = (1 − H1,ε′(N,No))

−1 = 9.36 (notice again
that, in general, we may expect a performance which is in
practice better than the one predicted by this theoretical worst-
case bound, since the the actual problem may not be fully
supported).

e) Numerical test and computational performance: We
first solved the problem via a plain scenario approach, using
N = 9197 scenarios. The computational time was of about 50
s, resulting in the following optimal solution:

ξ =

 0.2314
0.5000
1.7206
0.9763

 , µ =

[
0.5000
0.5000
0.0000

]
, γ = 3.4283.

Next, we run the RSD method (Algorithm 2, with N = 1340,
No = 62273) for 100 times, and on each test run we recorded
the number of iterations and the solution returned upon exit.
Figure 6(a) shows the number of repetitions in the test runs:
we see that the algorithm exited most of the times in a single
repetition, with a maximum of 3 repetitions; average 1.24
repetitions. Figure 6(b) shows the level of empirical violation
probability evaluated by the oracle upon exit. Finally, Figure 7
shows the optimal γ level returned by the algorithm in the test
runs.

The average (over the 100 test trials) running time of
the RSD method was about 6.4 s. Since the plain scenario
approach required about 50 s, it was about 680% slower than
the newly proposed RSD approach, in this test example. Each
repetition of the RSD method required about 4.6 s for solving
the scenario problem (with N = 1340), and 0.6 s for the
randomized oracle check (with No = 62273); once again, we
observe that the oracle time was much lower than the scenario
optimization time.

0 10 20 30 40 50 60 70 80 90 100
Test run

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

.

Fig. 7. Example in Section III-B: Optimal γ level returned by Algorithm 2
in the 100 test runs.

IV. CONCLUSIONS

Repetitive scenario design generalizes the scenario approach
to robust design by setting up an iterative procedure whereby
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min
`12,`23,`32∈[0,1];γ ξ≥0

γ (21)

s.t.:


−3− q(i)

1 `12 0 0
0 −`12 − `32 `23 0

2 + q1 `32 −`23 − 2− q(i)
3 1 + q

(i)
2

0 0 2 + q
(i)
3 −5− q(i)

2

 ξ +B1 < 0, i = 1, . . . , N

Cξ < γ1.

min
µ≥0;ξ≥0;γ

γ (22)

s.t.:


−3− q(i)

1 0 0 0
0 0 0 0

2 + q
(i)
1 0 −2− q(i)

3 1 + q
(i)
2

0 0 2 + q
(i)
3 −5− q(i)

2

 ξ +

 1 0 0
−1 −1 1
0 1 −1
0 0 0

µ+B1 < 0, i = 1, . . . , N

Cξ < γ1, µ12 ≤ ξ2, µ32 ≤ ξ2, µ23 ≤ ξ3.

(a) (b)
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Fig. 6. Example in Section III-B: (a) Repetitions of Algorithm 2 in the 100 test runs. (b) Levels of empirical violation probability evaluated by the oracle
upon exit, in the 100 test runs.

scenario design trials are followed by a randomized check
on the feasibility level of the solution. The expected number
of repetitions (or trials) in this procedure is dictated by the
key quantity H1,ε′(N,No), which is well approximated, for
large No, by βε′(N). For H1,ε′(N,No) → 0 we recover the
extreme situation of the standard, one-shot, scenario design,
in which a valid solution is found in a single repetition, at
the cost of possibly large N . For smaller N values, we can
trade off complexity in the solution of the scenario problem for
additional iterations in the RSD algorithm. The extent to which
N can be reduced is however limited by the upper bound K̂
we impose on the expected running time, since Eq. (17) tells us
that H1,ε′(N,No) ' βε′(N) ≤ 1− K̂−1. Numerical examples
showed that the proposed RSD approach may indeed lead to

sensible improvements in computational time, compared to a
plain scenario approach.

APPENDIX

A. Proof of Theorem 2
The first point of the theorem is obvious, sice the algorithm

terminates if and only if true is returned by the deterministic oracle,
which happens if and only if the condition V (θ∗k) ≤ ε is satisfied.

For point two, let zk = zk(ω(k)), k = 1, . . ., be i.i.d. Bernoulli
variables representing the outcome of the ε-DVO step at each itera-
tion, i.e., zk = 1 if V (θ∗k) ≤ ε (oracle returns true), and zk = 0
otherwise (oracle returns false). From Eq. (8) we observe that the
probability of zk = 1 is FV (ε) ≥ 1 − βε(N). Since the algorithm
terminates as soon as a true is returned by the oracle, the running
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time of the algorithm is defined as the random variable

K
.
= {iteration k at which true is returned for the first time}.

Clearly, K has a geometric distribution

Prob×{K = k} = (1− FV (ε))k−1FV (ε),

where Prob× denotes the product probability measure over
ω(1), ω(2), . . . The mean of this geometric distribution is 1/FV (ε),
whence

E{K} =
1

FV (ε)
≤ 1

1− βε(N)
,

which proves the second point (note that equality holds if the scenario
problem is f.s. w.p. one). The cumulative of the above geometric
distribution is

Prob×{K ≤ k} = 1− (1− FV (ε))k.

This function is increasing in FV (ε), thus FV (ε) ≥ 1−βε(N) implies

Prob×{K ≤ k} ≥ 1− βε(N)k,

which proves the third point. �

B. Proof of Lemma 1
At any given iteration k of Algorithm 2, let us consider the

sequence of binary random variables appearing inside the ε′-RVO:

vi =

{
1 if f(θ∗k, q

(i)) > 0
0 otherwise, i = 1, . . . , No

By definition, we have that Prob{q : f(θ∗k, q) > 0} = V (θ∗k), and
V (θ∗k) is a random variable with cumulative distribution function
given by FV . Therefore, for given V (θ∗k) = p, the vis form an i.i.d.
Bernoulli sequence with success probability p. However, p is itself
a random variable having cumulative distribution FV . Therefore, the
vis form a so-called conditionally i.i.d. Bernoulli sequence [1], having
FV as the directing de Finetti measure. In simpler terms, the vis are
described by a compound distribution: first a success probability p
is extracted at random according to its directing distribution FV ,
and then the vis are generated according to an i.i.d. Bernoulli
distribution with success probability p. Let S .

=
∑No
i=1 vi. Conditional

on V (θ∗k) = p, the random variable S has Binomial distribution
Bin(No, p) thus, from (6),

ProbNo{S ≤ z|V (θ∗k) = p} =

bzc∑
i=0

(
No
i

)
pi(1− p)No−i

= Fbeta(No − bzc, bzc+ 1, 1− p)
= 1− Fbeta(bzc+ 1, No − bzc, p)
≤ 1− Fbeta(z + 1, No − z, p). (23)

Considering Eq. (4), we next let

FV (t)
.
= Fbeta(n,N + 1− n; t) + Ψ(t), t ∈ [0, 1], (24)

where Ψ(t) is some unknown function such that 0 ≤ Ψ(t) ≤ 1 −
Fbeta(n,N + 1 − n; t), for all t ∈ [0, 1], and Ψ(0) = Ψ(1) = 0.
Observe that Ψ(t) is identically zero if the scenario problem is f.s.
w.p. one. Consider the event

GoodTrue
.
= {True ∩ V (θ∗k) ≤ ε}
= {S ≤ bε′Noc ∩ V (θ∗k) ≤ ε}.

Leting z .
= bε′Noc, we have that

ProbN+No{GoodTrue} = ProbN+No{S ≤ z ∩ V (θ∗k) ≤ ε}

=

∫ ε

0

ProbNo{S ≤ z|V (θ∗k) = t}dFV (t)

[using (23)] =

∫ ε

0

Fbeta(No − z, z + 1; 1− t)dFV (t)

[using (24)] = (1−Hε,ε′(N,No)) +R(ε), (25)

where we defined

Hε,ε′(N,No)
.
= 1−

∫ ε

0

Fbeta(No − z, z + 1; 1− t) ·

· beta(n,N + 1− n; t)dt (26)

R(ε)
.
=

∫ ε

0

Fbeta(No − z, z + 1; 1− t)dΨ(t). (27)

We next analyze the above two terms. For the first term, we have

1−Hε,ε′(N,No) (28)

=

∫ ε

0

Fbeta(No − z, z + 1; 1− t)beta(n,N + 1− n; t)dt

[using (23)] =

z∑
i=0

∫ ε

0

(
No
i

)
ti(1− t)No−i ·

· beta(n,N + 1− n; t)dt

=

z∑
i=0

∫ ε

0

(
No
i

)
1

B(n,N + 1− n)
ti+n−1(1− t)No−i+N−ndt

=

z∑
i=0

∫ ε

0

(
No
i

)
B(i+ n,No − i+N − n+ 1)

B(n,N + 1− n)
·

· beta(i+ n,No − i+N − n+ 1; t)dt

[by def. in (7)] =

z∑
i=0

∫ ε

0

fbb(No, n,N + 1− n; i) ·

· beta(i+ n,No − i+N − n+ 1; t)dt

=

z∑
i=0

fbb(No, n,N + 1− n; i) ·

·Fbeta(n+ i,N +No − n− i+ 1; ε).

Observe that, for all i = 0, . . . , z, it holds that

Fbeta(n+ i,N +No − n− i+ 1; ε)

=

N+No∑
j=n+i

(
N +No

j

)
εj(1− ε)N+No−j

≥
N+No∑
j=n+z

(
N +No

j

)
εj(1− ε)N+No−j

= Fbeta(n+ z,N +No − n− z + 1; ε).

Therefore, we obtain following bound

1−Hε,ε′(N,No)
≥ Fbeta(n+ z,N +No − n− z + 1; ε)

·
z∑
i=0

fbb(No, n,N + 1− n; i)

= (1− Fbeta(N +No − n− z + 1, n+ z; 1− ε)) ·
· (1−H1,ε′(N,No)) .
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For z = bε′Noc, we have, in particular, that

1−Hε,ε′(N,No)
≥
(
1− Fbeta(N +No − n− bε′Noc+ 1, n+ bε′Noc; 1− ε)

)
· (1−H1,ε′(N,No))

≥
(
1− Fbeta(N + (1− ε′)No − n+ 1, n+ ε′No; 1− ε)

)
· (1−H1,ε′(N,No))

.
=
(
1− β̄ε,ε′(N,No)

)
· (1−H1,ε′(N,No)) . (29)

We next consider the R(ε) term in (27). We have that

R(ε) =

∫ ε

0

(1− Fbeta(z + 1, No − z; t))dΨ(t) (30)

= Ψ(ε)−
∫ ε

0

Fbeta(z + 1, No − z; t)dΨ(t)

[integrating by parts] = Ψ(ε)Fbeta(No − z, z + 1; 1− ε)

+

∫ ε

0

Ψ(t)beta(z + 1, No − z; t)dt.

Since Ψ(t) ≥ 0 forall t ∈ [0, 1], the above expression shows that
R(ε) ≥ 0 for all ε ∈ [0, 1], with R(ε) being identically zero
for problems that are f.s. Considering (25), this fact permits us to
conclude that

ProbN+No{GoodTrue} = ProbN+No{S ≤ z ∩ V (θ∗k) ≤ ε}
= 1−Hε,ε′(N,No) +R(ε)

≥ 1−Hε,ε′(N,No)
[from (29)] ≥

(
1− β̄ε(N,No)

)
·

· (1−H1,ε′(N,No)) ,

which proves (10) and (11). Also, we obtain that

ProbN+No{True} .
= ProbN+No{S ≤ z}
= ProbN+No{S ≤ z ∩ V (θ∗k) ≤ 1}
= 1−H1,ε′(N,No) +R(1)

≥ 1−H1,ε′(N,No),

which proves (9). Further, using (25), we have that

ProbN+No{BadTrue} .
= ProbN+No{S ≤ z ∩ V (θ∗k) > ε}
= ProbN+No{True}
−ProbN+No{GoodTrue}

= Hε,ε′(N,No)−H1,ε′(N,No)

+(R(1)−R(ε)).

If the scenario problem is f.s., then R(1) = R(ε) = 0, hence

ProbN+No{BadTrue} = Hε,ε′(N,No)−H1,ε′(N,No)

+(R(1)−R(ε))

[if problem is f. s.] = Hε,ε′(N,No)−H1,ε′(N,No)

[using (29)] ≤ β̄ε,ε′(N,No)(1−H1,ε′(N,No)).

All the above proves (13). To upper bound the probability of BadTrue
in the non-fully supported case, we reason instead as follows:

ProbN+No{BadTrue}

=

∫ 1

ε

ProbNo{S ≤ z|V (θ∗k) = t}dFV (t)

=

∫ 1

ε

Fbeta(No − z, z + 1; 1− t)dFV (t)

[integrand is decreasing in t]

≤
∫ 1

ε

Fbeta(No − z, z + 1; 1− ε)dFV (t)

= Fbeta(No − z, z + 1; 1− ε)
∫ 1

ε

dFV (t)

= Fbeta(No − z, z + 1; 1− ε) · ProbN{V (θ∗k) > ε}
[from (4)]
≤ Fbeta(No − z, z + 1; 1− ε) ·Fbeta(N + 1− n, n; 1− ε)
[since z = bε′Noc]
≤ Fbeta((1− ε′)No, ε′No + 1; 1− ε) ·βε(N),

which proves (13). �

C. Proof of Theorem 3
Let us define the event BadExitk as the one where the algorithm

reaches the k-th iteration, and then exits with a “bad” solution, i.e.,
with a solution θ∗k for which V (θ∗k) > ε. The probability of this event
is the probability that the ε′-RVO returns false precisely k − 1
times (for this guarantees that we reach the k-th iteration), and then
the event BadTrue happens at the k-th iteration. Therefore, letting q
denote the probability of BadTrue, and p denote the probability of
True (events defined as in Lemma 1) we have that

Prob××{BadExitk} = (1− p)k−1q.

The event BadExit in which the algorithm terminates with a bad
solution is the union of the non-overlapping events BadExitk, k =
1, 2, . . ., therefore

Prob××{BadExit} =

∞∑
k=1

Prob××{BadExitk}

=

∞∑
k=1

(1− p)k−1q = q

∞∑
k=0

(1− p)k

=
q

p
=

ProbN+No{BadTrue}
ProbN+No{True}

.

We now use (12) to upper bound q, and then use (9) to conclude that

Prob××{BadExit}

≤ Fbeta((1− ε′)No, ε′No + 1; 1− ε)βε(N)

1−H1,ε′(N,No)
,

which proves (14). In the fully supported case, we can instead use
(13) to upper bound q, and hence conclude that

Prob××{BadExit} ≤ β̄ε,ε′(N,No),

which proves (15).
Let next K denote the running time of Algorithm 2, that is the

value of the iteration count when the algorithm terminates. Since the
algorithm terminates as soon as a True event happens, and since
the True events are statistically independent among iterations, we



13

have that {K = k} has geometric probability (1 − p)k−1p, where
p is the probability of True. Therefore, the expected value of K
is 1/p ≤ 1/(1 −H1,ε′(N,No)), where the inequality follows from
(9), and this proves point 2 in the theorem. Via the same reasoning,
{K > k} has probability (1− p)k, and hence we conclude that

Prob××{K ≤ k} = 1− (1− p)k ≥ 1−H1,ε′(N,No)
k,

which proves the third point in the theorem. �

D. Proof of Corollary 1
From from Eq. (28) we have that, for z .

= bε′Noc,

1−H1,ε′(N,No) = (31)∫ 1

0

Fbeta(No − z, z + 1; 1− t)beta(n,N + 1− n; t)dt.

We recall that a beta(α, β) density has mean α/(α+β), peak (mode)
at (α − 1)/(α + β − 2), and variance σ2 = αβ/((α + β)2(α +
β + 1)). Then, we observe that Fbeta(No − z, z + 1; 1 − t) =
1 − Fbeta(z + 1, No − z; t), where Fbeta(z + 1, No − z; t) is the
cumulative distribution of a beta(z + 1, No − z) density. The peak
of this density is at z/(No − 1), which tends to ε′ for No → ∞;
further, the variance of this distribution goes to zero as O(N−1

o ),
which permits us to argue that, for large No, the function Fbeta(No−
z, z + 1; 1− t) has an inflection point near ε′ and decreases rapidly
from value ' 1 to value ' 0 as t crosses ε′. That is, as No → ∞,
the function Fbeta(No − z, z + 1; 1 − t) tends to a step function
which is one for t < ε′ and zero for t > ε′. Therefore, we have for
the integral in (31) that

1−H1,ε′(N,No)→
∫ ε′

0

1 · beta(n,N + 1− n; t)dt

= Fbeta(n,N + 1− n; ε′) = 1− βε′(N),

which proves (16). �
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