2,313 research outputs found

    Optimal pilot decisions and flight trajectories in air combat

    Get PDF
    The thesis concerns the analysis and synthesis of pilot decision-making and the design of optimal flight trajectories. In the synthesis framework, the methodology of influence diagrams is applied for modeling and simulating the maneuvering decision process of the pilot in one-on-one air combat. The influence diagram representations describing the maneuvering decision in a one sided optimization setting and in a game setting are constructed. The synthesis of team decision-making in a multiplayer air combat is tackled by formulating a decision theoretical information prioritization approach based on a value function and interval analysis. It gives the team optimal sequence of tactical data that is transmitted between cooperating air units for improving the situation awareness of the friendly pilots in the best possible way. In the optimal trajectory planning framework, an approach towards the interactive automated solution of deterministic aircraft trajectory optimization problems is presented. It offers design principles for a trajectory optimization software that can be operated automatically by a nonexpert user. In addition, the representation of preferences and uncertainties in trajectory optimization is considered by developing a multistage influence diagram that describes a series of the maneuvering decisions in a one-on-one air combat setting. This influence diagram representation as well as the synthesis elaborations provide seminal ways to treat uncertainties in air combat modeling. The work on influence diagrams can also be seen as the extension of the methodology to dynamically evolving decision situations involving possibly multiple actors with conflicting objectives. From the practical point of view, all the synthesis models can be utilized in decision-making systems of air combat simulators. The information prioritization approach can also be implemented in an onboard data link system.reviewe

    Differential Games with System Uncertainty and Imperfect Information

    Get PDF
    Mechanical Engineerin

    Aeronautical Engineering: A continuing bibliography with indexes (supplement 177)

    Get PDF
    This bibliography lists 469 reports, articles and other documents introduced into the NASA scientific and technical information system in July 1984

    Air Force Institute of Technology Research Report 2019

    Get PDF
    This Research Report presents the FY19 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs). Interested individuals may discuss ideas for new research collaborations, potential CRADAs, or research proposals with individual faculty using the contact information in this document

    Automatic Target Recognition Classification System Evaluation Methodology

    Get PDF
    This dissertation research makes contributions towards the evaluation of developing Automatic Target Recognition (ATR) technologies through the application of decision analysis (DA) techniques. ATR technology development decisions should rely not only on the measures of performance (MOPs) associated with a given ATR classification system (CS), but also on the expected measures of effectiveness (MOEs). The purpose of this research is to improve the decision-makers in the ATR Technology development. A decision analysis framework that allows decision-makers in the ATR community to synthesize the performance measures, costs, and characteristics of each ATR system with the preferences and values of both the evaluators and the warfighters is developed. The inclusion of the warfighter\u27s perspective is important in that it has been proven that basing ATR CS comparisons solely upon performance characteristics does not ensure superior operational effectiveness. The methodology also captures the relationship between MOPs and MOEs via a combat model. An example scenario demonstrates how ATR CSs may be compared. Sensitivity analysis is performed to demonstrate the robustness of the MOP to value score and MOP to MOE translations. A multinomial section procedure is introduced to account for the random nature of the MOP estimates

    Air Vehicle Path Planning

    Get PDF
    This dissertation explores optimal path planning for air vehicles. An air vehicle exposed to illumination by a tracking radar is considered and the problem of determining an optimal planar trajectory connecting two prespecified points is addressed. An analytic solution yielding the trajectory minimizing the received radar energy reflected from the target is derived using the Calculus of Variations. Additionally, the related problem of an air vehicle tracked by a passive sensor is also solved. Using the insights gained from the single air vehicle radar exposure minimization problem, a hierarchical cooperative control law is formulated to determine the optimal trajectories that minimize the cumulative exposure of multiple air vehicles during a rendezvous maneuver. The problem of one air vehicle minimizing exposure to multiple radars is also addressed using a variational approach, as well as a sub-optimal minimax argument. Local and global optimality issues are explored. A novel decision criterion is developed determining the geometric conditions dictating when it is preferable to go between or around two radars. Lastly, an optimal minimum time control law is obtained for the search and target identification mission of an autonomous air vehicle. This work demonstrates that an awareness of the consequences of embracing sub-optimal and non-globally optimal solutions for optimization problems, such as air vehicle path planning, is essential

    Incomplete Information Pursuit-Evasion Games with Applications to Spacecraft Rendezvous and Missile Defense

    Get PDF
    Pursuit-evasion games reside at the intersection of game theory and optimal control theory. They are often referred to as differential games because the dynamics of the relative system are modeled by the pursuer and evader differential equations of motion. Pursuit-evasion games diverge from traditional optimal control problems due to the participation of multiple intelligent agents with conflicting goals. Individual goals of each agent are defined through multiple cost functions and determine how each player will behave throughout the game. The optimal performance of each player is dependent upon how much knowledge they have about themselves, their opponent, and the system. Complete information games represent the ideal case in which each player can truly play optimally because all pertinent information about the game is readily available to each player. Player performance in a pursuit-evasion game greatly diminishes as information availability moves further from the ideal case and approaches the most realistic scenarios. Methods to maintain satisfactory performance in the presence of incomplete, imperfect, and uncertain information games is very desirable due to the application of optimal pursuit-evasion solutions to high-risk missions including spacecraft rendezvous and missile interception. Behavior learning techniques can be used to estimate the strategy of an opponent and augment the pursuit-evasion game into a one-sided optimal control problem. The application of behavior learning is identified in final-time-fixed, in finite-horizon, and final-time-free situations. A twostep dynamic inversion process is presented to fit systems with nonlinear kinematics and dynamics into the behavior learning framework for continuous, linear-quadratic games. These techniques are applied to minimum-time, spacecraft reorientation, and missile interception examples to illustrate the advantage of these techniques in real-world applications when essential information is unavailable

    AFIT School of Engineering Contributions to Air Force Research and Technology Calendar Year 1973

    Get PDF
    This report contains abstracts of Master of Science Theses, Doctoral dissertations, and selected faculty publications completed during the 1973 calendar year at the School of Engineering, Air Force Institute of Technology, at Wright-Patterson Air Force Base, Ohio

    Operational Research: Methods and Applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order. The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely hope that advances in OR will play a role towards minimising the pain and suffering caused by this and future catastrophes
    • …
    corecore