146,431 research outputs found

    Model based control of a liquid swelling constrained batch reactor subject to recipe uncertainties

    Get PDF
    This work presents the application of nonlinear model predictive control (NMPC) to a simulated industrial batch reactor subject to safety constraint due to reactor level swelling, which can occur with relatively fast dynamics. Uncertainties in the implementation of recipes in batch process operation are of significant industrial relevance. The paper describes a novel control-relevant formulation of the excessive liquid rise problem for a two-phase batch reactor subject to recipe uncertainties. The control simulations are carried out using a dedicated NMPC and optimization software toolbox Optcon which implements state of the art technologies. The open-loop optimal control problem is computed using the multipleshooting technique and the arising non-linear programming problem is solved using a sequential quadratic programming (SQP) algorithm tailored for large scale problems, based on the freeware optimization environment HQP. The fast response of the NMPC controller is guaranteed by the initial value embedding and real time iteration technologies. It is concluded that the OptCon implementation allows small sampling times and the controller is able to maintain safe and optimal operation conditions, with good control performance despite significant uncertainties in the implementation of the batch recipe

    Efficient Robust Optimization of Metal Forming Processes using a Sequential Metamodel Based Strategy

    Get PDF
    The coupling of Finite Element (FE) simulations to mathematical optimization techniques has contributed significantly to product improvements and cost reductions in the metal forming industries. The next challenge is to bridge the gap between deterministic optimization techniques and the industrial need for robustness. This paper introduces a new and generally applicable structured methodology for modeling and solving robust optimization problems. Stochastic design variables or noise variables are taken into account explicitly in the optimization procedure. The metamodel-based strategy is combined with a sequential improvement algorithm to efficiently increase the accuracy of the objective function prediction. This is only done at regions of interest containing the optimal robust design. Application of the methodology to an industrial V-bending process resulted in valuable process insights and an improved robust process design. Moreover, a significant improvement of the robustness (> 2s ) was obtained by minimizing the deteriorating effects of several noise variables. The robust optimization results demonstrate the general applicability of the robust optimization strategy and underline the importance of including uncertainty and robustness explicitly in the numerical optimization procedure
    corecore