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Abstract 

This work presents the application of nonlinear model predictive control (NMPC) to a 

simulated industrial batch reactor subject to safety constraint due to reactor level swelling, 

which can occur with relatively fast dynamics. Uncertainties in the implementation of recipes 

in batch process operation are of significant industrial relevance. The paper describes a novel 

control-relevant formulation of the excessive liquid rise problem for a two-phase batch 

reactor subject to recipe uncertainties. The control simulations are carried out using a 

dedicated NMPC and optimization software toolbox Optcon which implements state of the 

art technologies. The open-loop optimal control problem is computed using the multiple-

shooting technique and the arising non-linear programming problem is solved using a 

sequential quadratic programming (SQP) algorithm tailored for large scale problems, based 

on the freeware optimization environment HQP. The fast response of the NMPC controller is 

guaranteed by the initial value embedding and real time iteration technologies.  It is 

concluded that the OptCon implementation allows small sampling times and the controller is 

able to maintain safe and optimal operation conditions, with good control performance 

despite significant uncertainties in the implementation of the batch recipe.  
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1. Introduction 

Reactor or evaporator content swelling phenomena can lead to significant productivity losses 

if this phenomenon is not considered during process operation and is regarded as a reactor 

productivity and safety problem. Reactor content swelling occurs when the vessel content 

level rises due to a gas or vapor stream that passes through the liquid (Figure 1). Vapor flow 

occurs in a reactor when the reaction produces a gas phase product or during direct steam 

heating when some of the steam does not condense and disengages to the top of the vessel.  

 

As a result of the swelling phenomena reaction mass enters the pipes and the condensers 

connected to the reactor. As a consequence of such undesired events reactor shut-down is 

mandatory and production time is lost for cleaning operations. The pipe and condenser 

cleaning is carried out by charging solvent which is evaporated and condensed for a certain 

time (refluxing conditions). The off-line optimal temperature control of batch reactors with 

regard to swelling was subject of investigation by Simon et al. (Simon et al., 2008a). 

Similarly to the batch reactors, reboiler liquid swelling may also occur during the operation 

of low pressure batch distillation processes (Simon et al., 2008b). 

 

This work aims to implement an on-line model based level control strategy, which considers 

reaction content swelling. The on-line strategy is required to accommodate the reaction rate 

disturbances which arise due to catalyst dosing uncertainties (catalyst mass and feed time). 

Since the advent of dynamic matrix control (DMC), model predictive control (MPC) has been 

the most popular advanced control strategy in the chemical industries (Morari and Lee, 

1997). Linear MPC has been heralded as a major advance in industrial process control 

(Richalet et al., 1978). However, due to their nonstationary and highly nonlinear nature, 

linear model based control usually cannot provide satisfactory performance in the case of 

complex batch processes (Qin and Badgwell, 2003). Nonlinear model predictive control 

(NMPC) reformulates the MPC problem based on nonlinear process models, providing the 

advantage to cope inherently with process nonlinearities (Allgower et al., 2004; Findeisen et 

al., 2007) characteristic to batch systems. Recent developments in the field of real-time 

optimization use the feedback information to adapt the constraints of the optimization 

problem instead of updating the model parameters (Chachuat et al., 2008). On-line 

optimization and integration of extended Kalman filter based estimation was shown to be an 

effective way to increase productivity of exothermic batch reactors (Arpornwichanop et al., 

2005). Recent predictive control formulations that explicitly account for process 



 

 

 

3

nonlinearities and do not require the traditional assumption of initial feasibility of the 

optimization problem are presented by Mahmood and Mhaskar (2008) and Mhaskar et al. 

(2005). Zavala and Biegler (2009) proposed the advanced-step NMPC controller to reduce 

the on-line computational effort via the reformulation of the NMPC problem. New challenges 

related to the optimal transition from batch to continuous processing of bio-reactors, are 

handled using a non-linear model predictive controller to ensure the constraints satisfaction 

and performance targets (Mhaskar and Aumi, 2007). Robust formulations that incorporate 

parameter uncertainties in the control problem formulation are also available (Giovanini and 

Grimble, 2004; Nagy and Braatz, 2003). 

 

The presented paper illustrates the benefits of the application of an efficient on-line 

optimizing non-linear model based control approach which uses the multiple shooting 

optimization algorithm. The optimization is implemented in a user-friendly software package, 

OptCon (Nagy et al., 2004; Nagy et al., 2007). 

 

2. Process operation and models 

The system considered in this study is based on a proprietary industrial batch process, for 

which the model has been developed and identified. The catalyst used in the chemical 

reaction decomposes in the reaction mixture; therefore it is fed several times during the 

process operation. The first feeding takes place at the beginning of the operation, later the 

catalyst shots are added as the reaction rate decreases. This type of process operation is often 

used in the industrial practice. The process is characterized by significant uncertainties in the 

kinetic constants and in the addition time of the catalyst. Figure 2 shows the experimental 

reaction rate measurements (normalized data) from the real industrial plant, in the case of 

repeated application of the same operating recipe with two consecutive catalyst dosing. The 

significant bath-to-batch variation may lead to safety problems and sub-optimal operation. 

 

The process operation can be optimized off-line by calculating an optimal pressure profile in 

function of the catalyst dosage time, dosed mass and purity. However the off-line calculated 

optimal pressure profile does not ensure safe operation in the case of disturbances in the 

catalyst feeding policy. Instead an on-line strategy is needed to adjust the pressure profile 

during the operation considering the unknown disturbances. The control strategy used here is 

based on the nonlinear model predictive control (NMPC) framework for batch processes.  

 

2.1 Batch reactor modeling 
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Four equilibrium reactions in series take place in the liquid phase and a catalyst is used in 

dissolved form. The reaction scheme is as follows: 

 

A + B    C + D (1) 

B + C    E + D (2) 

B + E    F + D (3) 

B + F    P + D (4) 

B + Catalyst  → W (5) 

 

Raw materials are component A and B; components C, E, F are intermediates, P is the 

desired product and W is the decomposed catalyst. The goal of the process operation is to 

remove the co-product D from the liquid phase as fast as possible to shift the equilibrium 

reactions to the product side. Product D is in vapour phase at the temperature and pressure 

conditions in the reactor, and the production of the co-product D creates a vapour flow that 

travels to the reaction mass surface and produces a certain void fraction in the liquid mass. 

The extent of the void fraction is dependent on the liquid properties and vapour hold-up in 

liquid phase which in turn are dependent on the vapour flow rate and implicitly on the 

formation rate of gas co-product D.  

By operating at low pressure conditions, the amount of D in liquid phase is minimized, thus 

the reverse reactions are not significant. Therefore, the kinetic model is based only on 

forward reactions which ensure a safety back-off in the model. The true reaction rates will 

never be faster than the forward reactions. 

In order to model the forward reactions the Arrhenius formulation is implemented, using a 

reference reaction constant determined at a reference temperature (Bunce et al., 1988): 
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where i is the ith reaction step, i
Rr  is the ith reaction rate to the right-hand side [kmol/ (m3 s)],  

rCat is the catalyst deactivation rate, i
refk  are the corresponding rate constants at reference 

temperature [m6/(kmol2 s)], kCat is the catalyst deactivation rate constant at reference 

temperature [m3/(kmol s)], EA,i
 the activation energies [kJ/kmol], ECat

  the catalyst 

deactivation reaction activation energy [kJ/kmol], Tr and Tref  are the current and reference 

temperature [K], R is the gas constant [kJ/(kmol K)], nB  is the mole number of component B 

[kmol], nCat is the catalyst mol number [kmol],  nX represents nA, nC, nE and nF [kmol], 

respectively, and V is the volume of the reaction mass [m3]. During the reaction the volume 

changes significantly, therefore V is a variable in the model. The reaction volume is not 

constant due to two factors: on one hand there is the removal of by-product D and on the 

other hand the density of the mixture changes. These two effects contribute each with about 

10% volume change. The reaction volume at any time is calculated as a function of the 

densities and masses of all components in the mixture thus accounting for the removal of co-

product D and the change in composition. The resulting component mass balances for the 

liquid phase are as follows: 

Vr
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R

A 1−=  
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where Fcat is the catalyst dosing rate [kmol/s].  

 

2.2 Void fraction modeling 
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In order to describe the effect of liquid swelling the pool void fraction, is used. The swelled 

height H [m] in terms of the average pool void fraction α  and the height of the resting liquid 

H0 [m] is given by the following equation: 

 

0

1
H
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α

=
−  

(16) 

 

Wilson et al. determined the void fraction α  by bubbling steam through water in a 

pressurized vessel in the 20-40 bar pressure range (Wilson et al., 1961). Their proposed 

empirical correlation is presented below:  
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where ρL and ρV [kg/m3] are the liquid and vapor densities, σ [N/m] is the surface tension, g 

[m/s2] is the gravitational acceleration, Dreb [m] is the reboiler vessel diameter and  jV [m/s] is 

the superficial vapor velocity. To our knowledge void fraction correlations valid under 

vacuum conditions are not available in the literature, therefore a set of experiments within 0.1 

and 0.8 bar was carried out. It was found that at 0.1 bar, the Wilson model predicts correctly 

the void fraction values up to 10-15 % (Simon and Hungerbuhler, 2009).  The comparisons of 

the void fraction predictions as a function of the gas flow rate using the four hydrodynamic 

models is discussed in Simon et al. (Simon et al., 2008b). It is concluded that, at 1 bar 

pressure, the Wilson, Churn turbulent (Fisher et al., 1992) and Sterman models (Sterman, 

1958) show similar behavior, and the Kataoka-Ishii model (Kataoka and Ishii, 1987) predicts 

larger void fractions. The four hydrodynamic models were compared at 0.25 bar pressure as 

well; the comparison results show that the Wilson and Churn turbulent model predictions are 

similar, while the Sterman and Katoka-Ishii models predict larger void fractions. It is 

interesting to note that the Wilson model was successfully extrapolated by Wiss et al. (Wiss 



 

 

 

7

et al., 1993) (without refitting the model parameters) from about 20-40 bar pressure to 1 bar. 

In conclusion, our experimental results have proved that the Wilson model is a good choice 

for pool boiling modeling under vacuum conditions, thus it is used in the model applied in the 

current calculations. 

 

3. On-line optimizing control for swelling constrained batch reactor 

The on-line optimizing control for a model represented by a generic ordinary-differential 

equation (ODE) system can be expressed as follows: 

 

))(),(()( tutxftx =  (20)

))(),(()( tutxgty =  (21)

  

subject to the input, state and output constraints  
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where ( )x t  is the nx vector of states, u(t) is the nu set of input vector trajectories and ( )y t  is 

the ny vector of output variables. The sets X  and Y  are closed subsets of xnℜ  and ynℜ , 

respectively and the set U  is a compact subset of  unℜ . If we suppose that the full state x  can 

be measured, then in the batch NMPC (Nagy et al., 2004; Nagy et al., 2007) the control input 

applied to the system in the interval [ , ]k ft t  is given by the repeated solution of the finite 

horizon optimal control problem given by:  
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where the objective function has the generic form, which consists of the end-point objective 

( M ) and a path term ( Ψ ), kt  denotes the sampling instance, ft  is the batch time and F ft t≤  is 
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the prediction horizon for the running term. Although in the case of typical batch NMPC only 

the end-point objective is considered, based on the nature of the control objective in practical 

cases often either one or both terms may be incorporated in the actual objective function. 

When F ft t=  the optimization is performed on a shrinking horizon, whereas if F ft t≤  initially 

the problem is solved on a combination of shrinking and moving horizon until k F ft t t+ <  after 

which on shrinking horizon. The bar in the optimization problem denotes the predicted 

variables, i.e. x  denotes the solution of the system driven by the input u  with the initial 

condition ( )kx t . Even if in the case of shrinking horizon NMPC in the nominal case the real 

state x  of the system coincides with the predicted state x , it is necessary to make a 

distinction between the two due to differences which occur due to uncertainties in model 

parameters, inputs and disturbances. 

The repeated optimization problem is solved by formulating a discrete form, that can be 

handled by conventional solvers (Biegler and Rawlings, 1991). The batch time ],0[ ftt ∈  is 

divided into N equally spaced time intervals Δt (stages), with discrete time steps tk = kΔt, 

and k = 0, 1, …, N. The main idea of the shrinking horizon on-line control algorithm (batch 

NMPC) is summarized as follows: 

 

1. with known initial conditions, discretize batch time in N intervals; 

2. optimize property at the end of the batch; 

3. implement calculated input for the first control interval; 

4. initialize optimization with states taken at the end of time interval k; 

5. re-optimize property at the end of the batch, having N-1 decision variables in the optimal 

control problem; 

6. implement the first control input; 

7. go back to step 4, and repeat until the end of batch. 

 

For the solution of the optimization problem a specially tailored NMPC tool - OptCon - was 

developed that includes a number of desirable features (Nagy et al., 2004). In particular, the 

NMPC is based on first-principles or grey box models, and the problem setup can be done in 

Matlab. The NMPC approach is based on a large-scale NLP solver (HQP) (Franke et al., -, 

Nagy et al., 2007) which offers an efficient optimization environment, based on multiple 

shooting algorithm (Bock and Plitt, 1984; Diehl et al., 2002), that divides the optimization 

horizon into a number of subintervals (stages) with local control parameterizations. The 
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differential equations and cost on these intervals are integrated independently during each 

optimization iteration. The continuity/consistency of the state trajectory at the end of the 

optimization is enforced by adding consistency constraints to the nonlinear programming 

problem. The NMPC tool OptCon provides an efficient environment for rapid prototyping of 

NMPC strategies even in an industrial environment and has been successfully used in a 

variety of practical applications (Nagy et al., 2007). 

 

4. Results and discussion 

 

4.1. Open-loop optimal control of the swelling constrained batch reactor 

The most widely used optimization method to improve the batch processes is the formulation 

and solution of an optimal control problem (Bonvin, 1998). The open-loop optimisation 

problem corresponds to the first optimization step in the batch NMPC algorithm described in 

the previous section. In this approach the objective is to improve an end-point criteria by 

calculating a time variant input variable profile (temperature, pressure, feed rate).   

 

Since the reactions are chemical equilibrium limited it is important that the pressure in the 

reactor is the lowest possible. However, minimum reactor pressure yields maximum gas 

volume and eventually maximum liquid level, thus this limitation has to be taken into account 

during the calculation of the pressure profile. Although it is plausible to control the cause of 

the vapor formation (reaction kinetics) using the temperature, in practice this is not possible 

due to the slow dynamics of temperature change in large scale reactors. Instead, from 

practical point of view, it is more feasible to control the true level by means of the pressure. 

For this case study the temperature ramp is set to 1 C/min. 

The optimization of the batch reactor with regard to swelling can be regarded as a problem to 

determine the pressure profile which will not cause the level to rise over a maximum value. 

The objective function is to maximize the component B depletion or to minimize the content 

of component B at final time, the control variable is the pressure, and the final simulation 

time is fixed to 40 min. The inequality path constraint is the formation rate of co-product D 

converted in true reactor content level. The optimal control problem for this process is 

formulated as follows: 

∫= ft

tP
dttPM

0)(
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Subject to: 

0),),,,,,(),,,,,(( =ttcvPTxHydrocvTxxRdaeg f
Model
HydroR

Model
RR  (26) 

0)(max ≥− tHH r  (27) 

0)(max ≥− tPP  (28) 

0)( min ≥− PtP  (29) 

 

where tf is the final time (end of the optimization) at which it is considered that swelling 

cannot occur anymore (not yet the end of the reaction), P is the pressure proposed by the 

optimizer, Rdae is the kinetic model, Rv  is the vector of reaction mass specific constants, 
Model
Rc  is the vector of reaction model specific parameters, Hydro is the hydrodynamic model, 
Model
Hydroc  is the vector of  hydrodynamic model specific constants and parameters, Hmax (2.4 m) 

and Hr (t) are the maximum level and calculated reactor content level, respectively, Pmax (1 

bar) and Pmin (0.075 bar) are the maximum and the minimum pressures, respectively. The 

objective function is expressed as the integral of the pressure profile over the batch time. This 

formulation guaranties that the maximum level is not exceeded while the pressure is kept at 

the minimum possible level, which indirectly maximizes productivity.  Figure 3 shows (a) the 

open-loop optimal pressure profile and (b) the calculated reactor level. The pressure increases 

due to the catalyst feeding procedure which happens during short periods at time steps 0, 15, 

25, 35 minutes during which the reaction rate increases. However, during the operation of the 

batch reactor there is an uncertainty regarding the catalyst mass and dosing time which causes 

significant level increase and sub-optimal operation.  The Figure 3b shows the true reactor 

level in case when the catalyst is dosed 3 minutes earlier compared to the recipe and also 

considering that 20% more mass is added. The sampling time is 20 s. 

 

4.2. On-line re-optimizing control of the swelling constrained batch reactor 

In order to cope with the disturbance of the chemical system a shrinking horizon, re-

optimizing model based control strategy is implemented. The optimal control problem 

defined by equations (25)-(29) is solved repeatedly considering a state feedback formulation. 

This assumption is used since in practice the concentrations (states) are measurable with 

spectroscopy based techniques such as infrared (IR) spectroscopy. The measured spectra are 

previously calibrated to known concentration samples using partial-least squares (PLS) 
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models. The spectral peak position and intensity are chemistry dependent and are used in the 

industrial environment. 

The level control results for the case when the catalyst is fed with 3 minutes earlier and with 

20% more mass than specified by the recipe is presented in Figure 4. Due to the small 

sampling time the controller is able to accommodate the change of vapor rate and it maintains 

the level at the maximum level. In this case the information contained in the original recipe is 

not used by the model during the open-loop optimization, since the catalyst dosing is 

expected later.  

 

The next set of simulations is concerned with the case when the catalyst is fed delayed and 

with 20 % more mass as set in the recipe. Figure 5 presents the case when the catalyst feed is 

delayed with 3 minutes. Similarly to the previous case the level control is good despite the 

disturbance in the recipe.  

 
 
 
In order to analyze the effect of the recipe information on the process control behavior a 

scenario was simulated in which the catalyst feeding time is delayed by 30 seconds (the 

catalyst feeding takes 1 minute). This way it is expected that the controller has some 

information about the dosing time in the open-loop optimization. This expectation is 

confirmed in Figure 6b, where we observe that the level is lower within the first sampling 

time. 
 
 

In order to verify the influence of the model-plant mismatch, a slower, thus conservative 

model was used. In the kinetic model the activation energies were increased by 30% and the 

prediction of the hydrodynamic model was decreased by 30%. This way the true level height 

is under predicted. The simulation results considering early catalyst feeding (3 minutes 

sooner) and the model discussed above are presented in Figure 7. An offset compared to the 

maximum level can be observed, which can be decreased by running the optimization 

problems with the level constrained at 2.3 m. Using a model which under predicts the level 

the optimizer will try to lower the pressure to a higher extent compared to the prediction 

which is based on an accurate model. For low pressures the effect of plant-model mismatch is 

controlled by the lower bound on the pressure which is the control variable. 
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We would like to highlight the importance of the real-time feasibility of the calculations, 

especially during the catalyst feeding period when excessive level increase may occur. As 

shown in the results presented above using small sampling time the control performance is 

good. There may be cases when the NMPC strategy may not allow the implementation of 

small sampling time control actions. In these cases the open-loop formulation of the NMPC 

control problem, according to which the NMPC control actions are applied in an open-loop 

way between the NMPC sampling instances, may not provide acceptable results. During the 

open-loop control period a disturbance may lead to the rapid rise of the reactor level and 

hence to the violation of safety constraint. In these cases a closed-loop NMPC can be 

implemented. According to this strategy the optimization repeatedly finds a feedback law 

rather than an open-loop profile. The simplest control law is a linear output feedback level 

controller,  

 

))(()()( tHHkKtP set −=  (30) 

 

where, K(k) is the dynamic controller gain which is fixed on a discretization interval and is 

the result of the closed-loop NMPC optimization problem (Nagy and Braatz, 2004). 
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5. Conclusions 

The paper presents an on-line optimizing batch process control strategy with respect to 

excessive liquid rise. The on-line strategy is required to accommodate the reaction rate 

disturbances which arise due to catalyst dosing uncertainties (variations in catalyst mass and 

feeding time). The control simulations are carried out using a dedicated NMPC and 

optimization software toolbox Optcon which implements state of the art technologies. The 

open-loop optimal control problem is computed using the multiple-shooting technique and 

the arising non-linear programming problem is solved using a sequential quadratic 

programming (SQP) algorithm tailored for large scale problems, based on the freeware 

optimization environment HQP. The fast response of the NMPC controller is guaranteed by 

the initial value embedding and real time iteration technologies. This efficient NMPC scheme 

allows the implementation of control actions with small sampling time, which is an important 

aspect in this application, which may exhibit very rapid rise in level due to swelling. The 

simulation results obtained using the model fitted to industrial experimental data indicate that 

the on-line model based control is able to keep the reactor level within safety operation 

constraints, without causing excessive liquid swelling or sub-optimal operation even in the 

case of  significant  deviations from the master recipe. 
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List of symbols 

 

 

Latin symbols 

 
Model
Hydroc  vector of  hydrodynamic model specific constants and parameters 

Model
Rc  vector of  reactor model specific constants and parameters 

dn vector of  accumulation or consumption rates of all components, [kmol/s] 

ECat catalyst deactivation reaction activation energy, [kJ/kmol] 

EAi activation energies, [kJ/kmol] 

FCat catalyst dosing rate, [kmol/s] 

G set of dynamic equations and set of equality constraints 

H swelled vessel height, [m] 

H0  height of the resting liquid, [m] 

Hmax maximum reactor level, [m] 

Hydro hydrodynamic model 

jg vapor superficial velocity, [m/s] 

K dynamic controller gain 

k discretization interval 

kCat rate constant at reference temperature, [m3/(kmol s)] 

ki
ref rate constants at reference temperature, [m6/(kmol2 s)] 

M objective function 

nA, nB , nC, nD, nE, 
nF , nP, nW 

mole number of component A, B, C, D, E, F, P, W [kmol] 

N number of intervals 

R gas constant, [kJ/kmol  °C ] 

rCat catalyst deactivation rate, [kmol/(m3 s)] 
nℜ  set of inputs, states, outputs 

ri
R ith reaction rate to the right-hand side, [kmol/(m3 s)] 

T reactor temperature, [°C] 

Tref reference temperature, [°C] 

tf  final time, [s] 

∞U  characteristic bubble rise velocity, [m/s] 

u input 

V reactor mass volume, [m3] 

Vg average local slip velocity, [m/s] 

x states 

x  predicted state 
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y output 

 

 

Greek letters 

α  
pool void fraction, [-] 

Lρ  
liquid density, [kg/ m3] 

Vρ  
vapor density, [kg/m3] 

Ψ  path term 

σ  surface tension, [N/m] 

  
 

 

Superscript 

1 Reaction 1 

2 Reaction 2 

3 Reaction 3 

4 Reaction 4 

 

Subscript 

Cat catalyst 

i ith reaction step 

ref reference 
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Figures 
 
 
 
Figure 1 Swelled liquid in a 100 L pilot plant vessel. 
 
Figure 2 Change of the reaction rate in time for an existing batch process. 
 
Figure 3 Open loop calculated pressure profile (a) and the corresponding reactor level (b), straight lines; 
dashed line shows the reactor level according to the disturbed conditions. Catalyst dosing at 15 min, 25 
min and 35 min.  
 
Figure 4. Pressure profile (a) and the corresponding reactor level for an early addition disturbance case. 
Catalyst dosing at 12 min, 22 min and 32 min.  
 
Figure 5. Pressure profile (a) and the corresponding reactor level for a late addition (with 3 min) 
disturbance case. Catalyst dosing at 18 min, 28 min and 38 min. 
 
Figure 6. Pressure profile (a) and the corresponding reactor level for a late addition (with 30 s) 
disturbance case (b). Catalyst dosing at 15.5 min, 25.5 min and 35.5 min.  
 
Figure 7. Pressure profile (a) and the corresponding reactor level (b) for an early addition (with 3 min) 
disturbance case, using a model with significant model-pant mismatch. Catalyst dosing at 12 min, 22 min 
and 32 min.  
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Figure 2  Change of the reaction rate in time for an existing batch process. 
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Figure 3  Open loop calculated pressure profile (a) and the corresponding reactor level (b), straight lines; 
dashed line shows the reactor level according to the disturbed conditions. Catalyst dosing at 15 min, 25 
min and 35 min.  
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Figure 4. Pressure profile (a) and the corresponding reactor level for an early addition disturbance case. 
Catalyst dosing at 12 min, 22 min and 32 min.  
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Figure 5. Pressure profile (a) and the corresponding reactor level for a late addition (with 3 min) 
disturbance case. Catalyst dosing at 18 min, 28 min and 38 min. 
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Figure 6. Pressure profile (a) and the corresponding reactor level for a late addition (with 30 s) 
disturbance case (b). Catalyst dosing at 15.5 min, 25.5 min and 35.5 min.  
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Figure 7. Pressure profile (a) and the corresponding reactor level (b) for an early addition (with 3 min) 
disturbance case, using a model with significant model-pant mismatch. Catalyst dosing at 12 min, 22 min 
and 32 min.  
 
 
 


