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CHAPTER I
INTRODUCTION

Many problems in engineering and in socio-econemic systems exist in
which there are two or more entities with conflicting goals engaged in
the process of control (for engineering systems) or in the process of
decision making (for socio-economic systems). The goals conflict in
that if one entity chooses the 'wrong' control law or makes a wrong
decision the other entity stands to gain in some aspect if he chooses
the right c¢ontrol law or makes the right decision., The first entity may
lose in some aspect part of the goal he is trying to satisfy. The ques-
tion arises as to how should each entity make a decision or choose a
control law to insure that he realizes his goal in some sense. This
choice must be irrespective of what decision or control variable his
opponent chooses. That is, based upon the assumption that the entity's
opponent will play his beét decision or controel law contrary te the
first player's goals then what should the first entity choose as his
control laws? The methodology for analysis of problems of this type
comes from game theory. In specific, when the moedels of the entities
may be modeled as differential equations, then the analysis methodology
comes from differential game theory.

The study of dynamic games is a study of the process of decision
making or the controlling of two or more entities with conflicting

goals. The models of the entities are dynamic in the sense that the



functienal relationship representing the model evelves in time accerding
to some functional rule. The relationship describing the time evelution
of the models is a differential equation if the state space of the en-
tity is a continuum. If the state space is a countable set (a set is
countable if it is in the range space of the integers), then the time
evolution of the models is a difference equation also referred to as a
discrete-time equation. The dynamical game is considered to be a dif-
ferential game if the functienal rule for the time evelution of the
states of the entities are differential equatiens. Similarly, the
dynamic game is censidered to be a multistage, difference or discrete-
time game if the functional rule for the time eveolution of the states of
the entities are difference equatiens.

Each entity has certain variables called decision variables (in
socio~economic systems) or control variables (in engineering systems)
that he chooses in order to satisfy some particular geal. The ceontrol
variables are, in general, constrained to be chesen from some admissible
set.

The goals of the entities are assumed to be mathematically describ-
able as a functioenal relationship between the states of the dynamic
model and the decision er coentrel variables of the entities. That is,
if one entity makes a wrong decisien er cheoses a wrong centrel such
that he leoses some aspect of his geal, then the loss will be given
directly to the other player assuming he has made the correét variable

choice. Thus, the dynamic game is zere-sum.
Motivation fer Differential Games

The process of decisien making or control of twe or more entities



with cenflicting geals occurs naturally in many problems in beth engi-
neering and socio-econemic situations. For example, such problems may
arise in the determination of the contrel laws required to centrol an
anti-ballistic missile (ABM) in its pursuit and attempt te intercept an
onceming and maneuverable reentry vehicle (MaRV). The goal eof the MaRV
is to destroey its assigned target while the goeal of the ABM is to inter-
cept the MaRV. 1In order te achieve its goal, the reentry vehicle must
choose its coentroel law such that it avoeids interception. Yet, it must
carefully cheese its controel law such that it is able to recover from
any perturbations of its state made te avoid the ABM and still reach the
target with the required accuracy.

Another example is that of air-to-air combat where there are two or
more aircraft engaged in degfight situatiens. The goal of the attacker,
for example, might be to minimize the distance between his aircraft and
the evader's aircraft. The goal of the evading formations would be to
maximize the distance between their aircraft and the attacker's aircraft.
If the attacker (target) choeses his angle of attack, bank angle, and
thrust rate (threugh his control stick and throttle) subeptimally, then
the target (attacker) may take advantage of this in erder to maximize
(minimize) the distance between the aircraft. Another engineering
example is that of min max centroller design. That is, it is assumed
that nature is playing against the dynamic system being designed. It is
assumed that nature always acts to degrade the system performance.
Systems designed in this manner are called ‘'worst' case centroller
designs. If nature does not play as the worét case, then the systa{
performance will be better than that expected from the system design.

This technique has been used for design of centrol systems by Salmon (83)



and for the desigh ef estimation algorithms by D'Appolito (27).

Another application is that of performance analysis of aircraft and
missiles. That is, given that a fighter aircraft is in a design stage,
what should its performance characteristics be in erder to outperform
its immediate or future threat aircraft assuming that the pilot in the
threat aircraft plays optimally. One may use differential games for
this type of application. Also, one of the questions that may be con-
sidered is the perfermance benefits ef a thrust vector controlled (TVC)
missile with thrust modulation contrel (IMC) over just a thrust vector
controlled missile. One might feormulate this preblem as a differential
game problem in which an intelligent target is chooesing his control laws
optimally in order to evade the missile. One may then compare the per-
formance of a missile with TVC and TMC over that of a missile with just
TVC.

In a socio-economic setting, many situations may arise where two or
more corporations or two or more nations are in direct conflict. For
example, the classical examples of game theory fall inte that of two or
more nations at war. Each nation is trying to choose its contrelling
variables such that it maximizes the other nation's loesses while mini-
mizing its own losses. Another example might be that of two or more
businesses in direct competitien to sell some particular goed. The goed
might be such that it is known or at least assumed that the consumer
market will over a given period of time buy a given amount of the par-
ticular item. An example is that of the automobile industry. Each par-
ticular corporation's profit structure might be represented as
differential equations. This gives a time-varying representation of the

profit structure to various facters such as labor disputes, advertising



costs, manufacturing coests, sales of the autemebiles, and any oether
major factor that may occur. Since it is assumed that a certain quan-
tity of automobiles will be bought over the particular time period in
question, then the sale of one automobile by a particular corperation
represents a direct loss to the other corporation's profit structure.
Thus, each corperation must carefully choose his advertising cests and
manufacturing costs, and minimize labor disputes such that the sale of
the corporation's automobiles are maximized (assuming a direct correla-
tien between advertising cests and manufacturing cests to the profit
structure and to the sale of autémbbiles, a highly cemplex structure but
not an unrealistic assumption). The follewing explains the mathematical

structure of differential games.
Dynamic Games

In order to establish the salient features of dynamic games, one
must indicate under what conditions the dynamic medels under considera-
tion evolve. 1In a differential game, the state of the game at time t is
described by the continuous vector function x(t)eR® where x(t) evolves

according to the functional relationship defined by the differential

equation
S sfx(e), ult), v(t), €] w
with

X(ta) = X0 e

The variables contained in Equation (1) are defined in the following:
x(t)€R® is a vector denoting the state of the game at time t,

n
u(t)eU where U is a subset of R! and is a vector denoting the



contrel variables of one of the players to be known
as the pursuer,

v(t)eV where V is a subset of Rmz and is a vector denoting
the control variables of one of the players to be
knewn as the evader,

feRr®? is the time derivative of the state of the game and

is continueus with respect to x(t).

The goals of the players are assumed to be mathematically incerperated

in a scalar functional known as the performance index, defined as
s
J= G(x(t,), t,) + Jtz Q(t(t), u(t), v(t), t)dt. (2)
The assumption that the pursuer and the evader must choose his control
from the set of allowable control actions U and V may be justified
physically.

Solutions to differential game problems are conservative in nature
in that it is assumed that a player's opponent is going to choose his
control law contrary toe the player's goeals, and choose them in some
optimal manner. Thus, the solution to the differential game will give
conservative, worst case strategies. The objective of each player is to
choose his control function u* or v* over the time interval (to, t,)

such that the following saddlepoint inequality is satisfied
J(u*, v) < J(u*, v*) < J(u, v*). (3)

If the pursuer plays u*, then the performance index will be no‘greater
than J(u*, v*). Similarly, if the evader plays v*, then the perfermance
index will be no less than J(u*, v*). This gives each player a guaran-

teed cost. However, if either player knows that the other player will



play a solution suboptimal te the above strategies, then this informa-
tion may be used to recompute an optimal strategy superier to the
saddlepeint strategy. This will be illustrated in an example on page 11.

Unlike a conventional optimal control problem whereby one is trying
to choose the best control to extremize the performance index in an
unconservative manner, the problem of differential games is to censerva-
tively choose your control law based on the assumption that your oppeo-
nent will play optimally also.

In order to have a meaningful game solution,‘the control strategies
must be in feedback form. This may easily be seen since if one player
were to constrain his control to be open loop, then the other player's
optimal strategy would be to play in any closed loop fashion to keep
correcting his trajectory such that his goeals are satisfied. Thus, each
player must find his closed-loop, saddlepoint control strategies. In
the terminology of Berkovitz (15), each player must choose his pure
strategies (if fhey exist).

The game is said to be completed either when time evolves to a
given point or when the state vector and final time enters a terminal

manifold
flx(t,), t,] = 0. (&)

The dimensionality of the set of constraints, |, is less than or
equal to the dimensionality of the state vecter and includes a fixed
final time censtraint. Conditions under which a game might terminate
are very complicated. In fact, the varieous problems that occur in game
completion and in various surfaces that the game may transcend makes

dynamic game problems very difficult to solve in the large. These con-

cepts are explained in Isaacs (50).



Similarly, in a difference game, the state of the game evolves

according to the difference equation
x(k+1) = f{x(k), ulk), v(k), k] ' (5)
with

x(0) = % and k =0, 1, ..., n.

The variables contained in Equatien (5) are defined in the following

x(k)eR®? i; a vector deneting the state of the game at time kT
where T is the sampling period and is suppressed in
the nomenclature,

u(k)eU where U is a subset of Ryland is a vector denoting the
control variables of one of the players to be knewn as
the pursuer,

v(k)eV where V is a subset of Rm2 and is a vector denoting
the control variables of the other player to be known
as the evader,

feR? is a functional representation of the transition to

another point in the discrete space.

Again, the goals of the players are assumed to be mathematically repre-
sented as a scalar function knewn as the performance index and is
defined as
N-1
7= alxd), x] + ) alx(), u(i), v(1), 1l. (6)
i=0
The players must again cheose their control action from a set of allow-

able control actiens. The objective of each player is to find the con-

trol sequence {u(i)}?:é, where {°} denotes an ordered sequence, such



that the saddlepeint condition eccurs
Jlu*(i), v(i)] < Jlu*(i), v*(i)] < Jlu(i), v*(i)]. (7)

One may justify the use of the discrete-time analeg of the
continuous~time physical model on the basis that in sephisticated con-
trollers one usually uses a digital centrol loop. The.computer is used
te calculate the required control laws. These signals are converted
from digital to analog signals and physically applied to the entity
being controlled. Thus, since the computer is an inherent discrete-time
device it is natural to selve the discrete-time approximation to the
continueus physical system in order to obtain digital algerithms.

The following explains the motivatien behind stoechastic games.
Stochastic Differential Games

Many physical entities that must be very accurately controlled may
be such that the system dynamical model may not be known to the accura-
- cies required by a deterministic medel. That is, there may be some
residual modeling error that could possibly be treated as system neoise.

Certain plant parameters may not be exactly knewn or the plant may
be such that it is forced by a disturbance vector that is unknewn.
Another area of concern is that in order to use feedback signals to con-
trol the plant one must measure the state variables to be fed back.
However, several of the variables may be measured by an inherently neisy
measurement device. For example, one may use a tracking radar to
measure range and angle infermatien to a target. However, the angle
information at short range is corrupted by scintillation noise (28) (33)

(75) and dynamic lags in the tracker servo-system. The range
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information is corrupted by a similar phenoménon knoewn as glint noise.
Thus, ene does not, in general, have perfect infermation about the state
of a dynamical system.

The situation is that the players are taking imperfect measurements
of the state of the game. The dynamical model of the game may not be
perfectly known due to random disturbances. Each player must choose
their feedback strategies based upon this i@perfect information. This
type of game is called a stochastic dynamic game.

The next section discusses a type of a stochastic differential game

that is the basis for this dissertation.
Differential Games Under Uncertainty

Situations occur in differential games whereby one or both players
may have uncertainty in their epponent's dynamics. For example, the
combatants engaged in air-to-air combat may not know their opponent's
maximum life coefficient. An actuator lag necessary to model the
pertinent missile dynamics may not be known with certainty. In .the
problem of interceptien of a maneuvering reentry vehicle by an ABM, the
defense is taking neisy measurements about the location of the reentry
vehicle. The problem the defense has is that of determining the optimal
control variables it should use in order to intercept the maneuvering
reentry vehicle. However, in order to determine the set of control
variables it must use, the defense has to know the dynamic model of the
reentry vehicle. However, unless intelligence reports were exceedingly
goed, certain important parameters in the dynamic model of the reentry
vehicle may be unknown. An example Would be that of net knowing the

minimum turn radius of the reentry vehicle or the ballistic
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coefficient. In the use of differential games te determine precise
control necessary for intercept, it is impertant that oene knows the
dynamic characteristics of the adversary.

As pointed out by M. Ciletti and A. Starr (24), the assumption that
each of the players has total knowledge of all the state variables and
of the dynamic description of their epponent's system is very basic to
realistic applications of dynamic game theory. That is, in many appli-
catiens problems, as previously illustrated, one does not know certain
physical parameters that may be modeled in the state equations. Alseo,
in many applications, one may not be able te measure all the state vari-
ables perfectly. Thus, the abeve statement points out a basic defi-
ciency in differential game theory. Teo date, noe work has been
accomplished in the problem with uncertainty in physical parameters.
This is the basis for the dissertation.

In order to illustrate some of the pertinent aspects of the theory
developed in the dissertation, a simple example will be considered. The
purpose is te show that the player improves his performance by learning
his unknown parameters. It is shown that, by playing nenconservatively, a
player may improve his cost. That is, if he uses his infoermation level
as to hris opponent's uncertainty, then he stands to improve his cost as
compared to the cost if he plays censervatively.

The system dynamics are

X = Bx + au + bv (8)

where u is the pursuer's contrel and v is the evader's control. The
pursuer is trying to minimize and the evader is trying to maximize the

following performance index:
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J = %sxz(tf) + ¥ th(rlué+ ryve)dt (9)
t

o)
where r; >0. Several cases will be considered. The first case will be
that of each player having perfect knowledge as to his oppenent's dynam-
ics. Next, the case where the evader has uncertainty as to the pur-
suer's dynamics is treated. The time interval (ty, t,) is partitioned
inte two subintervals (to, t;) and (t1, t,) where to < t1 < ty;. The
evader does not know the true value of 8 over (ty, t1). However, at t1
he learns the true value of 8 and uses this new information to‘recompute
his optimal strategy over (t;, ty). It is shown that he improves his
performance by trying to learn his opponent's dynamics since his eptimal
strategy depends on knowledge of thebpursuer's dynamics.

In this case, each player has the same information from which to
choose his control strategies. Fach player is trying to find the con-
trol strategies such £hat the following saddlepoint inequality is

satisfied

J(u* v) < J(u*, v*) < J(u, v*). (10)

The general problem of this type has been treated by Rhodes (80). This

general problem is stated with dynamics:

x = Fx + Glu + Gov (11)
and performance index
T o= T (6,080t ) x (,) + % J'tf(uTQLu ¢ vTQav)dt (12)
t
¢}

where the matrices @ and Q; are symmetric, positive definite and
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negative definite, respectively. The matrix S(t,) is symmetric, posi-

tive definite. The solution for the strategies is

u(t)

-Q (£)G] (£)P(t)x(t) (13)

vit) = -Q3* (£)6 (£)P(t)x(t)

where P(t) is the solution te the matrix Riccati equation

P+ PF + FTP - Plaiqrla] + Ge@g'allp = 0 (14)

with boundary cendition

P(t,) = S(t).

The general solution will be applied te the specific example.

The solutien to the previously posed problem may be written as

u*(t) = - = P(t)x(t)
ry
(15)
v¥(t) = - = P(t)x(t)
rs
where P(t) is the solution to the Riccati equation
. a® b
B(t) = -20P(t) + (?+E P2 (t) (16)

with boundary condition

P(t,) = s.

Thus, each player's optimal strategy depends upon knowledge of the
system eigenvalue 8. If each player used the above control strategies,
the performance index would be equal to J(u*, v*). Also, J(u*, v*) is

such that the following inequality is satisfied:



14
J(u*, v) < J(u*, v*) < J(u, v*). (17)

Another important peint to note is that each player has perfect knowl-
edge about the game state x(t). This assumption is not valid in general,
but the discussion of this point will be deferred until later. Also, it
has been assumed that each player knows the weighting of the performance
index each player is using. In a problem solved by Ho et al. on optimal
guidance laws, the weighting facters are assumed known by each player.
The next case to consider is that of the evader having uncertainty
as to the value of the game dynamics over a subinterval of [to, tf).
The evader has uncertain knowledge as to the game dynamics over the
first time segment [to, t1) and perfect knowlege of B over the time
interval [tl, tf) where tg < t1 < t;. The cost ﬁo go from tp to t1 is

given as

J1 = %Jtl (riuf+ rove)at (18)

to

and the cost over the second segment is given as

Jp = e (t,) + B[ (P rav?)at. (19)
ty

The evader's best knowledge of the dynamics over [to, t1) are given as
X = 8,x + au + bv. (20)

Thus, the strategy the evader will play is given by

vi(t) = --fl P, (t)x(t) (21)
2

where Pa(t) is the solution te the Riccati equatioen
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2 o
B (6) = ~28,B () + (& + B (o) (22)
- 2
with
P‘(tf) = Se

o]

Since the control v° is not equal to v*, the following inequality

applies at t,

J1 (u*, v0) < Jy (u*, v*). (23)

Thus, over the interval [to, t1), the evader loses some aspect of his
goal. At t1 he learns the true value of the game eigenvalue and recom-
putes his strategy to be played over [tl, tf). This will be equal to
v*, Thus, the tqtal cost J; equals the cost over the intervgl [to, t1)

plus the cost over [ti1, t,), i.e.,
Jr o= Ju(u*, v°) + Jp(u*, v*). (24)
However,
Jr < Ji(u*, v¥) + Jo(u*, v¥) = J(u*, v*). (25)

Also, if the evader never learned the true eigenvalue and played v° over

the total interval [to, tf), then the cost would be equal to the cost
over [to, t1), i.e., J1(u*, v°) plus Jz(u*, v°). However,

Jo (u*, v°) < Jg(u*, v*). (26)
Thus,

Ji(ux, v°) + I (ux, v°) < J; < J(u*r, v*). (27)

The evader will, thus, gain if he can learn the pursuer's dynamics, and
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will lose some degree of his geal if he does not know or learn the
pursuer's dynamics.

If each player had uncertainty abéut each pther's dynamics, then it
is reasonable to expec£ that each player would base his game solution
upon his best guess of his opponent's dynamics. Thus, the pursuer would

use the strategy u, where
' a
us (t) = = == p, (t)x(t) (28)

and the evader would use the strategy vf where

ve(t) = - == Py (£)x(t) (29)

2

where P51 and Psg are the solutions to the follewing differential

equations:

2 2
. a b
Po, = 28, Pe, <:;-+ ;;> €1
(30)
2 2
[ a . bB¥\p2
Pep = —26‘2P52 * <r1 * r2>Psz
with
Pe, (ty) = Py (t;) = s.
The pursuer is in essence solving the differential game with the per-
formance index
Jy (u, v, 651% (31)

while the evader is solving the differential game with the performance

index



J. (u, v, 6,.).

£ g2
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(32)

If the pursuer has knowledge that the evader is playing his oeptimal

strategy but that he has uncertainty in the knowledge of the pursuer's

dynamics, then the pursuer may use this knewledge in order to better his

strategy if he has perfect information. For example, if the pursuer

realizes that the evader will use the parameter values §;, then he

knows that v will be of the form

v = ~r 'bP, (t, 8, )x(t)

g

where P; is the solution to the differential equation

2
. a b 2
P = -28,P. + <é—-+ —i) P
E g E 5 r5 E
with

P (t,) = s.
The pursuer may now form the new system equation
x = Bx+au - r3"b2P x.

The performance index he may minimize is

t
J = thsx®(t,) + %f t (ru®+ r3'b2PEx?)adt.

to

This is a linear quadratic preblem with solution for u

u = —rIlaPp (t)x

where P (t) is the solution to the differential equation
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. - 2 2 2
h-2(e-Zr)p - L (38)

P r P T

with

P (t,) = s.

Thus, if the pursuer plays nonconservatively, he stands te decrease the
cost as seen by him as his optimal strategy as given by (37) and not by
(15).

Another‘problem which necessitates total knowledge of the game
dynamics will be illustrated. This problem will noet be heuristically
solved as was the previous example. However, the problem will be cen-
sidered again in Chapter V after the basic theeretical results necessary
to solve the problem have been developed.

The system dynamics ef the pursuer is
5{7.7 = @pxp + u (39)
where u is the pursuer's control. The system dynamics fer the evader is

X = Bex + V (Lo)

where v is the evader's centrol. The performance index is

t
J o= Yas(x, (ty) - x (£,))2 + %J f(rlu‘? + ryve)dt (L1)
th

where r{ > O and rp < 0. The pursuer is trying to minimize J and the
evader is trying to maximize J. The solution to the general problem as
considered by Baron, Brysen, and He (20) will be given next.

One may follew the formulatien as explained in reference (20) or in

Chapter V and redefine a new state vector z(t) where
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z(t) = 8, (t,, t)x,(t) - & (t;, t)x (t). (42)
This new state vecter represents the predicted terminal miss if each
player uses no control over the interval [t, t,).

One may easily derive the fact that the general formulation applied

to the specific problem of consideration yields

Z = eep(tf-.t)U(t) - eeE(tf-t)v(t) (43)
where
2tg) = & Fe Ry LBt ()
and
J = %sZ?(t,) + Jif (ry v+ rove)dt. (L)

The solution for u and v is

_r,ilee,,(tf -t) Kt (t,, t)Z(t)

u(t) =
. (45)
v(t) = _r_z_lees(tf -t) K (t,, t)Z(t) |
where
K(t,,t):-i—+Mp(tf,t)—ME(tf,t) (46)
and
1 [ty 28, (t, -t)
M, (tg, t) = - J:o e dt (47)
M (ty, t) = i—f" e26: (t: - t)ag, (48)
0 .

One may note that in order to solve the optimal problem each player
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must compute the value of the state at time t and K at time t. However,
knowledge of the reduced state Z(t) and K(t) depends on knowledge of
ep and §; . Thus, if an erroneous value of ep or @ were used, the

strategies would be suboptimal.

Research Objectives and Results

The class of systems considered in the research are modeled by
linear or nonlinear stochastic differential equations which are parame-
terized by a time invariant parameter vector, elements of which are
knewn to the pursuer and unknown to the evader, and elements of which
are knewn to the evader, but unknown to the pursuer. The system is
forced by both the pursuer's control and the evader's control. The
goals of each player directly conflict. FEach player is trying to chooese
his contrel laws in eorder to extremize some performance index. The per-
formance index is a mathematical measure of the player's goals. The
players are assumed to have measurement subsystems that give either a
perfect measurement of state or a noise corrupted measurement of state.

The objective of the research was to develop a sufficiency conditioen
for the class of problem described and solve the linear gquadratic prob-
lem for the above class of systems. Chapter II contains the results of
a literature search in differential games.

The results of this dissertation -are as follows. In Chapter III:

(a) A structure for the type strategies that may occur for

differential games with the above uncertainty in the
system dynamics is defined.

(b) A sufficiency condition for differential games under

uncertainty and perfect information is developed and proved.



(c) The open-leop feedback strategies for the linear quad-
ratic game under uncertainty and perfect information
is solved for several types of strategies that eccur.

In Chapter IV:
“(a) A sufficiency conditien for differential games under
uncertainty and imperfect information is developed.

(b) The open-loop feedback strategies for the linear quad-
ratic game under uncertainty and imperfect information
is solved.

In Chapter V:

(a) The problem of interception first introduced by Ho et al.
(20) is formulated and solved.

{(b) The results are applied to a typical missile intercept

problem.

21



CHAPTER I1I
LITERATURE REVIEW
Differential Games

Isaacs,. in his book (50) and in a series of Rand reports, first
developed the theory of differential games totally independent of what
is commonly known as optimal control theory. His '"main equation"
derived independent of Hamiltoen-Jacobi theory is in fact the sufficiency
condition based upon the Hamilton-Jacobi theory. One interesting point
is that one may imbed optimal control theory in differential game
theory. Thus, Isaacs in the fifties accomplished some very basic work
that imbeds aspects of optimal contrel theory. 1In the book by
Pontryagin (77), Kelendzheridze considered a deterministic minimum time
pursuit-evasion problem. Other results in linear differential games
were published by Pontryagin (78): and Gadzhiev (40). Berkovitz (15)
treated differential game theory from a rigorqus calculus of variations
viewpoint. This was an extension of werk published by Fleming (37).
Other work in the time period included additional work by Fleming (38).
Ho, Bryson, and Baren (20) considered the continuous time deterministic
pursuit evasion game for linear systems, quadratic cost, and fixed final
time., Survey papers which summarize the aspects of differential games
include Athans (7), Ho (49), and Sarma and Ragade (86).

In 1965, the first result in stochastic differential games appeared

in a paper by Ho (44k). Speyer (91) in 1967 considered anether

22
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formulation of a stochastic differential game with controllable param-
eters. Other papers that appeared were by Ciletti (22), Meschler (74),
Wong (100), and Berkovitz (16). The’ paper by Wong was one of the first
general aerospace applications of differential game theory. In 1968,
Behn and Ho (13) treated the linear stochastic differential game with
one player having imperfect measurements. Behn (14) alse treated this
problem in his dissertation. Rhodes (80), (81), (82) treated the linear
dynamics, qﬁadratic cost problem with imperfect measurements. Willman
(99) also treated this problem, but the results were not as general as
Rhodes; results. Shea (87) treated the differential and discrete linear
game problem independent of the above papers. Other papers at this time
were by Meier (71), and Salmon (85). Many papers began to appear at
this time. Interest dictated the First International Conference on the
Theory and Applicatiens of Differential Games (48).

In 1970, many papers including several by Ciletti (23), (24)
appeared in the important problem of differential games with information
time lag. Another survey by Ho (46) pointed out a new concept called
Generalized Centrol Theory (GCT) in which beth optimal control and
differential games were only subsets of GCT. Interest increased in
trying to apply differential games. Several references are given in the
preceding paper. Other application papers include the dissertations by
McFarland (67) and Othling (76). Alse, a report by Baron et al. (9)
attempts to apply differential games to air-to-air combat. A repert by
Systems Contrel Inc. treats the ABM versus MaRV problem (84). Bernhard
(18) treated a theoretical application problem. Another dissertation by
Lin (62) considered the ABM versus MaRY problem.

In 1971, Merz (72) treated the homicidal chauffeur problem.
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Leatham (59) and Baron (10) considered several subclasses in treating
air-to-air combat as a differential game. Other dissertations included
(1) (63) (93) (97).

Further interest was felt at the Air-to-Air Combat Analysis and
Simulation Symposium at Kirtland Air Force Base in 1972 where several
papers on differential games were presented.

Two interesting and important features of all the above papers are
that the assumption that each player knows the game dynamics with cer-
tainty and that each player assumes his opponent knows the game dynamics

with certainty.

Estimation Theory

In many control problems, one is faced with the problem of extract-
ing estimates of the state of the system from noisy measurement data.
The theory by which this may be accomplished in estimation theory.
Weiner (98) solved the problem when the system and noise statistics are
stationary by spectral factorization. In 1960, Kalman (53) solved the
problem of a nonstatioenary discrete linear system. Kalman and Bucy (54)
developed what is known as the Kalman filter for continuous, linear
nonstationary systems. The method Kalman utilized was that ef orthogo-
nal projections. There has been many results and applications of linear
and nonlinear filtering. Several books include that by Bucy (21),
Meditch (68), and Jazwinski (52). Applications of filtering theory in-
clude many aerospace problems in orbit determination, navigation, and
pointing and tracking preblems (5) (6).

One of the more important results that is utilized in this disser-

tation is that of Bucy's Representation Tehorem (21) (also stated in
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Chapter IV). This theorem is the basis of the filtering problem for
nonlinear stochastic systems, The result represents the evaluation of

the conditional probability density function.

Estimation Under Uncertainty

Estimation under uncertainty implies that one has uncertainty of
key variables or parameters in the estimation problem. This may
include uncertainty in system parameters or uncertainty in elements of
covariance matrices necessary to solve the estimation problem. There
has been an outflux of work in what is known as adaptive estimation.
Key work in this area includes work by Mehra (69) (700, by Magill (65),
Tapley (92), Martz (66), Jazwinski (51), Lainiotis (57), Hilborn (42)
(43), and Sims (88). A good survey on adaptive filtering may be found
in Mehra (70).

The main result used in this research is the Partition Theeorem of

Lainiotis (57).

Stochastic Systems Under Uncertainty

In many dynamic problems, one may be concerned with controlling a
partially unknown system. The system may contain parameters that are
not totally known or even may be completely unknown. Many papers have
been written in this area. For example, Sims and Asher (4) consider the
problem whereby the control gain matrix centains uncertain parameters.
Tse (94) treats a similar problem. Dajani (26) considers the problem
with system uncertainty. This problem has also been considered by
Lainiotes (56) and by Lee (60). The basic work in these two papers

leads to suboptimal controls. The work is suboptimal for two reasons:
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Their results do not take into consideration the dual control problem
(Feldbaum (34)) in which the control is used for both identification and
control objectives. Also, their results are suboptimal open-loop feed-
back strategies to the problem which solutions are shown in this

dissertation.



CHAPTER III
SYSTEM UNCERTAINTY AND PERFECT INFORMATION GAME
Introductien

In this chapter, the problem of differential games with uncertain
parameters contained within the system matrix and perfect measurements
is selved. It is assumed that each player knows the basic structure of
the game dynamics. However, the system matrix for the game is parame-
terized by elements of a time invariant parameter vector containing
those parameters unknown to either player. This parameter vector, 8§,
may be partitioned inte twe subvectors, 6, and ;. The subvector, &,
contains elements that are knewn to the pursuer but unknewn to the
evader. The subvector, B,, contains elements that are known to the
evader but unknown to the pursuer. It is assumed in this chapter that
each player has a measurement subsystem capable of giving perfect mea-
surements of the system state.

.Definitions are given to indicate the type strategies that may be
found by solutions of the differential game under uncertainty and
imperfect infermation. It is shown that, under these definitiens,
previoeusly feund strategies for differential games with imperfect
informatien, Rhedes (80) and He (13) are a type of security strategy
called a system security strategy in which it is assumed that each

prlayer assumes his oppenent has perfect knowledge of the game dynamics.

27
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The structure given by the definitions helps one to identify the types
of strategies that are both previously given and given in this disserta-
tion. Also, it is useful in visualizing some of the future problems to
be solved in differential games under uncertainty and imperfect
information.

A Hamilton-~Jacobi equation fermulation is developed for the general
noenlinear problem. The Hamilton-Jacobi equation formulation is proved
to be a sufficient condition for optimality. The sufficiency condition
is used to develop the strategies for the linear dynamics, quadratic
cost differential game with system uncertainty. In this game, the
dynamics of the players are assumed modeled by linear differential equa-
tions with uncertainty in the system matrix for the state equations,
Each player has, in general, different uncertainty in the state equa-
tions. This model uncertainty is assumed represented by a time invari-
ant parameter vector, 8§, as explained earlier. It is assumed that each
player has an a priori probability density function relating his best
knowledge of the parameter subvector unknown to him.

It is shown that the linear problem may be solved in a feedback
form whereby the equations necessary to solve for the gain are integral,
partial differential equatiens. Each player's strategy also includes
use of his measurement vector for adaptation in order to estimate the
unknown parameters. Also, each player's strategy includes a risk in
that his control strategy depends upon knowledge of his opponent's
uncertainty as to the game dynamics. The dual control aspect (see
definition 1 on page 31) of choosing the control strategies for both
identificatien and control ebjective is not considered. The strategies

found may be classified as open-loop feedback strategies (see definition
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2 on page 31) in that one solves the open-loop problem with measurements
taken at the particular time of interest based upon the assumption that
no more measurements will be taken. Thus, any control strategy used for
identification will not be considered since the assumption is made that
no more measurements will be taken to use for identification purposes.
The strategies are recomputed as open-loop feedback strategies at each
time of control application based upon the above assumption. The dual
control aspect of the differential games problem may consist of each
player both choesing his centrel to both identify his oppoenent's parame-
ters and to cause his opponentt!s measurement and estimation subsystem to
have excessive error. This will be left for future work. Thus, the
assumption that each player uses his control input only for control ob-
jective is‘made. References on dual control include (34), (95), and (96).

In this chapter, it is assumed that the system is continuous and
that the control is centinuously applied to the system, but that the
parameter estimation occurs at discrete instants of time. An informa-
tion set formulation of the problem is made. Each player must find the
function mapping the information set inte the coentrol space such that
the performance index is extremized.

There are several insights te be pointed out in the formulatien ef
the game under uncertainty. At the outset of the game, each player has
essentially solved a differential game that is different than what his
opponent has solved. This is evident since each player has different
uncertainty as to the game dynamics. This means that the solution te
the game is dependent upen the infermation sets of each player. Each
player uses his measurement infermation te adapt upon and learn the

parameter subvecter unknewn te him. This is reasonable as each player
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can obtain a cost faverable to him if infermation as te the true value
of the parameter set is used to obtain a better estimate of the true
values as was shown in Chapter I. Each player may solve for his strat-
egy by using his best information as to the true value of the game
dynamics. This would yield a somewhat nonconservative strategy in that
if he were grossly in errer then this strategy could yield a result very
favorable to his opponent. He could take a very conservative estimate
as to bounds on the unknoewn parameter set and solve for the parameter
set that would give the worst case results. This weuld yield a very
conservative strategy. However, this type of strategy would not easily
allow for inclusion of available information oebtained as the game pro-
gresses. That is, this would not allow.for the use of measurements in
order to learn the values of the unknewn parameters. Thus, each player
may use the approach placed forth in the research to obtain a more
realistic, conservative strategy and to obtain non-conservative strat-
egies that will allow a gain in desired performance.
The following lists the coentributions of this chapter:
(a) a structure for the strategies for differential games
under uncertainty and imperfect informatioen;
(b) a sufficiency condition for differential games under
uncertainty;
(¢c) the solution to the linear, quadratic game under
uncertainty and perfect infermation;
(d) the open-loop feedback strategies for the stochastic
control problem may be found by constraining the
evader's controls to be zero. The solution extends
these found by (56), (58), and (60), The solution
to this proeblem is shown in Appendix C.

The following section considers a structure for differential games under

uncertainty and imperfect information.
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Game Structure

In this section, a structure for differential games with uncer-
tainty and imperfect information is given, This structure gives several
definitions which relate to the types‘of strategies that one may obtain
for this type of game. It is important to classify the types of strat-
egies for two basic reasons. The first is that previous work and the
work considered in this dissertationare of a special class of the gen-
eral problem. This may be identified from the structure. Secondly, it
enables one to obtain insight into some of the areas for future research
in games under uncertainty.

Definition 1: If the control input is used for both control objec-

tive and identification, then the strategies found are dual control

strategies.

Definition 2: If each player solves for his strategies at each

instant of time under the assumption that he may not obtain any more
measurements of the state of the game, then the strategies found are

open-loop feedback strategies (see (11)). Open-loop feedback strategies

imply that neither player will try to impulsively control the system in
order to instantaneously identify the system, This may be discussed
further in that each player is trying to obtain a terminal miss accord-
ing to his goals, but at the same time limit the energy expenditure.
Thus, a high energy expenditure at the beginning may allow a player to
identify the system, but may make his contrel cost too expensive. Also,
if the control energy is constrained, he may exceed this constraint dur-
ing the play of the game. If either player feels that the other player

is going to do the above, then he may either choose a canceling contrel

input or may increase the noise level by playing his control input as
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white neise. There is much research to be conducted inte the dual con-
trol aspect of differential games under uncertainty. In effect there is
a tri-centrel preblem in which one is choosing control for control ob-
jective, for identificatien, and for decreasing his opponent's measure-
ment subsystem's signal to noise ratie. Thus, the strategies found in
this thesis are open-leep feedback strategies (OLFS).

Defintion 3: If the infoermation set for each player includes the
assumption that his oepponent has ne uncertainty as to the game dynamics,
then the strategies found by mapping the infoermation set into the con-

trol space are called system security strategies (SSS).

Definition 4: If this information set for each player includes the

knowledge (or assumed knowledge) of the opponent's best knowledge of the
game dynamics, then the strategies found by mapping the infermation set

into the control space are called system risk strategies (SRS).

Definition 5: If the information set for each player includes the

assumption that his opponent has a measurement subsystem that can oebtain
perfect measurements of the state of the game, then the strategies

found by mapping the information set into the centrol space are called

measurement security strategies (MSS).

Definition 6: If the information set for each player includes the

knowledge of the oppoenent's error in his estimate of the state of the
game, then the strategies found by mapping the information set into the

control space are called measurement risk strategies (MRS).

Definition 7: If the strategies found by each player include the

assumption that his oppoenent is playing measurement security, system

security strategies, then the strategies are called opponent security

strategies (0SS).

Definitien 8: If the strategies found by each player include the

assumption that his opponent is playing measurement security, system
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risk strategies, then the strategies are called oppenent risk

strategies (ORS).

The implicatien of the term security modifying a player's strategy
is that ne risk of making a wrong guess is taken by assuming the weorst
case of the player's opponent having perfect measurements or no uncer-
tainty as to the game dynamics. Similarly, the contrary of the term
security is the term risk modifying a player's strategy. The implica-
tien is that the player takes a risk by trying te include. infoermation as
to his oppoenent's uncertainty or his epponent's imperfect measurements
in erder to calculate his strategy.

Thus, under the previous definitiens, the previeus work by Rhedes,
Ho. etc. (980) (13) considered the measurement risk, system security

strategies.

The proeblem to be solved is formulated in the next sectien.

Statement of the Problem

In this section, the general nonlinear problem is formulated. The
dynamical description for the state of the game is given as the follew-

ing stochastic differential equatioen:

ax(t) = £{x(t),ult),v(t),8,t}dt + g{x(t),u(t),v(t)8,t}dB (t),
(1)

to be interpreted in the sense of Ito (52).

The variables are defined as follows:
x(t)eR* is a vector denoting the state of the game at time t
u(t)eU where U C R"'is a vector denoting the coentrol variables

of the pursuer at time t
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v(t)eV where V C R"? is a vector deneting the contrel variables
of the evader at time t

9€If1+p2 is a time invariant parameter vector parameterizing
the system dynamic matrix and which is partitiened as

follows:

0T = {8, : g7}

where
Pl . . .
ep€R is a time invariant parameter vector known to the pursuer

but unknewn to the evader

eEesz is a time invariant parameter vector known to the evader

but unknoewn to the pursuer
fe€R® is a nonlinear system vector
g is a n X m matrix

dB (t) is a m vector of zero-mean Brownian metion processes with
E{aB (t)d BT (t)} = w(t)at. (2)
The initial conditions are assumed known to both players. The initial

condition is

x(tg) = %o

where

| x(te) || < =. (3)

Each player has access to certain information sets that he uses teo
solve for his strategies. The sets contain the a priori information as
to the uncertain parameter sets, any a priori infermatioen that he has as

to his oeppenent's uncertainty, and in the perfect infermation case
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considered in this chapter, the iﬁformation set contains the state

trajectory of the game, The information set of the pursuer at time t is
denoted by Ip(t). Similarly, the information set of the evader at time
t is denoted by I; (t). For every time te[ty, t;), the information sets

I, (t) and I; (t) of the pursuer and the evader are, respectively,

L(t) = By (8:) U 8 Unpy (8) U

EeE
and
IE ('t) = Pep(ep) U eE U ppeE(eE) U
ppep(ep) U (x(7), 7e[to, t]) (5)
where

P, (B:) is the probability density functien representing the
:H 3 y

a priori information known by the pursuer about the

unknown parameter vector GE,

Pep(ep) is the probability density function representing the
a priori information known by the evader about the
unknown parameter vector 6 ,

Gp is the parameter vector known by the pursuer,

Ce is the parameter vector known by the evader,

L (8,) is the probability density function representing any
knowledge the pursuer may have about the knowledge the
evader possesses as to the parameter vector ep,

Py g (6) is the probability density function representing any

knowledge the evader may have about the knowledge the
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pursuer possesses as to the parameter vector eE,

pEeE(@E) is the probability density function representing any
knowledge the pursuer has about the evader's knowl-
edge of the pursuer's uncertainty eof the parameter
vector g ,

ppep(ep) is the probability density function representing any
knowledge the evader has about the pursuer's knowl-
edge of the evader's uncertainty of the parameter
vector B,

x(T),TSEt@;t]is a functional that represents the state trajectory.

The significance of the inclusion of the parameter vector ep in I,
and the parameter GE in I, is that it is assumed the pursuer and the
evader, respectively, have perfect knowledge of these parameters. This
could be easily weakened to a knowledge of an a prieri probability
density function. However, this will net be considered any further
since the salient features of the game under uncertainty might be
obscured. The significance of the probability density functions repre-
senting knowledge that the player's opponent possesses is that the game
solution depends upon each player knowing his opponent's knowledge. The
worst case or the most secure strategy would occur when the player
assumes his oppenent has perfect knowledge of the game dynamics. This
would yield a security strategy that is most conservative for each
player based upon his uncertainty.

An important point to note about the information sets is that
I,(t) N I, (t) # @ where ¢ is the null set. It is reasonable to expect
that in many applications problems the intersection of the two informa-

tion sets should be the null set. That is, if
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I#(t) NI, (t) =@, ¥t € [to,t,), then each player must choose his
strategies from totally different infermation, a very realistic situa-
tion. The perfect infermation problem insures that I, N I, # ©® since
each player has access to the state trajectory.

The dynamics and infermation structure is given by Equatiens (1),
(&), and (5). It is assumed that the goals‘of each player are ade-
quately incerperated in the scalar function known as the performance
index, i.e.,

-t -
J = E{G(x(t,), ty) + J;f Q(x(t), ult), v(t), t)dt} (6)
¢}

where E{'} denotes the expectation ever all randem processes under the
bracket.

It is assumed that each player cheoses deterministic controls and
does not randomize his control pelicy. The final time will be assumed

fixed in the developments of this dissertation, i.e.,
t, = constant. (7)

Thus, the performance index in Equation (6) is a functional mapping the

state space and contrel space into the reals, i.e.,
J:R XUXV-~-R. (8)

Each player must choose closed-loop control laws as was explained
previously. Thus, the pursuer must at each time t €'[t@, ty) find the
function mapping the information set available to him at time t into the
admissible controel set such that the perfoermance index is minimized,

i.e.,

u* : {x(7), T¢ [to, t1} x [to,t] " UC R'2, (9)
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Similarly, the evader must each time t ¢ [te, t,) find the function
mapping the information set available to him at time t into the admissi-

ble control set such that the performance index is maximized, i.e.,

V*bi'ix(T), telte, t1} x [teyt] » V.c R. (10)

The control strategies u* and v* are assumed to be the minimizing and
maximizing centrol strategies, respectively.

The set of admissible controls u is assumed to be a subset of
LE{I’ R™'} where T = [to, ty), and the set of admissible controls v is
assumed to be a subset of LE{J; R"2} where J = [to, te)e

Also, the admissible control set consists of control functiens
which are nonanticipating. That is, one may define the extenéion of a

function f(s), s € [to, t) as

IN

f(s) , t s £t
(m 1)) = { (11)
f(t) , t< s <t.

Thus, the admissible controls u and v are such that

u(t) = Up(t, m Al))
Pelt, m H(t))

(12)

<
"
N
1

where A1) = {x(1, 7elto, tll.

Each player wishes to choose his control strategies such that the fol-

lowing inequalities are satisfied:

E{J(u*, v*) le } S.E{J(u, v¥) IIp }
(13)
E{J(u*, v) IIE} < E{J(u*, v*)'|IE} .

;
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These inequalities will noew be explained.

Each player agrees on the basic performance index that he must
satisfy. However, each player will not agree as to the value of the
optimal cost since he is basing his optimal strategy on different infor-
mation sets. Thus, the game is similar in nature te a non-zero sum
differential game whereby each player is trying te extremize different
performance indices. However, since the basic performance index is the
same, it is not a non-zero sum game. The cost that the pursuer will
calculate te be the eptimal cost is E{J(u, v) I Ip}. The cost that the
evader will calculate to be the game cost is given by E{J(u, v) lIE}.
The pursuer is trying to minimize the game cost while conservatively
choosing his strategy such that he obtains a guaranteed bound on the
cost. Similarly, the evader is trying to maximize the game cost while
conservatively cheosing his strategy such that he obtains a guaranteed
bound on the cost.

Neither the pursuer nor the evader can find their oppenent's worst
case strategies since they do not in general have the totality of the
game dynamics. If either player has access to the uncertainty his
opponent has as to the game dynamics, then this may reflect into the

player's choice of strategy. The pursuer will use the inequality
E{ J(u*, v°) | Ip} < E{ J(u, v°) l Ip} (14)

where
v® is the evader's maximizing strategy for the pursuer's best

guess of the true game

to find his strategy u*.
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The evader will use the inequality

B{I(«® ,v) |1} < B{o(w® ,v*) |, ] (15)

where
W’ is the pursuer's minimizing strategy for the evader's best
guess of the true game |
to find v*. One must note that the evader's (pursuer's) best strategy
is not v° (u®) since this strategy is based upen an erroneous game and
not the true game.

Thus, there will be two performance cost surfaces. The first sur-
face is due to the pursuer minimizing J conditiened on this information
set I,. The second surface is due to the evader maximizing I condi-
tioned on his information set I;. Each player is, thus, choosing his
strategies based upen different cost surfaces. Thus, the game is very
similar to a non-zero sum game. One may note that, in general, the
basic definition of a Nash equilibrium strategy may not be applied since

neither playér has enough informatien, in general, to find the equiva-

lent equilibrium point defined by

E[J(u*,v*)llp] S_E[J(u,V*)le}
(16)

B{J(u,v) |1, } < B{J(u*,v¥) |1, }.

If enough information were available, say to a third player, then the
above would define an equilibrium strategy.

In order to find the most conservative strategies based upon a par-
ticular game, each player may assume the worst case. That is, that

their opponent has certain knowledge of all the game parameters. This
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will give them a conservative guaranteed cost based upoen their informa-
tion sets. However, in a similar manner as to the measurement risk,
system security strategies one may take into acceunt the opponent's

uncertainty.

Sufficiency Conditien

In this section, a Hamilton-Jacobi equation is derived for the
general problem of differential games under uncertainty. The results
are used later in order to find the optimal strategies of the proeblem
poesed in this chapter.

The first use of the Hamilten-Jacebi equation was made by Issacs
(50). In his book, the Hamilton-Jacobi equation is called the main
equation. The Hamilton-Jacobi approach hgs been used by Maguiraga (64)
and by Kushner (55) for the problem of stochastic differential games
under the assumption of certainty. Rhodes (80) proved a sufficiency
condition for differential games with imperfect infermation that is sim-
ilar to a Hamilton-Jacobi approach. Maguiraga considered the problem
where the state equatioens of the game contained both centrol dependent
and state dependent noise. Kushner considered the general problem of a
stochastic nonlinear game state equation without random parameters.
However, none of the above references consider the problem with
uncertainty,

The general problem will be considered first. The problem of majer
concern of this dissertatien will be worked as a special case of the
general problem. The state of the game evolves according to Equation
(1), repeated below for cenvenience,

ax(t) = £f{x(t), ult), v(t), 6, tldt + ofx(t), ult), v(t), 8, t}ag(t).
(17)

The cost function is scalar functional (see Equatien (6)).
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J = E{6(x(t,), t,) J‘tf Q(x(t), u(t), v(t), t)dt} (18)
to
where the expected value is over all random variables within the
bracket. It is assumed that each player chooses deterministic control
laws and does not randomize his control policy.
It is assumed that the final time is fixed. The players have
access to certain information sets, I,(t) and I; (t), where the sub- -

scripts p and é?denote the pursuer and evader, respectively. These sets

are defined as

L (t) = g UK
(19)

I (t)

g U

where £ denotes the collecti?n of the a priori information as to the
parameter sets O, and §; and & denotes the state trajectory.
(x(1), T e [to, t]) (see Equations (&) and (5)).

The pursuer and the evader wish to find their optimal strategies
u* and v*, respectively, such that the following saddlepoint inequali~

ties are satisfied ¥ t € [to, t,)

E{I(u*(t), v*(t)) | I, (£)} < E{J(u(t), v*(£)) | I, ()]}
(20)

E{J(u*(t), v(t)) | L ()} < B{o(ux(t), v*(t)) | I; (£)].

This reflects the fact that both the pursuer and the evader wish to choose
their control strategies such that if "their oppohent plays optimally then
the cost is bounded above or below by some acceptable value (depending

upon whether the player is the pursuer or the evader). ' However,
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the solution to the above problem depends upon total knowledge of the
game dynamics. It is the major topic of the dissertation to consider
the problem whereby neither player has total knowledge of the game
dynamics. Thus, an alternative problem to the one aboeve must be solved.
The pﬁrsuer will find his strategy prior to the start of the game

by considering the following inequality:
E{J(u*, v) | L, (£)} < E{J(u(t), v (2) | 5, (£} (21)

where v° (t) is the evader's optimal strategy based upon the pursuer's
assumed game. This is not the strategy that the evader should play
since it is for a game different than what the players are actually
playing. Similarly, the evader will find his strategy prior to the

start of the game by considering the inequality
E{J(# (£), v(t)) | L (£)} < B{I(®(¢), v*(¢)) | I (©)]. (22)

Again, w® (t) is the evader's best knowledge of the pursuer's optimal
strategy. The Hamilton-~Jacobi equations will now be derived, The
derivation will first be carried out by considering the inequalities
(20). This will be done in order to gain insight into this problem.
However, the extension to the problem defined by inequalities (2) are
easily made by consideration of the type of strategy each player is
assuming his opponent is playing. The derivation follows.

The cost that will be incurred by the pursuer in order to terminate
the game given that at time t the state of the game is known and given
as x(t) is defined as Vp(x(t), t). It is assumed that v, (x(t), t) is
twice continuously differentiable with respect to x(t) and continuously

differentiable with respect to t. The cost Vb(x(t), t) is given as
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t

Vy (x(t), t) = min E{G(x(t,), ty) + J fQ(x(t), u(t), vx(t), t)dt! I, ()}

ueU t-

(23)
where v*(t) is the optimal strategy of the evader. Similarly, the cost
incurred by the evader in order to terminate the game given that at time
t the state of the game is known and given as x(t) is defined as
Ve (x(t), t). It is assumed that V; (x(t), t) is twice continuously

differentiable with respect to x(t) and continuously differentiable

with respect to t. The cost V; (x(t), t) is given as

Ve (x(t), t) = max E{G(x(t), ty) + r’Q(x(t), u*(t), v(t), t)dtl I (t)}.
t

vev
(2k)
The Principle of Optimality (8) allows one to write the costs as
Vo (x(t), t) = min E{Vy (x(t) + Axy t +At) +
uel
(25)
t+At
.J' Tralx(t), ult), v*(t), t)dt| I (¢)}
t
Ve (x(t), t) = max E{V; (x(t) + Ax, t+At) +
vev (26)

t+At
[ e, wee), vie), vat | 1 (1)
t

by the mean value theorem. Since V,(x(t), t) and V; (x(t), t) are twice
continuously differentiable in x(t) and continuously differentiable in
t, Vp(x(t) + &x(t), t + At) and V, (x(t) + Ax(t), t + At) may be

expanded in a Taylor series about x(t) and t. This yields the following

expressions:
dV dv!
Vo (x(£) + ax(t), t + Ot) = Vp(x(t), t) + 5F Ot + 52 Ox +
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2
sz Z Bxi Bxd Ax, Axy + O(At®)

i=1 j=1
and
’ oV, avi
Ve (x(t) + Ax(t), t + Ot) = Ve (x(t), t) + 5 Ot + 5 bx +
(28)
o RV,
%2 Z S o U bxy ¢ 08,

i=1 j=1

Thus, the cost Vp(x(t), t) and Vg (x(£), t) may be written as

3V, ov]
V, (x(t), t) = min E{Vp(x(t), t) + T At + = Ax +
‘ ue U x
o2 a2y,
12.2‘ 2 mAxi Axy + Q(x(t), u(t), (29)
i=1 j=1
ve(t), t) At + o(at?) | I, (¢)}
and
Vix(t), 1) [V (x(8), ©) + o 2V
VE(X(‘t , t =‘;n:3:[ E{Vg (x(t), t +WAt +'§;AX+

- : .
% Ej E: g;:—%;;‘AXi Axy + Q(x(t), u*(t), (30)
i=1 j=1

v(t), t) At + o(At?) | I (£)].

The use of the smoothing property of expectations allows one to write
equations (29) and (30) as

oV

V.
+ =2 At 4+ — Ax +

V,(x(t),t) = min E {B{v, (x(t), t) St o

uelU 8|1, (t)

N -
%z Z ) g bx, Bxy + Q(x(t), ult), v*(t), t) At +
S04 io1 X, Oxy

o(at?) | 8, I, ()1} (31)
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and

av+

Ve (x(t), t) = max E {E{v (x(t), t) + At + ?S% Ax +

veV G‘IE(t) at

n n aEVE
yzz z m Ax; BAxy + Q(x(t), u*(z), v(t), t)At
i=1 j=1

+ o(Aat®) | B, I (+)1). (32)

The inner expectation may be distributed yielding

3V, oV}
V,(x(t), t) = min E {Vy (x(t), t) + 5 ot + == Elax[8, L(1)] +
ueu GIIp(t) : *
»é}; 2: 5___-_- B{ax, Mx | 8, T,(0)) (33)

i=1 j=1

Qlx(t), ult), v¥(t), t)At + 0(At®)}

and
3V, ovi
Ve (x(t), t) = max E {Ve (x(1), t) + Se Ot + 7;— E[Ax|0, I, (+)] +
veV 8T (t)
n n
Z Z _rE{Axi Axy |8, I (£)] + (34)

=1 j=1
Qlx(t), ux(t), v(t), t)At + o(at®)].

One must notice that since the inner expectation is cenditioned on x(t)
and since the controls u(t) and v(t) are assumed deterministic, i.e.,
functions of t and x(t) where x(t) is known, several of the terms are
deterministic. A similar argument occurs with the outer expectation;
however, the distribution of the outer expectation will be deferred

until later. The increment Ax must now be considered. The increment
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may be written as

Ax(t) = flx(t), ult), v(t), 6, t] At + glx(t), ult), v(t), 0, t] AB(%).
(35)

The expectations over the increments may be obtained as follows

E[Ax(t) | 8, I, (t)] = lx(t), u(t), v*(t), 8, t]At

(36)

ElAx(t) | 8, I (£)] = £lx(t), u*(t), v(t), 8, t]At

and

Elax(e)ax"(¢) | 0, T, (¢)] =‘g[x(t), u(t), v+(t), 8, t] x
w(t)gTEX(;)y ult), v*(t); 0, tlat + o(At?)

E[Ax(t)AxT(¢) | 8, I (£)] = glx(t), u*(t), v(t), 8, t] x (37)
wit)g' [x(t), u*(t), v(t), 9, t]at + 0(At3).

Thus, the expressions in Equations (33) and (34) may be rewritten as the

following:
Vp
Vo (x(t), t) = min E (Vo (x(t), t) + 57 At +
ueU ele(t)
. n n -
ov] . v
-2 ) e
5 flx(t), u(t), vx(¢), 8, tlat + % ) E: %, Ox; ™ v At +
i=1 j=1
(38)
Qlx(t), ult), v*(£), t)At + o(At?)]
and
3V,
Ve (x(t), t) = max E Ve (x(2), ) + <& bt +
vev 8|1 (¢)
n n 2
an (+) * } 1 2 z ° VE
=5 f{x(t), u (t), v(t), 8, tlat + % % S ™y |ur At +
i=1 j=1

(39)
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Qlx(t), u*(t), v(t), t)at + o(At?)}

where myy corresponds to the i, j~th element of the following matrix:

{mij} = glx(t), ult), v(t), 8, tlw(t)g [x(t), ult), v(t), 8, tl.
(Lo)
Both sides of Equations (38) and (39) may be divided by At and the
1imit taken as At — O, This yields the following partial differential

equations for the cost for both the pursuer and the evader:

3v,  dvp
min E Sttt 50 f{x(t), ult), v*(t), 9, t} +
ueU 8|1, (t) x
b on e (41)
i=1 j=1 !
and
V. v
Jax STI 0 7§§-+ Tis-f{x(t), u*(t), v(t), 8, t}
: (42)

n n a.?,v

\ ?; i
Bl L S om ™
i=1 j=1

s Qlx(t), wr(e), v(t), )} = o.

u*

In order to obtain a shorthand notation for the Hamilton-Jacobi equation,

one may define the modified differential generator as

n
2 =;Z; £,{x(t), ult), v*(t), 8, t} aii ; (43)
n on ]
and a
% =) fdx(0), ue), v(v), 8, t] 32;
i=1
(ht)

o)

2
u* axi ox;

2 g
%EE [, M

i=1 j=1
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Thus, one may write the Hamilton-Jacobi equations as

5 {2 Q 5 0} (45)
min —_-— 4 V, o+ X, u, v§ t =0 5
uegl ele ot i
and
dV,
max E 7§?-+v3€ Ve + Qlx, u*,v, t)} =0 (46)

veVo|L

where the boundary conditions are
Vo (x(t,), ty) = Ve (x(ty), t,) = Glx(ty), ty). (47)

It will now be proved that the Hamilton-Jacobi equations are sufficient
for an optimal strategye.
Theorem 3.1: Tt is sufficient that there exists two scalar functions

Vﬁ and V. where

Vo (x(t), t) : R* X [to, t] = R (48)
and

Ve (x(t), t) : R* X [to, t] » R (L9)

in order to solve for the closed loop optimal strategies u* and v*., The
functions V, and V; are twice continuously differentiable in x(t) and
continuously differentiable in t. ~ The functions are defined as the

solutions to the following equations:

v
Ly = B: *'agvﬁ + Q(x(t), u(t), v*(t), t) (50)
and
3,
L ==t + Ve + Q(x(t), ux(t), v(t), t) (51)

where the differential generators are as shown in Equations (43) and

(&4) and



v, | « [V, |+ lelvpxl v xl2 vy, | < e+ ix]®)

Pxx
lVE| + lvétl + IXIIVExI + |Xl2|VExxl < C(l-+flx|2)~

The boundary conditions for the above equations are
Vy (x(ty ), tp) = Vg (x(ty), t5) = Glx(t,), ty).

The functions lp and L, are such that’

min E{L, (x(t), u(t), v*(t), 8, t) | ()} = o
uelU

and
max E{L (x(t), u*(t), v(t), 8, t)| L (t)} =0

veV

Proof: Consider any ue U, then

E{I, (x(t), u(t), vx(t), 8, t) | 1, ()} > o.

50

(52)

(53)

(54)

(55)

One may take an additional expectation conditioned on the information

set I,(7), T < t. This yields
E{E{L, (x(t), u(t), v*(¢), 8, t)| ()} | 5, (M} >o.
The expected value operators may be interchanged
B{B{L, (x(t), u(t), v*(t), 8, ) | L, (N} L ()} >o.
Since I, (1) C I,(t), this inequality may be rewritten as
E{L, (x(t), u(t), v*(t), 8, t) | I, (1)} >o.
This may be integrated over [T, t,], i.e.,

ty
j B{L, (x(t), u(t), v¥(t), 8, ¢) | I,(r)}at > o.
A

(56)

(57)

(58)

(59)
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The integration and expectation may be interchanged
E{rf Ly (x(t), u(t), v¥(t), 8, t)dt l Ip(’T)} > o. (60)
T

The definition of Iy may now be used to give

t, AV
E{L £ as + L v, + Qlx(t), ult), v+(t), t_Dr'dtl L(T}>o0 (61)

or
E{J:f -BBVTP +5€pvp> at | Ip(rr)} > - E{J:fQ(x(t), u(t),
v (t), t)at | Ip(w)}.a v (62)

The integrand of the lefthand side is the total derivative of V, with

respect to time. Thus, this equation may be written as

E{ Lt’ (%‘;1) at | Ip('r)} > -—E{J:fQ(x(t), u(t), (63)

vi(t), vatl] 1, (n}.

Thus,
B{(V, (x(t,), t) - V, (x(r), ™) | 5,(0} > (64)
t
-5 [ atx(e), ue), ve(e), et | 1, (M}
) |
However,
Vp(X(tf), tf) = G(X(tf), tf)o (65)
Thus ,

E{(G(x(ty), t,) - Vo(x(7), ™) | 5, (1)} > (66)
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_E{ff—fq(x(t), u(t), v*(t), t)dt | Ip('r)}.

E{V, (x(1), 7) ] I,,(-r)} < E{G(x(t, )y te)-+ (67)

J':f Q(x(t), u(t), v*(¢), t)at | T, (1)}

The second term is the expected value of the cost J(u, v*, T) where T
denotes that the cost is over the interval [T, tf]. Since T 1is
arbitrary, T can range over the interval &c, ty]. Thus, Equation (67)

may be written as
B{v, (x(1), 7) | (T} < B{J(u, v+, T) | 5, (T)]. (68)

If one used the optimal strategy u*, then the inequality becomes an

equality.

E{V, (x(1), ™) | L, (1)} = E{J(u*x, v, 7) | I, (T)]. (69)

Thus,

E{J(u*, v*, T) | L (1)} < E{J(u, v*, 1) | I, (1)}, (70)

IA

vrelto, tyl.

Thus, the equations are proved for the pursuer. The equations will be

proved for the evader. Consider ahd ve¢V, then -
E{L (x(t), u*(t), v(t), 8, )| & (£)} < o. (71)

One may take an additional expectation conditioned on the information

set I; (1), T < t. This yields

E{E{L; (x(t), u*(t), v(¢), 8, ©) | L (M} | ()} <o. (72)
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Since I (1) € Iy (t), the inequality may be rewritten as
E{Le (x(t), u*(t), v(t), 8, t) | (1)} < o. (73)
This may be integrated over [T, tfj, i.eo,
ﬁ’ E{ 1 (x(t), u*(t), v(t), 8, t)| L (1)} at < o. (7L)
The integration and expectation may be interchanged
EU’;’LE(x(t), u*(t), v(t), 8, t) dt | IE('I')} < o. (75)
The definition of L. may now be used to give

t V,
EU':(%{_ vole Ve + Qx(t), ur(t), v(t), t)) at | I ('r_)} < o. (76)

or

‘thBVE tt’ *
EUT ST + V) at | I (T)} < -EUT Qlx(t), u*(t),

v(t),t)dt | IE('I')}.. (77)

The integrand of the left-hand side is the total derivative of V; with

respect to time. Thus, this equation may be written as

E{j:fCi;:—> at | 1, (T)} < -E{Lﬁcf Q(x(t), u*(t), v(t), t) at | I (T)} .
(78)

Thus,

B{ (Ve (x(tg), ) = Ve (x(r), ™) | T (D} <

tf
—E{J Qlx(t), u*(t), v(t), t) dat | Ig('l')}. (79)
T
However,

Ve (x(tg), ty) = G(x(t,), te)e (80)
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Thus,
E{ (G(x(tg), t,) = Ve (x(1), ) | (D} <

te
- ‘U Q(x(t), ux(t), v(t), t) dtl IE(T)} (81)
T
or .

E{VE (x(1), T | I (T)} > E{G(x(tf), ty) +

[ o), wie), (1), ©) at | z (D). (82)
.

The second term is the expected value of the cost J(u*, v, T) where T
denotes that the cost is over the interval [T, tf]. Since T 1is
arbitrary, T can range over the interVal,Ea% tf]. Thus, Equation (82)
may be written as

E{Vi (x(7), T | (1)} > E{J(u*, v, 1) | I (T)], (83)

If one used the optimal strategy v*, then the inequality becomes an

equality.

il

B{V, (x(17), )| L (1} = E{J(u*, v+, 1) | I (T)}. (84)

Thus,

B{ J(u*, v, ) | L (T} < B{J(u*(t), v*&)| (T},
v oroelto, tele (85)
Sufficiency is thus preved.
Linear, Quadratic Problem

The problem of main concern in this chapter will now be explored.

The system dynamics are assumed to be adequately represented as
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x (t) = F(t, 8, 8 )x(t) + G, (t) ult) + G () v(t) + w(t) (86)
where

x(t) € R® is a vector denoting the state of the game at time t

u(t) € U where UC Rl is a vector denoting the control
variables of the pursuer at time.t

v(t) € V where V C R®2 is a vector denoting the control
variables of the evader at time t

F(t, 6, 8 ) is a nxn matrix parameterized by 8, and 6
with continuous and bounded elements

Gp € RP1 is a time invariant parameter vector known to the
pursuer but unknown te the evader

O € RP2 is a time invariant parameter vector known to the
evader but unknown to the pursuer

w(t) € R* is a vector of white noise inputs corrupting the

system model, assumed Gaussian with known statistics

E{w(t)} =0
E{w(t)w" (1)} = W(t)8(t - T) (87)
Gp(t) is a nXm; contrel gain matrix for the pursuer

G (t) is a nXxmy control gain matrix for the evader.
The initial conditions are assumed known to both players. The initial
condition is
x(te) = Xp e

The performance index is

t,
3 = wE(x" (£,)8(t,) x(t,) + L ! (0)Q(E) x(t) +
(o]

ut (t) Ry (t) u(t) + v' (¢) R (¢) v(t)) at} (88)
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where
S(t;) is a nXn positive semi-definite, symmetric matrix
Q(t) is a nXn positive semi-definite, symmetric matrix
Rp(t) is am Xm positive definite, symmetric matrix

R (t) is a mp X my negative definite, symmetric matrix.

The information structure is as given in Equations (4) and (5), i.e.,

I, () = Py (8:) U 6, U P g (8y) U P g () U
£ P E
(x(1), 7 e [to, t]) (89)
T (t) = by (85) U B Uy (8) Upyy (8,) U
b4 £ P

(x(1), T ¢ [to, t]) (90)

where the variables are as defined on page 35. The first problem to be
considered is the solution for the system security strategies. The

information structure is given as follows for this problem.

I, (t) = PeE(eg) U, Ux(t), 7e l[te, t]) (91)

and
Ig('t) = pe (Gp) U 65 U (X(T), T € [‘t@, 't.])- (92)
) P

Theorem 3.2: The measurement security, system security, opponent
security strategies u* and v* for the pursuer and the evader, respec-
tively, for the system defined in Equation (86), the cost in Equation
(88), and the informatien structure as in Equations (89) and (90) are

given as

* ~ -1 T ,
u*x(t) = -R; (t)Gp(t)epgeEIIp(t){Pg(t)}x(t)



57

vi(t) = - (t)6] (t) (B (¢)}x(t) (93)

8, 26 | T (¢)

where P, (t, 6,, 6 ) is given as the solution to the integro-partial

differential equation

oP, (t)
—sr— = -B@ F (t, &, &) - F (t, &, & )TPy (£) +P, (£)Gy (t) -
. T 7 o _ =1 T .
K (t)Gp(t)epl::eEIIﬁ(t){pp(t)}ﬂLeE,eEllp(t){Pp(t)}Gp(t)R,, (t)G} (t)
P, (t) + Py(t) G (£)E ()& (£)T; (£) + Tp (£)G (£)R™ (¢)
1 T
& (£)P, (t) - GE’eEIIp(t){Pp(t)}Gp(t)R; (D6 (g By |1 (49
P (£)}- T (£)G (O)RI(IG (1T (£) - Q(t) (9%)
and
oTg (t)
—i - -T; (£)F(t, 6, 8 ) - F(t, B,, 6 )T (t) + (95)

T, (£){Gp (1) (£)G] (t) + G (£)F™ (2)6] (£)IT (¢) - Q(t)

and where P (t, 8, 6 ) is given as the solution to the integro-partial

differential equation

oF; (t)
7 = -Pe (t)F (t, 6, 6 ) ~ F(t, B, 8 )R (¢t) +

N
P ()G (t)ER (t)Gg(t)epI;;eEIIE(t){PE(t)} .

1 . ‘
ep?ee]IE(t){PE(t)}GE(t)RE (+) 6] ()P, (t) +

By ()G, (1R (£)G] (+)Tp (t) + Ty (£)Gy (1R (£)G] (£)B: (t) -

Ty (£)Gy (£)R? (£)G] (£)Tp (£) - o o |1, () [B (D) )e (DR (t)
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. T * - —
GE(t)epI:leEIIE(t){PE(t)} Q(t) (96)
and

OT, (t)
—57— = T (OF(t, 8, &) - F(t, 6, 8 ) T (¢) + (97)

Tp (£){Gp (£)F; 7 (£)G] (£) + G (£)R* (£)@7 (£)1Tp (¢) - Q(t)
with boundary conditions
Py(ty) = Pe(ty) = Tp(ty) = T (t).= S(ty)

The expected values used are the best values or estimates of the parame-
ter values ep and GE since each player assumes the other player has
perfect knowledge of the game dynamics but is playing a security

strategy.

Proof: The Hamilton-Jacobi equations may be written as follows:

v, avl
:;nue,?egllp(t){ﬁt_+ 5= [FCts 80 8 x(0) + G (2Dulo) +

i

& (VA1) | + BT (Q(E)x() + o (R, ()ult) +

n n 2 (98)
‘ 0"V,
V*T(t)RE (t)V*(‘t? + sz Z 'S;Ta—xrmij} =0
i=1 j=1
where
and
oV oV
nt 6 B 5 (05T T T (6 B 8X(0) 5 60w (6 -
G (£)v(t)] + %(xT (£)Q(1)x(t) + u™ (£)R, ()u*(t) + (99)

S A N
vl ()R (t)v(t)) %-1/25: i mm“ Lo

I3 s

i=1" j=1
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The minimization over u€U of the first equation yields

u(t) = -R;1<t>eg<t> ep,eE}I (t){ } (100)

and maximization over vgV of the second equation yields

v(t) = -R*! (t)GT(t) e 1, (t){ } (101)

Since R, is positive definite, Equation (98) is minimized by u.
Similarily, since R; is negative definite, (99) is maximized by v.

The strategies may be substituted into (98) and (99). This yields the
following equations:

T T
ovy] avp

. _— — - —_— 1 T
epgeE[Ip(t){at + o33 F(t, 8,, 6 )x(t) 5= G, (t)R;~ (t)G] (t)

818 | T, <t>{ } (D7 (D6 (1) 8, %8, | 1, <t>{ }

|1, (t){ }

av]
%xT (£)Q(t)x(t) + ep,eElI (t){ }G (£)R;* (£)6] (t) 5

oy
avy
8%, |1, (t){ }Gﬁ(t)RE (006 (t) oF o |1, ( t){ }

L

mij =0 (102)

and
av,  av] vy

—_— —_ 1 7
BP?BEIIE(t) ST ¢ S Pty 8 8 )x(t) - = G ()R ()Gp ()

"0, 78 | T, ( t){ } B O (ORT(OG(0) B o (t){ }

J,av
T ) .
ol (D)Qe)x() + By | (t)Lax}Gp<t>R; ()6 (t) ¢B o |1, <t)Lax}
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‘ - eovi oV,
. . = 1
=G (t t)Gl () E , {—} +
_e?]?eglls(t){ax}“ IR (£)6E ( B 0 | I (t) Lox
n n 2
LT T O } o (103)
BL L Sxewy ™S =0 3
1=1 j=1
One may note that the Hamilton-Jacobi equations are coupled partial
differential equations. The solutions to the equations will be assumed

to be

1l

Vo (t) = %xTP, (t)x + Ay (t) (104)

Ve (t)

%xTP (t)x + A (t).

The assumed solutions will be used in the above equatiens in order to
determine the necessary equations for a solution.

The strategies may be written as

u(t) = -R;* ()6 (¢)

8y + 6 llp(t){Pr(t)}X(t) (105)

v(t) = -R* (£)G] (t) [P () }x(t).

I

9:3’95 | 1.

The use of the assumed solutiens in the Hamilton-Jacobi equations yields

the following equations:

<app(t)
oy T .
ep?eE‘Ip(t){%x —sr ¢+ P, (t)F(t, 8, 8 ) + FT(t, B,, 6 )P, (t) «+

Q(t) - P, (t)G, (t)R; (£)G] (t) {p,(t)} -

6r,8 | I, () 6,8 |1, (1)

Py (£) 36, (£)R™ (£)G] (£)Py () - Py (£)G (£)R (£)G] (¢) B, 6 IIE(t){

P (t)] - y P (06 (DR ()6 (£)P, (2) + o Ee, ‘Ip(t){Pp(t)}*

epE,eE |1, (¢



61

{Py(2)} +. ol B (e (DR ()

p (IR (8) 0 Be 11 (o) 8,50 | I (

* 6f (t) 9,,,85!15 ){P t)}>x+Apt)+1/2Z z MJ“‘HJL"O (106)
. i=1 j=1

and

SF; (t)

8,8, | T (¢ ){VZXT(

+ B (L)F(t, B,, 8 ) + FT(t, 8, 8 )P (t) -

(£)G, (£)R5T (£)G] (t) P ()} - P ()]

62,0, | 1, ( 6,6 | I, (

1
p (DR ()] ()P, (1) - P ()G (KT (DG (£) B oy [P (O] -

1
ep]‘feE!IE(t){PE(t)}GE(t)R; (6] (£)B, (£) + Q(t) +

1 "m' A
eﬁeEle(t){Pv(t)}Gp(t)RS ()65 (t) ep,eE|I IRENCOMES

E, ..
8,78, 17 (1) P (t)36 (DR (£)6] (¢ )ep,eEII{P (O] )x +

n n
) +V22 z P,y m”} = 0, (107)

i=1 j=1
This yields the following equations which must be solved for Py and P;:

OP, (t)
Se— = P ()F(t, 8, &) - FT(t, By, 6 )Py (t) + Pp ()G, (1R (

Py (£) 3Gy (£)RST (1) -

{Pp(t)} + ep?@gllp(t)

o T
G (t) g Bo i1 (1)

G (£)P, (t) "+ Py (£)G; (£)RT (t)G () [P ( (t)} +

ep ,95 IIE



62

. 1 ’
8, %6, |IE(t){PE(t)}GE(t)R§ (+)6] (£)Py (t) - epI:SeEIIp(t){Pp(t)}

. 3 1 —
Gy (t)R; (£)G] (t) epl?eEIIp(t){Pp(t)} Gp},':@EIIE(t){PE(t)}

2 G (£)F T ()Gl (t) ){PE(t)} - Q(t) (108)

850 | I (¢

and

oP; (t)

—s7— = -P (£)F(t, 6,, B ) - F' (¢, 8, GE)PE(t) + PE(t)Gp(t)R;l(t)

v @l (¢) [Py ()3 1 {Pp (£)36, (DR (1)

8,8 | T, (t 8,78 | 1, (¢

* GI ()P, (t) + Py ()G (£)R T (£)6] (t) {p (£)} +

8,08 | Ty (t)

{P (£)}G (£)R T (£)G] (£)Pe (t) -

Bp 58 | Te (¢) 8,58 | T, (t)

. ) 1
[P () }e (DR (6] (¢) 4 E IIp(t){Pp(t)} - (109)

P’eﬁ

[P () }e ()R ()6l (t) 4 {p (£)} - Q1)

8y 0 | T; (£) o8 | T, (1)

with boundary conditions

Py (ty) = Pp(ty) =:8(t,)

and

Ap(t) + % Z z my =0 (110)
i=1 j=1

A (t) + % i i Pe,, myg =0
i=1 j=1

with boundary coenditiens
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A (ty) = A (ty) = O,

The differential equations for Ap and A, are uncoupled from the problem
since they do not affect the contrel. The equatiens for P, and B are

functions of 6, and 6 . Thus, P

» = Pp(t, 6,, 6 ) and

P, = B (t, 6, ;). However, the arguments have been suppressed.

One may note that the equations fer P, and F; are coupled. Thus,
the solution depends upon each player knowing his oppenent's information
set in order to solve for the strategies. In general, neither player
has this information. Thus, only a‘third player with perfect intelli-
gence can solve the game. Therefore, in order to obtain a strategy
playable by each player, the players must use the knowledge within his
information set to determine the required expected values. However, these
strategies may be utilized to compare the strategies obtained by each
player using the knowledge in his infermation set. The strategies may also
be used to find playable strategies — ones that are based upoen only each
playeris information sets.

The problem may generate into what Ciletti (24) calls an "infinite
well!" problem in that if each player chose his strategies based upon
counter, °-¢3 counter intelligence, then.the amount of information neces-
sary may become infinite. 1In this theorem, it is assumed that each
player is choosing his strategies based upen the assumption that his
opponent is playing worst case, i.e., with no attempt to use intelli-
gence in order to independently optimize the game, but is playing with
perfect game informatioen.

The required strategies are measurement security, system security,
opponent security strategies. Thus, each player assumes his opponent
has perfect information, but does not try to independently optimize by
use of intelligence.

The pursuer solves the game by assuming the evader is solving the

game with no uncertainty. That is, he assumes his Hamilten-Jacobi
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equation is coupled with the following equation (derived in Appendix B):

v, oVl
s+ 5 (Fley 8, 8)x(0) + G (Dult) + & (W)v(v)] +
(111)
B(x" (£)Q(t)x(t) + u" (DR, (t)ult) + V()R (t)v(¢)) = O
with the solution
Ve = Bx' Ty (t)x (112)
and
u(t) = K1 (£)6] ()T (t)x(t)
(113)

v(t) = -B ) GF (£)T; (t)x(t).

This yields the following equations for the pursuer in order to deter--

mine Pp:
oP; (t)
st = P (F(t, &, 8 ) - F (¢, ep., B )P, (t) +
P, (£)Gy ()BT (£)6] () 4 Bg |1 ()P (£)] +
P P
1 A N (Ve 1Yo 10 (+) -
o, %, |1, (1) {Pp () J65 ()R ()G ()P, () Rp,(t)G.E(t)Hg ()G (1)
o Tg (t) + Tp (£)Ge (£)FE™ (£)G] (£)P, (t) - @p%Elip(t){Pp(t)} :
1 1 .
' Gp (1)K (£)6] (t) ep§esllp(t){Pp<t>} - T ()G (£)RT (t)
«Te (t) - Q(t) (114)
and
OTg (t)
s = T (OF(t, &, &) - Flt, &, B )TT (t) +

(115)
Te (£){Gy (V)BT (£)G] (1) + G (O)R;Y (£)G ()} Tp (¢) - Q(t).
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A similar derivation holds for the evader. Thus, the evader solves the

following equations to determine PE(t)i

OP; (t)
s = B (OF(t, 8, &) - Flt, 8, 8 TP (£) + B (£)G, (1) (¢)

G (£)Tp (£) + T, (£)Gy (£)BG" (£)G] (P (£) + Py (t)Ge (£)R" (t)
ol (t) 0. e |1, (1) (Pe (t)} + 8, % | 1, (+) (P ()} G (¢) -

CRET ()G (6)P (£) — Tp (£)G, (£)R;T (£)G] (£)Tp (t) - (116)

1
8,58, | I, () Pe (t) )G ()R (+)¢ (+) 0, %8 | 1. (t) P (t)} -Q(t)

and

oT, (t) . } R
—sr— = T (OF(t, 8, &) - Flt, 8, 6 ) Tp(¢t) + (117)

i

T, (£){G, ()R (£)G] (t) + G (t)R " ()Gl (£)}T, (¢) - Q(t)

with boundary conditions
Py(ty) = Pp(ty) = Tp(ty) = Tp(ty) = S(t, ).

The above uses the result develeped in Appendix B, inveni;iBquation’ €9) that
gives the form of the Riccati. equation if each player has no uncertainty
in the game dynamics. This gives each player his opponent's security

strategy.

Theorem 3.3: The measurement security, system security, oppenent
security strategies u* and v*¥ for the pursuer and the evader, respec-
tively, for the problem posed in Theorem 3%2-ahd under the assumption

that ep and eE have a discrete parameter range are given:as
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W () = -1 (06l () (f P, (8, | T, ()P, (¢, 8, 8, )x(t)
i=1 (118)

v*(£)

Pi '
—Rgl(t)GE(t)_CS'P,(epiIIE(t))Pgi (t, 8, eE)>x'<t>

where Ppi(t} 6p » eh ) is the solution of the following equation evalu-

ated at the ith parameter value:

by . (t):z';Ppi_(t)F,(it‘, 5y eEi) F(t p ’\/eEi)PPi (t.) + \Ppi (t)Gp (t) o

&R
Ko (1)G] (t) <z Py (8 | I, (£))By, (£) + <Z P, (8, | I, (£)) -
j=1 J=1
oppd(t)> Gp(t)Rgl(t)G;(t)Ppi(t) + Ppi(t)GE(t)Rgl(t)Gg(t)

'Te (t) + Te, (£)G (O)RXEIGI(£IPy (8] ) (119)

B2
(Z P, (8 |1,(0))5,, (+)) 6 (£)R5? 6 1) (Z
J=1
(8, II,,(t))Ppd (t)) - TEi(t)GE(t)RE (t)GET(t)TEi(t) - Q(t)
and
’i‘gi(t) = -Tgi(t)F(t, 8 , eE!) - F(t, 6, Sgi)TTE(t) + TEigt){Gp(t)R;l(t-) ‘

+GI (t) + G (£IR? (t)GT(t)}TE (t)r- Q{t), i241,2, ..., bg
(120)

and where Pﬁ(t, epi’ B ) is the solution of the following equation

t
evaluated at the i h parameter value:
PEigt) = -PEi(t)F(t, Bp, 0 &) - F(t, epi, 8¢ )TPEH(t) +

Py, )Gy (1)K ()6] ()T, (£) = Ty, (£)G, ()R (£)G] (B () +

B
P, (t)6G ()R ' (£)q] (t) (E Pr(epJIIE(t))Pﬁj(t)> +
j=1
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3
(T ey, 15 ()R (6)) & (O™ (£)6F (£)P () -
=1
b1

T, (t)G (t)R;* (t)G,(t)T (t) - (Z P, (@,,JIIE(t))PEJ(t))

e Ge (£)RET ()] (t) (Z‘ P, (8, II (£))P,(t)) - Q(t) (121)
j=1

and

T, () = -7 (OF(t, 8 , &) - Flt, B, 8 )T, () «
(122)
Ty, ({6 (R (£)6] (t) + G (1R (£)6] (£)] T, - Qt)

with boundary cenditions
A

-

Ppty) = B (ty) = Tp(ty) = T (tp) = S(ty).

Proof: The proof follows that of Theorem 3.2 with the use of the
definition of the expected value operator over a discrete parameter
range.

The next theorem coensiders the problem of the measurement security,
system risk, opponent security strategies. In these strategies, a risk
is taken in order to use any knowledge of the player's opponent's uncer-
tainty as to the game dynamics. The infermation structure for this game

is as follows:
I (t) = pes(eE) Ue, U pgep(ep) U (123)

(x(1), 7€ [tg,t])

and

]

T (t) pep(ep) U g U ppes(eE) U (124)

(x(7), 7€ [to,t]).
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Theorem 3,4: The measurement security, system risk,; opponent
security strategies for the system defined in Equation (86), the cost

in Equation (88) is given as

ur(t) = -R3' (+)G](t) 6,5, IIp(t){Pp(t)}x(t) (125)

il

* ! | Cy
v¥(t) = -R1 (£)Gf (¢) epE,)eElIE(t){P!(t)}x(t) (126)

where P,(t) is the solution to the integro-partial differential equa-

tions given as follows:

oP, (t)
ST = P ()F(t, 85, 8) - F(t, 8, 8 )R (¢) + P ()G ()R (¢) -
o 7 1 .
Gl (t) ep%Ele(t){Pp(t)} + epl::eEIIp(t){Pp(t)}Gp(t)R; (t)
? i !
GT (£)P, (t) + Py (£)G (£)R™ (£)6] (t) epgeE]Ip(t){TEm} +
/ 1 R
epl::esle(t){Tg(t)}GE(t‘)PQ’ ()P, (1) - o By llp(t){Ppm}
L] 1 - ! @
G, (t)R* (£)a] (¢) ep;;:egllp(t){Pp(t)} e,?egllp(t){TE(t)}
L] 1 ! - )
G (t)RzT ()6 (t) ep?eEIIp(t){TE(t)} Q(t) (127)
and
oT, (t)
—7— = T (OF(t, 8, 8 ) - F(t, 8, )T (¢) + T (¢)G, (VK (¢) -

VG (£)Ty (1) + Ty (£)G, (0BT (£)GL ()T () + Ty (£)G (£)RT (t) ~

’ 4 1
G (t) ep?eglxp<t>”€<t>} " 5,5 IIp(t){Tg(t)}Gg(t)Rg (t)

Gl (£)T (£) - Ty ()G (£)BG (£)GI(£) T, (t) - y{Te (£}

eﬁ?esllp(t

1/i ’
G (£)RT (£)G] (t) ep%Ele(t){TEm} - Q(t) (128)
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and

oT, (t)
—p—at—= -Ty (£)F(t, 8, ) - F(t, 8, & )T (t) + T, (£){G, (t)K* (¢) -

* Gl (t) + G ()ET ()G (£)1T, (¢) - Q(t) (129)
with boundary conditions

Py(ty) = B (t,) = T, (ty) = T (t,) = S(t,).

The matrix P, (t) is given as the solution to the following integro-

partial differential equation:

oP; (t)
ST = ~P ()F(t, By, ) - F(t, 8y, 8 )P (t) + P (£)G, ()G (¢) -
N / ’ ’ 7 1 )
Gl (t) ep%Ellﬁ(t){i‘p(t)} ¥ ep]?eslls(t){Tp(t)}Gp(t)R; (t)
¢ G] (£)P () + P (£)G (£)RT (£)G] (¢) ep}::eslls(t){PE(t)} +
y
ep‘?egllﬁ(t){PE(t)}GE(t)RE (6L (DR () - . (130)
/ ’ 1 ’ ’
@pE’BGEIIE(t){T,(t)}QP(t)R; (£)6] (t) ep%s|ls(t){T’(t)} -
1 T _
e;‘?eglxg<t){PE (t)}e (L) (£)G (¢) epl;SeEIIE(t){PE(t)}
Q(t)
and
oT, (t) )
—— - ~T, (£)F(t, 8, 8 ) - F(t, 8, 8 )Ty (t) + Ty (£)G, (¢) -

L 1 4 4 i
R (1)G] (t) 2, %6, IIE(t){T,,(t)} * o B, IIE(t){Tp(t)}Gp(t)

"R ()G ()T (t) + Ty (£)G (DR (26 ()T (+) +
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Ty (4)6 (1R (£)6] (£)T) () - (t)}6, (t)

eﬁeE | I, (£){ T

1 J; ¢ 9
e B (1)G] () BP%E'IE(JC){TN)} - T (4)G (£)R* (£)6] (t)

» Ty (t) - Q(t) (131)

where

3T, (t) )
= T (t)F(t, B,, 8 ) - F(t, 8, 6 )T, (t) + Ty (£){Gy (t)

K1 (£)G] (t) + G (£)RY (2)6] ()11 () - Q(t) (132)
with boundary conditions

P (ty) = T, (t,) = Ty (ty) = S(ty).

The expected value operators will now be explained. The operator
E{} denotes the expected value for the player's best estimate of the
parameters based upon his observation functional. The oeperator EI{}
denotes the expected value over what the player feels his opponent |

possesses as the best estimates of the parameters.

Proof: Each player is solving hié Hamilton-Jacobi equation for his
control based upon the assumption that he has the coupling Hamiltoen-
Jacobi equation his opponent is using to solve for his controls. Since
the strategies are system risk, opponent security strategies, the
strategies for each player assume that he knows the uncertainty as to
the unknown parameter of his opponent and that his opponent is playing
a system security strategy. Thus, the coupling equatien is of the form
as in Theorem 3.2 except that all expected values are conditioned on the
rlayer's infermation set. Thus, the preof is.the same as in Theorem 3.2

with the above considerations.
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Theorem 3.5: The measurement security, system risk, opponent
security strategies for the system defined in Equation (86), the cost in
Equation (88) and the information structure as in Theeorem 3.4 and under

the assumption that ep and GE have a discrete parameter range are given

as
P2
w(0) = g0 ) () P (8| T8, (1)) x(8)
. i=1 h ) . :
19} _ (133)
v¥(t) = -R* (£)G] (t) <Z P, (8, | (t))PEi(tD x(t)
i=1

where P;t(t) is the solution to the following differential equation
s _ _ T
Py (t) = -Py (£)F(t, 6, 8 ) - F(t, &, & )TP, (t) +

P2
P, (£)6, ()85 ()6} (6) () P, (8, |, ()P, (1))
j=1

P2 :
(}: P (8, | L (£))P;, (t)> 6 (1)F (16 (£)P (t) + (134)
J=1 p1

p, ()6 (F ()61 () () P,(8, |, ()T, (1)) «
k=1

D2
<Z P, (8, | T, ()T (t));.GE» ()R (£)6] ()P, (t) -
k=1
Pz

<§1P,.(eEJ le(t))PpJ(tD 6, (DR (£)6] (¢) <

P, (8| T, (1)

J=1 p1 J=1
By (0) = () (g, L0, (6)) & (DR ()& (1) 7
k=1
p1
(Z P (8p, | I, (£))Ty, (t)> - Q(t)
k=1

and

(t) +

Te, () = -TEi_lk(t)F(t, O Be) - F(t, 85 Be,) T Te,

Te, ()G (D)RT (£)6] (£)Tp, (2) + Ty (£)Gy (£)RGT (£)G](2) -



72

1
.'rE (t) + Tg, (t)G (t)R* (£)6] (¢) <iP (ep | T, (4)) -
j=1

VT (t)> (ZP (85, |1, (t))TE”(t)> G {EIR T (£)6] (£)Ty, (t) -
, ()6 (DR (£)6] (£)Ty <ZP (8, |I (£)) T (t)>

Gy ()BT (£)6] (¢) <21P (85, | T, (1), (t)> - Q(t) (135)

where
T, (8) = -1, (£)F(t, By, 8) - Flt, 8, , 8)TT, (+) + (136)

Ty, ({6 (R ()6] (1) + G (DR (1)l (1) }Ty,, (+) - ae)

1,2, cee, P2
1,2, '

i
k aey Py

with boundary conditions

Py, (te) = Tg (te) = Ty, (t4) = 8(te).
The matrix Ph(t) is the solution to the following differential equation:

Lo
P ()6, (R (6] () () Py (8, T (0)7),, (1)
k=1

(ZP (8, |Te (£))Ty, (£)6, (DRT (£)6] (£)P (¢) + (137)
m

Pp, ()G (£)E;™ ()] (¢) (ZP (8, | I (t))PEJ(tD

(ZP (85, |1 (£))P, (t)> GE(t)RE (£)6] (£)P (¢) -
Jj= 1

(ZP(%[I&NT uDe<wq<wmw)<pr”

k=1
‘L, (07 (ﬂ) (me |7 ()P, (+)) G (DR (£)

@&)CXP(GII&Nﬂ”tD—Q&)
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and

LA AN / /

Tp,, (t) = -Tpi‘k(t)F(t, 8 s 8. ) - Flt, & , B, )Ty, () +
b2

Ty, ()6 (VIR (£)G] (¢) (ZP,(@EJ | (£)) 15, ()
J=1

n

(2 P, (8, | 1, (t))Tp'” (t)) G, (t)K;* (t)G;r,(t)Tp’ik(t) +
j=1 . -

Tp'ik(t)GE(t)REl(t)Gg(t)TE'ik(t) + TE’i!k(t)GE(t)Pgl(t)
Pz

°Gg(t)Tp/ik(t) - (ZP,(@EJ | I, (t))Tp’“ (t)) G, ()BT (£)G] (t)
Pz J=1

(J};lpr(egJ |1 ()1, () = 1, (816 (R (¢)

7

(t) - Q(t) (138)

L GI ()T,
where
Ts“e(t) = —T'gik(t)F(t, 6o, B, ) - F(t, epi, eEk)TTEik(t) . (139)

T, (D{6 (R ()6 () + & (DK (0)e] (¢)IT - Q(t)
i=1, 2, cca, p;
k=1, 2, «ce, P2

with boundary conditions

Py (te) = T (te) = Ty (t,) = S(t,).

The interpretation of the adaptive feature on parameters known to
each player is that each player is trying to reconstruct his opponent's

best estimate of the parameters unknown to him.

Proof: The use is made of Theorem 3.4 and the definitions of the

expected value operation over a discrete range.

Theorem 3.6: The measurement security, system risk, opponent risk

strategies u* and v* for the pursuer and the evader, respectively, for
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the system defined in Equation (86), the cost in Equation (88), and the

information structure as in Equations (89) and (90) are given as

u*(t) {P, (+)}x(¢) (140)

il

1

v*(t)

il

-K1 (£)6] (¢) i1 (t){PE(t)}x(t)
4

E..
6 8¢
where Pp(t) is given as the solution to the following integro, partial

differential equation:

oP, (t)
57— = -Pp (1)F(t, 8, 6 ) - F(t, 8, 8 )P (t) + P, ()G, ()K" (¢)
GI(t) . E. i o P ()} + L E. - P (1)36G (t)
PR Ve T ()T T e [T ()t e »
RS (£)GI (£)P, (t) + Py ()G (£)Re (+)G] () e;?égllp(t){T“t)}+
ep,e {1, (£)}6 (OB (£)G] (£)P, (t) - ep’eéle(t){Pp(t)}GJt)
1. ’
'R (2)6] () ep?eEle(t){Pp(t)} - ep§egllp(t){Tg(t>}eE<t>
1 7/
R (£)6] (t) epgeE!Ip(t){TE(t>} - Q(t) (141)
and
oT, (t)
s = -Te ()F(t, 8, 8) - F(t, 8, 8 )7T (t) +

T, (£)Gp (O)R (£)6] (¢) , B

@p,@EIIp(t){Tp(t)} *

5 e 1, () D (t)}a, (0)RGY (£)G] (£)T (t) + T (£)G (LR (t) -
pIVE

. 7 ’ 1
6f () ep?eEle(t){TE(t)} " GP?GEle(t){TE(t)}GE(t)R; (t)

fGI (£)Tg (£) - {1y (D)6, (DR (£)6] (¢) -

ep?egllp(t
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7" ’ . 1 '. .
‘e,,'?esllp(t){T’(t)} - eplfleEle(t){TE(t)}Ge(t)RE (t)gg
.eplj)eEle(t){Te(t)} - Q(t) (142)

where
OT, (t)
st = ~Tp (DF(t, 8, 8 ) - F(t, 8, & )TT () + Ty ()G, (t) -
Ryt (2)6] (t) ep’e le(t){Tp(t)} + ep]::esllp(t){'r,(t)}e,(t)‘
VB (1)6] (£)T, (1) + Ty ()G ()R (2)6] (£)T (t) + Ty (¢) -
1 [N TS SR [E :
v Ge (1R (£)GT (£)Ty (1) = ep,eEII (t){T ()6, (LIRS (t)
’ 1 ’ v
Gy (t) ep,eEle(t){Tp(t)} - T, ()G ()R (£)G] (£) T (¢) -
Q(t) (143)
and
oT, (t) ,
—7— = =T (t)F(t, 8,, &) - F(t, 8,, §)TL/(t) + (144)

T, (£){ G, (£)RGY (£)GI(t) + G (£)R7! (£)GI (£)}Ty () - Q(t)

with boundary conditions

Py(ty) = Ty (ty) = Ty(ty) = T (t,) = S(ty).

124

Similarly, the matrix Pe(t) is obtained as the solution te the integro,

partial differential equations:

oF; (t)

—=r— = -P (t)F(t, 6,, ) - F(t, B

ss B8e)TP (€) + Py (£)G, (t) -

VR (£)G] (t) T (e)} + {Tx(t) 6, (¢) -

ep%e | (¢ ep}?eE | 1,
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B (£)G] ()P, () + By (£)G ()R (£)6] ()

8,58, | IE(t){PE(t)} *

1 : ‘
o, Bg | 1, (1)[Pe (B)J& (DR ()G ()P (1) - (145)

: * 1 ‘.
0,56 |1, ()T .(DIG OB (G (6) g By | () (8)] -

5, B, [ 1,(t) .{PE(t)}G; (DI )6] (6) o By |p ([P (D) - Q)

and
OTy*(t)
sT— = "N F(t, 8y, ) - F(t, 8, B )T (t) + Tyr(t) Gy(t) -
1 ! : ! {1 o*( ' .
Bt (6] (+) g By IIs(t){T”* (t)} + @p%ElIE(t){Tp (£)} 6, (t)
BT (£)G] (1) T (1) + TpF (4)G (H)RT (1)6] (t) -
* 1 .
ep]::ee 1, (t).{TE ()} + e,,}‘feE 1, (t){TE* (t)}G ()R (£)6] (t)
T () - ep]::éE I, () [ T* ()6, ()R (t)ef (¢) -
. ‘ . _ 1 . n
0.5, | 1 (t)pr* (t)} 0, % |1, ()T (D) )6 (DR (£)6 (+)
*6, %, |IE(t){TE* (t)} - Q(t) (146)
where
OT*(t)
st = Tt (BF(t, 8, B ) - F(t, 8, G)TT* () + Tg* (£)G,(t)

BTG ()T ¥ () + To¥* (£)Gy (£)RG (£)G] (£)Te* (t) +

Te*(t) G (LB  (1)6] (t) 4 B

p o8 | Ie (t){TE* (0} +

eplf”é; | 1, (‘t){TE*(t)} Ge ()R " (£)G (£)Tg* (£) = Tyr* ()G, (1) -

'Ry (£)G] (£)T* (t) - {1 (016 (R (6] (¢) -

8,8, | I, (1)
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. _ (147)
6, % |1 7 (V)] o) |

where

an**(t)

ot = _T'P**(t)F(t’ epa SE) - F(ta @.p, eg )TTP**(t) +77

T (1) {6 ()R (£)6] () + G (£)R (£)G] (£) 3Ty ** () -

Q(t) (148)

with boundary conditions
P (ty) = Tp*(t,) = T *(ty) = Tp**(t,) = S(t,).

The expected value operators will be explained. The operator E{}
denotes the expected value for the best estimate of the parameters. The
operator E'{} is over what the player feels his opponent possesses as
the best estimate of the parameters. This takes into account the uncer-
tainty the epponent has. The operator E'T'} denotes the expected value
over‘what the player feels his opponent's information is as to the

player's uncertainty.

Proof: Each player is solving his Hamilton-Jacebi equation for his
control based upon the assumption that he has the coupling Hamilton-
Jacobi equation his opponent is using to solve for his control., Since
the strategies are opponent risk, each player realizes his opponent has
the same assumption and is independently trying to optimize. Thus, each
player uses three Hamilton-Jacobi equations representing the information
known to him. Therefore, proof follows from previous procedures.

The equations over a discrete parameter range may be established as

in previous theorems.
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Theorem 3.7: The measurement security, system risk, opﬁonent risk
strategies u* and v* for the pursuer and the evader, respectively, for
the system defined in Equation (86), the cost in Equation (88), and the
information structure as in Equations (89) and (90) and under the

assumption that ep and 6; have a discrete parameter range are given as

P2

w (1) = -gE 06 () () Py (8 [1,(0)P, () x(t)
1x1 (149)
b -

ve(t) = g1 (0O ©) () P8, 1T (£)IB, (1) x(2)

i=1
where Ppi(t) is given as the solution to the following differential

equation

Epi(t)= ~Py (LF(t, 8, 8) - Flt, 8, 6,)7F, (t) +

Py, (£)G, (£)R;* (£)G] (t) (EP (GEJII (t)PpJ(t)>
j=1

(Zp (8, T, (£))P,, (t))Gp(t)R; ()6, (1B, () +

PTD (t)GE(t)Rg (t)GT(t) (EP (epklI ()T, (t)> + (150)

Py (8, [T, (€)1 (¢) (£)R ™ ()G (£)Py; (t) -
" G ()R

(fp (eEJII (£))7,, (+)) 6, ()R} (£)6] (¢) (ZP (6 | 1, (£)) -

Py (t)> (213 (8 |1 ()T, (t))GE(t)Rg (t) -

k 1

oG (£) (Zp (8, |1, (t))TEik(t)> Qt)
k=1

.and . o

Te, (B = -Tg, (OIF(t, &, , &) - Flt, 8, , 6 ) T, () +
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12
T, (£)6, (DRGT (£)6] (¢) CEP’” (8| 1, (1)), (t)) +
Po
(ip”(esdll( )Ty, ( >\Gp ()R (£)6] ()T, (£) +
j=1
m ()6 (DE (£)a (t) (Z 0y | ()T ()« (151)

(Z I, ()T, (¢ )}Gg(t:m;— (26 (8T, (4) -

(2 (8| 1, (£))7 ,“ t)> (R (t t)(Z (8,
L ( *’15 > (Z (85, |3, (¢ TEi‘J‘(tD Ge ()™ (t) -
t)<z 3’ |55 ( TEiJ t)>_Q

where
T, (£) = ~Tp, (BIF(E, &, 0 8) = F(t, 8, 87T, () +
B
T, (£)6, (D)% (£)a] (+) (Z P (8|1 ()T, (6)) +
P2 o 3=t
() p (Bl 1, (0T, ((6) )6y ORI CE)T,  (6) +  (152)
=1
Ty, (D)6 (¢ Rgl(t GT(t)T'.. (t) + Ty (£)6 ()R (¢)
el t)'rp“c t) - (Z’ ! eEJII Ty, ( >Gp(t)R;1'('t)'~"
*GT ( (2 " (8l 1, ( >- Try, ()G (£)REH (2) -
°G§(t)TEik(t) - Q(t)
and
T (8) = =T (£)F(t, By, , B) - Flt, B, 87Ty (£) + T (£){Gy(¢)
B (£)6] (t) + G (£ ()6l (£)IT (t) - Q(t) (153)
i=1,2, s P2
k=1,2, ..., P
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with boundary coenditions

Py (ty) = T, (ty) = Ty (t,):'rE (t)=s(t,,).

Py

The probability Pr(@Hle(t))d@notes the probability of the parame-
ter GH assuming the a priori infermation available by the pursuer as to
the best estimates of the true parameter values. The probability

’
Pr(epk|Ip(t» is the probability of the parameter 8,, as known by the

Py
evader., The pursuer uses his a prieri information as to the evader's
parameter uncertainty in order to calculate this value. The probability
'(ngIIp(t)) is the probability of the parameter eEJ which centains the
knowledge the pursuer has as to the evader's knowledge of the pursuer's
uncertainty. The pursuer uses his a priori knowledge of the evader's
knowledge of the pursuer's uncertainty in order to calculate this value.

The matrix P%At) is given as the solution to the following differ-

ential equation:

1551(1:) = P (L)F(t, 8, , &) - F(t, 8, , 8 )P, (t) +

Py ?

P (£)G, (+)EL (+)6] (+) (Zp (8, |1, (£))Ty7, (+)) +

p2
(Zp'(eﬁklxsu))w <t>>e (DR (£)&] (£)P (t) +
=1
P (£)6 (DR (£)6] (¢) (Zp (8, [T ()P, (1))« (150)

(ZP (61,J | I (£))P; (t))e(t)R; (t)GT(t)P (1) -
j=1

<ZP (eEk|I ()T (t))G (t)R* (£)G] (t) <ZP (8, |

L ()T (1) - (Zp (8 | T (41)B, (£)) & (IR (1) +
j=1
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B
o (t) (jzime,d |1 ()P () - Q(e)

'1*},*1 (t) = -T, . (t)F(t,

. Op, v By ) ~ Flt, 8 , 8 )TT*, (¢) +

1

T,a*1 (£)G, (+)RZ? (t)@,’(t)(l (8] Te (£)) p”(t)>
<Z (8 |7 (4D, (t)>e,,(t)R;1(t)eT(t>T* (t) +
Ty, ()G (t) B (1)q (t) <ZP” (8p, | I, (t))TE;*J(t)> (155)

J=

<zl ” pJII (t))T*(t))G (t)R* (£)6] (t)Ty () -
J

<ZP (8| 1, (D), S(t)>Gp(t)R; (t)a] (t) (ZP (8, |
J= v
T )T, () - (Z "8y 1T (£))T (t)GE(t)°
KL (2)G (t) (Z (B, | I (£)) T (t))— Q(t)
j=
where
’i‘E:‘J(t) = =TgF (£)F(t, 8y , 8,) - Flt, & , & )T} (¢) +
TE,;kJ(t)Gp(t)R;l(t)G;(t)T**(t) + Tpht (£)Gy (0K (t) -

P
’GT(t)T* (t) + Tef, ()G (t)R;* (£)G] (t) (2 (@pk]IE(t ) -

(‘t)) (kz " pklIE(t)T*(t)>GE(t)RE- (‘t)Gg(‘t) .

'T* (t) - Tph* (£)G; (t) R;l(t)G;(t)Tp*i*g (t) - (156)

B
(kz P (8, | T (t))TE;"k(t)}GE('t)IQl ()Gl (t) (ZP:" (85, |
=1 ' k=1

I (£)Tr (+)) - Q(t)
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where

Tyr (8) = -Ipt* (LIF(t, 8, 8, ) - Flt, 8, 8 ) T% () +

Tt (£){Gp ()G T (£)6] (£) + G (V)R (£)6] (£)}Tpk (¢) -
Q(t),s i=1, 2, eee, P2 (157)
k = 1, 2, LICI Y P
with boundary conditions

P (ty) = Tp%, (t,) = TE;J(t,) Tht (tp) = 8(t,).

The probability P, (8, | I, (t)) denotes the probability of the

parameter epj, denoting the best information: available by the
evader as to the best estimates of the true parameter values. The

probability P:(SEkIIE(t)) is the probability of the parameter B as

Ex
known by the evader. The evader uses his a priori infermation as to
the pursuer's parameter uncertainty in order to calculate the value.
The probability P;«epkllg(t)) is the probability of the parameter e,k
which coentains the knowledge the evader has as to the pursuer's knowl-
edge of the evader's uncertainty. The evader uses his a prieri knowl-

edge of the pursuer's knowledge of the evader's uncertainty in order to

calculate this value.

Proof: The proof follows frem Theorem 3.6 and the definition of the

conditional expectation over a discrete range.
Parameter Estimation

The expected value operators GJ%EF%(t){.} and ep?esllg(t){.} will

be discussed. The expected value operators may be written as
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[t}

B, 0 le(t){°} L(')P‘(@p,@z |1, (t))a 6, ag

(158)

ep}?e;[ I ()i} L"w(@p,@s | I, (£))d 8, a8

where D denotes the domain of the parameters. It is assumed that the
parameters B, and f; are independent. Thus , Equation:(158) may be

rewritten as

0B, |1, ()l - L(-)p(e,,lxl,(w)p(eE |1, (t))as, as,

(159)

ep%E L, (t){»} J;)(-)p(eplIE (t))p(8 [T (£))a 8, a6 .

A result will be given for the probability density functions P(@pLR)

where & = (x(7), T¢[t0, t]).

At this point, an assumption that need not be made for the problem in
Chapter IV will be made. This is that the time interval over which the
game is played, i.e., [tQ, t,] is partitioned into a finite number of

time intervals
part(te, t;] = to = 1 < tz2 < «eo < t; < t,.

It is assumed that the control strategies previously found are con-
tinuously applied to the system but that adaption for learning the
unknewn parameters occurs at the time t,. That is, the conditional
probability density functions are updated at times t3, tz, see, tps The
updated density functioens are then used over the next interval to com-
pute the control strategies. Thus, the probability density functions

k k k
may be written as p(@blfx(i)}i=ﬁ and p(8 {x(i)]1=1) where {x(i)};oy

denotes the ordered sequence of states at the kth time instant for
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updating, The use of the nomenclature O, will be made in order to
denote the ordered sequence {x(i)}:=1o

The objective is to find the conditional density function P(@IOn).
The system equation

dx(t)
dt

= F(t, By, 8 )x(t) + Gy (t)ult) + G (t)v(t) + w(t) (160)

may be solved and the solution given as (where i, i+ 1, represent the

corresponding sampling instant

£

i+1
x(i+1) = 8Giv1, 4, 8, 8)x(1) + [ S(i+1, 7, 8, 86 (Dulr) +
A |
Ge (T)v(T) + w(T)}ar. (161)

This may be rewritten as

~ i+1
x(1+1) = @(i+1, i, 8, B )x(i) + I ®(i+1, T, 6, GE){Gp(T)u(T) +

i
Ge (T)v(T)}ar + w(i) (162)
where
wi) = [TMaGen, 1, 8, 8ow(nan. (163)
C%

The variance of w(i) is given as Vg (i+ 1) where
i+l fe .
Vi (i+1) =I B(i+1, T, B, 8 )W(T)E (i+1),
i

Ty Bp, B )drT (164)

and W(T) is the variance of w(T). It may be shown that V3 is~the
. . . . t
solution to the following matrix differential equation at the (1+1)S

sampling time, i.e.,
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Vo = F ¥ +V{ FT o+ W (165)

!
(@]

Vj(fi)

One may note that V5 is a function of 6, and 6.

The conditional expectation is dependent upon knowledge of the
conditional probability density functien P(elOn;ij' where Op.1 denotes
the ordered sequence {x(i)}?;;. The conditional probability density
function will now be developed.

Lemma 1.,1: A sequential equation for the evaluation of the above

probability density function is given as

p(8]0,-1 )p(x(n)|x(n-1), uln-1), v(n-1), 8)
p(8loy) = (166)

Ij;i(elon.,l)(p(x(n)lx(n—i), u(n-1), v(n-1), 6) d9
R

Proof: Application of Baye's Rule

fhe probability density functien p(x(n)lx(n—l), u(n-1), vi(n-1), 8)
is Gaussian with mean , = ®(n, n-1, 9x(n-1) + E;(n—i)u(n—l) + o
G (n-1)v(n-1) and variance Vg (i).

At the initial stage, the probability density functien P(elx(O))

may be written as

p(8|xks)) = p(8)

where P(8) is the a priori probability density functien for the parame-
ter 8.
Since the density function p(x(n), x(n-1), ii(n-1), v(n-1), 8) is

Gaussian, it may be written as
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p(x(n)|x(n-1), u(n-1), v(n-1), 8) =

1

exp{t(x(n) - p, )T (V5 (1[0 (x(n) -y, )] (167)

/(o | v (a]9)]

where the nomenclature V;Khl@) includes the pessibility that the vari-
ance may be a function of 8§ and, thus, must be conditioned upon 8. This
allows one to write the required density functien as the following
sequential equation:

exp{v%Q(nle)}P(@|0n_l)
p(8]o,) = .

femo)| [ ——— exo{-#an|0)}p(6]0s1) a8
Y VYvscale)) (168)

If it is known that the range of § is discrete where N denotes the
total number of values of 8 in the range, then the a prieri probability

density may be written as

g N
B(0) = ) B(8,) 8(5 - 8,). (169)
i=1

The a posteriori probability for each parameter in the range of 8 may be

written as

exp{-#Q(n|8)}P_ (8,0, 1)
N
,/| I }: R exp{—%ﬁ(n|94)}P,(94Ion_l)

v, (nl8,)
V5 (n]8;) |

P, (8, ]0,) =

=1 (170)

where the initial prebability is P (8,), i = 1, ..., N.

In order to relate the mathematics to a physical process at this
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point, one may consider the preblem of precision peinting and tracking
(6).

One of the quantities required to track a target is the target's
acceleration. It has been suggested by Singer (89) that an appropriate

model for acceleration in a tracking filter would be given by

é:%a+w (171)

where w is a white noise input. If the target were maneuvering rapidly
the time constant, T,, would be very large indicating little correlation
from time instant to time instant. If the target was unaware, then it
would be very small indicating a large cerrelation frem time instant to
time instant. Thus, one might choose an appropriate quantization for 8
and apply the abpve equations in erder to adapt upon the correct value
for -1—.

-]

As the adaptation preceeds, the prebability corresponding toe the
correct value of the parameter will converge to oene while the remaining
probabilities will converge to zero.

Onie may notice that the computatien of the mean is given by an
expression necessitating knowledge of the oppenent's centrel. Each
rlayer must use the information sets to obtain their eppenent's control
strategies. These will, in general, be in error since each player has
uncertainty as to their opponent's optimal strategies since he does not
have knowledge of the game dynamics and uncertain knowledge of the
opponent's information. This type of preblem has arisen in preceding
papers by Ho et al. and Rhodes in the treatment of the imperfect
measurement game. If the oppenent's control is in error, then one

would expect the estimator te be biased.
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Example

The following example problem will be considered. The system

dynamics are given as

X = B;x + au + bv + cw (172)
where
B; is a ‘system eigenvalue perfectly known by the pursuer
but unknown by the evader
w is white noise, zero mean and unity variance.

The performance index is given as

J = E{stxg(tf) + % r’(rpuz + rgv?)atl. (173)
to

The system parameters are

91’ = -2,0 rg = 2
b = 1.0 s = 10
c = 2,0 ty = 2.5 secs.
x(0) = 5.0

Each player must find his measurement security, system security,
opponent security strategy.
The evader has an initial probability function for his best guess
of the system eigenvalue of [1, 5, -2.0} where each element has
e 1 ‘
probability 33

The strategy the pursuer plays is

u(t) =-;f'F5(t)x(t) (175)
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where
L4 2 bz
P (t) = -28;P, (t) + {%{ + E}Pf‘ (t). (176)

The strategy the evader plays is

vu)=-£4:ipgeﬁthwgt,en>xu) (177)
. i=1
where
. 2
P (t) = -28, P (t) + 2"’; P, (£)Ty, (£) +
2b2 % a®
. P, (t) C.ler(ej |0a-1 )P, (t)> - 3, (t) -
J:
;:C,u Pr(eﬂlon—l)st(t)> (178)
J:l
and
@ 2 2
B, (6) = 2647, (¢) + {%; g, o) (179)
with

P, (ty) = PEi(t,) = Ty, (ty) = s.

. .t cs
The probability of the i h parameter conditioned upon the measurement

seguence is given as

' exP{—Vzé(nlie))}Pr (8, |Onoy )

P, (8, ]0,) = s : _ — (180)
J/lvﬁ(h’éi) }j - r exp{;%Q(ﬁled)}P;(ejlOn_l)
Jj=1 JlVﬁ(nleJ)‘
where ‘
Qn[8;) = (x(n) - u,, VW (-1 Gxln) - g, ) (181)
i

and
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H%i =@(i+1,i,6ﬂuhgli+ Lhﬁ@(i+1,T,&){mﬂT)+
bv('r)}d'r (182)
-0y {tygeq =T
5(i+1, T, ei) - e i{ 1¥1 T].

The evader uses his control v(i) to.calculate My - However, he does
ny
not have knowledge of u(i). Thus, he must use his best knowledge of the
controel that the pursuer will use in the equatien for My, °
i
In this example, it is assumed that the evader updates his parame-
ter values at a rate of ten per secend.
A .th s
The probability of the i parameter conditiened on the measurement

update sequence may be found from Equation (170) with the required mean

uxni found from

" ji+1§(i+1, i, gy ){au(r) +

i

“xnj = 8(i+1, i, 8 )y,

n;ig
bv (T)}dT (183)

and

'ei{tiil' 7!

®(i+1, 1, 8,) = e (18L4)

The evader uses his control v(i) to calculate ux“i. Hoewever, he does
not have knowledge of u(i). Thus, he must use his best knowledge of the
control that the pursuer will use in the equation for pr(x,On).

The results by using the contributions of this research are com-
pared with the results for differential games follewing the derivations
of references (56), (58), and (60). The resulting equatiens for the

evader's control strategies using this derivation method may be easily

found to be
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b
vit) = - 2 (5:1 P, (8, |0, )% (¢, 8)) x(¢) (185)
where

- _ aE b2

Pl;'k f.'zeiPE* + (‘;_—p- + —rE> PE"“e . (186)

The average perfermance index (average over 30 runs) using the
results of this research was =-0.02990. The average performance index
(average over 30 runs) using the above results was -0.08864. Thus, the
pursuer was able to gain in cost when the evader used the suboptimal
strategies as based on the equations for the evader's control found by
strategies derived by using the method of Lainiotis. The strategies

based on the work of this research give superior performance.



CHAPTER IV

SYSTEM UNCERTAINTY AND IMPERFECT

INFORMATION GAME

Introduction

In this chapter, the problem of differential games under uncertain-
ty in the system matrix and imperfect measurements is solved. As in
Chapter I1I, the system matrix for the game is parameterized by elements
of a time invariant parameter vector §. The parameter vector 8§ may be
partitioned into two subvectors ep and 6 where eﬁ is known to the pur-
suer but unknown to the evader and where GE is known te the evader but
unknown to the pursuer. Each playef has a measurement subsystem that
takes imperfect measurements of the state of the game. The measurement
equation is a linear transformation of the state plus additive noise.
The strategies found in this chapter are measurement security strate-
gies. That is, each player assumes that his opponent has a measurement
subsystem that is capable of taking perfect measurements eof the state of
the game., The assumption that the parameters be updated at discrete
instants of time may be weakened such that adaptation occurs continu-
ously. A sufficiency condition is developed and used to solve for the
strategies for the linear quadratic problem. It is shown that for the
open-loop feedback strategies the contrel and estimation separate. The
strategies for the linear quadratic problem include the equations

developed in Chapter III in order to calculate the necessary control
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gains and equations in order to obtain the conditienal mean of the state
estimate. The conditional mean may be generated by use of Bucy's
Representation Theorem and Lainietis' partition theorem.
The contributions of this chapter are as follows:
(a) Extension of the sufficiency condition developed in
Chapter III to include the measurement functional.
(b) Solution to the linear quadratic game under uncertainty
and imperfect informatien.
(¢c) The open-loop feedback strategies for the stechastic

control with imperfect informatien and uncertainty may
be found by constraining the evader's controel to be zero.
The solution extends these in (56), (58), and (60). The

results may be found in Appendix C.

Statement of the Problem

The dynamical equations representing the system models of each
player are assumed to be adequately represented by the following dif-

ferential equation:

ax(t)
dt

= F(t, B,, 8 )x(t) +Gy(t)ult) + G (£)v(t) +w(t) (1)

where the subscripts p and E denote the pursuer and the evader,

respectively. The variables in Equation (1) are defined as follows:

x(t)eR* is a vector denoting the state of the game at time t,

u(t)eU where UcR'1is a vector denoting the contrel variables
of the pursuer at time t,

v(t)eV where VCR"'2 is a vector denoting the centrel variables

of the evader at time t,
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F(t, 6,, 6;) is ann Xnmatrix parameterized by 9; and @
with continuous and bounded elements,

epeRPl is a time invariant parameter vector known to the
pursuer but unknown to the evader,

GEGR?z is a time invariant parameter vector known to the
evader but unknown to the pursuer,

w(t)eR" is a vector of white noise inputs corrupting the

system model, assumed Gaussian with known statistics

Efw(t)} =0
' (2)
Efw(t)wT (1)} = w(t)g(t~1)

Gy, (t) is a nXm control gain matrix for the pursuer,
G, (t) is a nXmg control gain matrix for the evader.

The initial conditions are assumed to be non-Gaussian with a priori

probability density p, (x(to)lep, 8 )- This probability density func=
o

tion is assumed known to both players prior to the start of the game.

Each player has access to certain observations or measurements of

the state of the game. These measurements are taken to be linear trans—

formations of the state of the game plus additive measurement noise.

The measurement equation available to the pursuer is

v (t) = Hy (£)x(t) +mp (t) (3)

q
yp(t)eR1 is a vector of measurements made by the pursuer

of the pursuer's state,
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Hp(t) is a q, Xn measurement matrix with continuous and
bounded elements,

np(t)eRFI is a vector of white noise inputs corrupting the
measurement model, assumed Gaussian with.known

statistics

Efn, (£)} = 0
(L&)
E{m, (t)np (1)} = Ny (£)§(t = 7).
The measurement equation available td the evader is
ve (t) = H ()x(t) +m, (t) (5)

where
"
yE(t)eR is a vector of measurements made by the pursuer
of the pursuer’'s state,
H (t) is a q, X n measurement matrix with continuous
and bounded elements,
q
ﬂE(t)eR ® is a vector of white noise inputs corrupting
the measurement model, assumed Gaussian with

known statistics

Efn, (£)} = 0
(6)
E{n, (tIns (T)} = N, (£)§(t ).

Each player has access to certain information sets that he uses to
solve for his strategies. The sets contain the a priori information as

to the uncertain parameter sets, any a priori information thathe has as to his
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opponent’s uncertainty, the measurement‘functional, and implicit in the
information set is the assumption that the player's opponent has perfect
measurements of the state of the game. The inforﬁation set of the pur-
suer at time t is denoted by Ip(t). Similarly, the information set of
the evader at time t is denoted by I. (t). For every time telt,, t;)

the information sets I, (t) and I (t) of the pursuer and the evader,

respectively, are

I, (t) pxo(x(to)lep, eE)UpeE(eg)Uepu .

(7)
b (8)Up: (&, WU, (1), Telty, t])

R 6.
and
I (£) = py_(x(to) |8y eg>upe;<ep)uegu~
P55, (8 Uy (8, U (1), 7ol t])
where

Py (x(to)lep, B: ) is the a priori probability density function
®

for the initial conditions,

pe;(eé) is the probability density function repre-
senting the a priori information known by
the pursuer about the unknown parameter
vector eg,

pe;(eé) is the prébability denéity function repre-

senting the a priori information known by
the evader about the unknown parameter

vector §,,



Pe g (8,)

p]aeE (8 )

P o (8 )
E

Pry (8, )

(v, (1) y7€[te ,t])

(}’E (7) ,Te[to ,t})
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is the parameter vector known by the
pursuer,

is the parameter vector known by the
evader,

is the probébility density function
representing any knowledge the pursuer
may have about the knowledge the evader

possesses as to the parameter vector ep,

~is the probability density function rep-

resenting any knowledge the evader may
have about the knoewledge the pursuer
possesses as to the parameter vector GE,
is the probability density functien rep-
resenting any knowledge the pursuer has
about the evader's knowledge of the pur-
suer's uncertainty of the parameter vector @E,
is the probability density function repre-
senting any knewledge the evader has about
the pursueris knowledge of the evader's
uncertainty of the parameter vector @p,
is the infinite dimensional measurement
functional of the pursuer,

is the infinite dimensional measurement

functional of the evader.

The dynamics and the information structure of the game is given by

Equations (1) and (7).

It is assumed that the goals of each player are
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adequately incorporated in the scalar functional known as the perfor-
mance index, i.e.,

t

3 = B{fad (£,)8(e)x(t,) + % [ (D)Q(e)x(t) +

to
(8)

u” ()R, (t)ult) + v7 (£)R; (t)v(t))dt}

where E{-} denotes the expectation over all random processes under the
bracket and where

S(t%) is a positive semi-definite, symmetric matrix,

Q(t) is a positive semi-definite, symmetric matrix,

R;(t) is a positive definite, symmetric matrix,

Rg(t) is a negative definite, symmetric?matrix.
Thus, the performance index in Equation (8) is a functional mapping

the state space and control space into the reals, i.e.,
n. ) e
J:R XUXV - R (9)

Each player musf choose closed~loop control laws as was previously
explained. Thus, the pursuer muét at each time teEtotf) find the func-
tion mapping the information set available to him at time t into the
admissible control set such that the performance index is minimized,

i.e.,
w1, ()} % [ts, t] = UCR". (10)

Similarly, the evader must at each time te[to, tf) find the function
mapping the information set available to him at time t into the admis~

sible control set such that the performance index is maximized, i.e.,

v il (£)} X [t,, t]= VCR'2. (11)
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The control strategies u* and v* are assumed to be the minimiiing and
maximizing control strategies, respectively. The set of admissible
controls ﬁ is assumed to be a subset of L,{I, R''} where I = [tes to1s
and the set of admissible controls V is assumed to be a subset of
Le{I, R'2} where I = [t,, t,].

Each player wishes to choose hig control strategies such that the

following inequalities are satisfied

E{J(u*, v*) 'Ip} < E{J(u, v*) 'Ip}
(12)
E{J(u*, v) | L.} < B{J(u*, v) | 1. }.

These inequalities were discussed in Chapter III.
A sufficiency condition based upon the results obtained in Chapter

IIT will be shown now.
Sufficiency Condition

Theorem 4.1: It is sufficient that there exists two scalar functions

Vy, and Vi where

R" x [ty, t] (13)

v, (x(t), t)
and

v, (x(t), t)

R" x [ty, t] (14)

in order to solve for the closed=loop optimal strategies u* and v*.
The functions V, and V; are twice continuously differentiable in x(t)
and continuously differentiable in t. The functions are defined as
the solutions to the following equations

Wy
5t

L; = +3%V;-+Q(x(t), ult), v¥(t), t) (15)
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Ve |
L o= + % Ve +Glx(t), ur(t), v(t), t) (16)

where the differential generators are as shown in Equations (50) and (51)

of Chapter III and
1% 13, T Tl 1%, |+ lxl? 1y, [<ecaslx]®

[Ve TV sl v, ol «fl2 v l<eCae[x]2)

The boundary conditions for the above equations are

Vo (x(tg), t,) = V, (x(t,), £,) = G(x(t,), t,). (17)
The functions L, and L are such that

323 EfL, (x(t), u(t), v*(t), 8, €)1, ()} = 0 (18)
and

voy ElLe (x(), w7 (), v(t), 8, t)|1, (0} = o. (19)

Proof: The proof follows from Theorem 1 of Chapter III where the

information sets have been redefined as in Equation (7) of this chapter.
Linear Quadratic Problem

The following lemma will be used to solve the problem outlined in
the previous section.

Definition: A statistic g(t, ¥Y(t)) a function of the data
(¥(t) = (Yi(T), re[ty,, t]), i=P, E) at time t will be called equivalent
to the distribution p(AiY(t)) if the distribution depends on the data

only through g[t, ¥Y(t)], that is

p(al¥(t)) = p(a]glt, ¥(¢)]). (20)
The‘above definition denotes that if there exists statistics(sufficient

statistics) satisfying the above conditions, then the distribution may
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be replaced by these statistics.

Lemma &4.1: The conditional mean Q(t‘e) and the distribution p(e[Y)
are statistics which are equivalent to the distribution p(x(t)l Y(t))
for the system as defined in Equation (1).

Proof: The use of Bayes rule allows one to write p(x(t) 'Y(t)) as
p(x(t) | Y(¢)) = p(x(t) | ¥(t), ®)p(8]V). (21)

For the linear problem ynder consideration it is well known that the

statistic Q(tle) where Q(t[e) is the expected value of x(t) conditioned
on Y(t) and 6 is equivalent to P(x(t)[Y(t), ). This is the conditional
mean generated by the Kalman filter which is valid if,§ is known. Thus,

p(x(t)'Y(t)) may be written as
p(x(t) |¥(£)) = p(x(t) |x(t]0), p(a]1)). (22)

A
Lemma 42: Let x be a random variable with mean x and variance P.

Then,
: A A
E{xTQx} = x'Qx + trQP . (23)
Proof: One may write
4 A T‘ A A
E{xTQx} = E{ (x=x) Q(x= x)} + E{xTQx} +
' ' (24)

E{XTQ£}==E{£TQ£}.

Since

A
E{X} = X,
this may be rewritten as

EfxTQx} = Ef (x= %) Q(x= %)} + X7 k. (25)
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Also,

(x=-%)"Qx=%) = tr {x=-%"Qx=%]

i

, (26)
= tr {Q(x-:ﬁ)(x-:?)"'}.
One may take the expectatién and obtain
A ; A A A;
E{ (x-x) Q(x-x)} = E{tr [Q(x-x)(x-x)" ]} (27)
A A ;
= tr {QE{(x~x)(x=-x)"1}}
= tr QP.
Thus,
E{xTQx} = xTQx + tr QP. (28)

The problem outlined in the previous section will now be solved.

Theorem 4.2: The measurement security, system security, oppoﬁent
security, strategies u* and v* for the pursuer and the evader, respec~
tively, for the system defined in Equation (1), the cost in Equation (8),
the measurement subsystems in Equations (3) and (5), and the information

structure as in Equation (7) are given as

-5 (e)ay(t) E [P ()} E [R(¢]8)]

u*(t) =
Bps O lI?(’t).‘eE I‘I?('t)
: (29)
ve(t) = -1 (t)g (t) E {P (£)} E. fx(t)]6,)}

Bp 28 | Te ¢y Bp | Le ¢y

where Pp(t) and P; () are given as the solutions to Equations (94),

(95), (96), and (97) of Chapter III. The conditional mean denoting the
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best estimate of the state of the game given the measurement functional

is given as

and

%(t) = E {x(t)g)} (30)
8 115 1)

% () = B [X(t]8,)) (31)
en]IE(t)

A .
where x(t)ei), i=P, E is the mean conditioned upon both the measurement

functional and 91.

Proof: The Hamilton=Jacobi eguations may be written as

min aV? BVg ‘ ‘

agU {57+ 57 [F(t, 8y, 8 )x(t) + 6y (B)ult) +

Gg(t)v*(t)] + (xT (t)Q(t)x(t) + uT (£)R, (t)ult) + (32)
%7 ) * 1 s 3 aayp I

VTR (v () 4 BT % sos=m [, ()] = 0

where m ; = {W(t)}ii

and

dvy
ox

max
vev

oV,
E{?ﬁ; + [F(t, O s eE)X(t)4'Gp(t)u*(t) +

Ge (£)v(£) ]+ BT (£)Q(0)x(1) + urT ()R (B)u*(t) + (33)

RV,
Bxi aXJ

vT(£)R (£)v(t)) + 14 ;§1J§1' m, | (£)} = 0.

These equations may be rewritten as



and

where

v, V] J
% 3¢ [F(t, By, 6 )x(t)+Gy(tIult) +

min
uegU [

Ge (£)v=(£) ]+ %(xT (£)Q(£)x(t) + uT (£)R; (t)ult) +

A
V* ('t)RE (t)V*(t)) +1/2 1§ ng Bx@xd

.
A

%t x [F(t, 8, 6 )x(t)+G (thu*(t) +

max
veV E{

G (£)v(£) T+ B(xT (£)Q(t)x(t) +u* (IR, (t)u*(t) +

£V

VDR (v(t) +% F F m;JIYEm, L (£) -4 (0)) =

1=1)=1 aﬁa

Y, (t) = (3, (1), #elty, t))

% (1) = (3, (1), relty, t))-

The use of Lemmak.l allows one to write the equations as

and

3V, Vi | |
STt S0 (e, 80 8 )x(t) + G (tult) «

min
uegUu {

G (£)v*(£) T+ H(xT (£)Q(£)x(t) + uT ()R, (t)ult) +

82V
VAT (£)R, (£)v* (1)) + % R mulxp(tleE , P8 1),

L () =%, ()]} =

3V av)

max + Sx [F(t’ eps GE )x(t)+qp(t)u*(t) +

vev E at

mes 5 (0), L) -y (0]} =

104

(34)

(35)

(36)

(37)
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G (t)v(t)] + %(x" (£)Q(t)x(t) +u*T(t)Rp(t)u*(t) +

3y |
VOR @v(e) <k 5 E 3{8%:7 myy % (6160, p(g %), (38)

I (t) - Y. (¢)} = o.
Minimization and maximization yields

u*(t)

1 ; S B
~R5L (0)6; (£) B{z— | x;(t]8), (& |Y,),
1,;(t).,Y,,(t)} (39)

v(t)

~EL (£)6 (¢) E{ | % (t]a), plo,|¥),
T (t) =¥ (t)}.
For convenience the following nomenclature will be used

= {x (t]8), P(g |¥,), I,(¢) =1, (¢)]

: (40)
= {x (t]8,), P(§|Y,), I, () - ¥ (£)]
Thus, the equations may be written as
min O Ve av—,,T X i
weu E050 [F(t, 8, 8 )x(t) -6, (£)R;* (t) G (t) -
M, . T oy
e | Ap}—‘GE(t) R; (t)GE(t)E{—gx— | A} + (41)

v' T
B(xT (£)Q(£)x(t) + Bl |4, Ja, ()RS (£)G] ()

v, v, T v,
-E{--— | 3Bl | A e (R (£) G (£)Ef—=— — | A 3+
PV

n

% Z

(=1 JZHBX Xy

P

miilAﬁ} =0
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IR A S ,
vev EUsp © 5 [Pty 8y, 8 )x(t) = G ()R (£)6] (¢)
oV dV

E

cBf |41 - 6 (0 (06 (6)B{5— A, +

v’ IV

KT (£)Q(4)x(t) + E{——|a, Ja, (0K ()6 (£)E{-—]a,} -

v Y,
- Bl A b6 (O (O (DE{z[4 ) +
n n ang

%X

(=1 5§1 dx, Oxy

milJ'AE} =0 .

The Hamilton-Jacobi equations may be rewritten as

3% VT . )
B{sy + _axl [Fx,(t) - Gy Ry GpEf5—[a} -

By,

GERE”%:E{“g;IAE}] + h(x, (£)Qx, (£) + tr QB +

av,” LA av,’
E{—é;lAp}G.pR;leE{“T-lAp} - E{_—a;lAE tg R

X

n *V,
T .
. G-EE{_—IAE}) + % 1’21

= T g il =0

and
o, v LT A
E{—gt— S [Fxr(t) = Gy Ry GDE{‘E;"A,,} -

dY,

G R GIE{54c 1] + (T (t)ak (¢) + tr QP

3,7 A 3T
E{ 3% IAP}GpRglG;E{_é;'IA‘P} + E{_a;"lAE}GE

2
3" ¥

1.7 BVE } ; n n ' ‘}
* R GEE{—a;_lAE ) + /2151 JEl 3x; 9%, mi.‘l'AE =0

106

(L2)

(43)

(4lh)
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where

x (t) = E {x,(t]g)]
Be | ¥
(45)
A A '
x (t) = B {x (t|g)].
6l %

The solution to the Hamilton=Jacobi equations will be taken in the form

v,(t) =% E {x7(t]g)Ie, (1) E {x,(t]e )] +4, (¢)
eg Yp eE Y‘P
' (46)
Ve(t) =% E ‘{;:ET(t[ep)}Pg(t) E ,{;ﬁg(t]e,)}ﬂup.g'(t).
& | Y; Op | Y
This yields the optimal open-—loop feedback strategies
wt(t) = -1 (1) B (P ()} E (% (t]e)]
ep’eE‘Ip(t) 6 [ Yp
(47)

vi(t) = ~R:I () (t) E (P ()} E {x (t]g,)].
Bp 6 | I () Bp | ¥

In a similar manner as in Chapter III, the above Hamilton-Jacobi equatiehs
will be coupled. Thus, each player will make the assumption that his opponent
has a measurement subsystem that takes perfeéct measurements and that
his opponent is playing the security strategies as outlined in the
statement of the theorem. Since each player does not have a measurement
subsystem taking perfect measurements, he uses his best estimate of the
state as his best knowledge of his opponeﬁt's measurements. One may use
the assumption and the assumed solutéon form into the Hamilton—Jaéobi
equations as in Chapter III. The equations may be placed into the

following form.
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The Hamilton-Jacobi equations may be rewritten as follows with the
above assumptions

A dP, (t) ,
E{¥ag, (t) (—s7— + P (£)F(t, 8, 8) +

F(t, 8, 8 )P, (t) +Q(t) = P, (£)G, (1IR3 (£) & (¢) (48)

E &P,(t)}q E {Pp(t)}Gx;(t)R;I(t)G;(t)Pp(t) -
Bp 26 IIp(t) ep7eE'Ip(t)

P, (£)G ()R (OF (t) E [P ()} =
6518 ITe o)

E ﬁpE(t)}eg(t)ngl(t)qg(t)pp(t) + B P, (£)1G (t)
ep1eE IE(t) ep1eE Ip(t)

1) (¢) E {P,(8)} + E [P, (£)}G (£)R (¢)
808 [Tocey & 18 1Te (1)

6. T(t) E fP (£))x, (t) + tr QP + A (t) +
ep’eelIE(t)

n

n
% ¥ T Py my}=0

1=1 J=1 i
and
\ aPE'(t)
E{lax. T (t) (*“SE“— + P (t)F(t, By, ) +
F(t, 8,, &)7P, (t) =P ()G, (DRI ()G (+) E {P, ()} =  (49)

ep’eE Ipcey

E ,ﬁPp(t)}G.;(t)R;I(t)G};(t)PE-(t) - P, (£)G ()R (t)
Gp 595 I-p(t)

G (t) E [P (1)}~ B {P, (£)}6 ()R (£)G ()P, (t) +
epaeE]IE(t) epeE Ir (t)
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Qt)+ E P (t)}g (KR ()G (t) E fP(£)} +
818 T (o) 6p 48 1Ip ()

E (P ()} (WK () (1) E [p (0)Dx (¢) +
Bp 16 1Ig (1) B 18 ITe (1)

tr QP+ (t)+% T :51 P m s} =0,

Thus, the strategies consist of solving the same equations for the
cgontrol gains as in the perfect information problem except that the
expected values used are conditioned on the measurement functional and
not on the state trajectory. The best estimate of the state is used for
feedback. Thus, separation under the assumptions occur.

It may be established that the strategies for the imperfect infor-
mation problem are the same as the perfect information problem except
that the controller is cascaded with an estimator. Thus, one may use
the same equations as in the theorems of Chapter III for the control
gains. In order to eliminate redundancy, the equivalent theorems will
not be proved. The particular security strategy may be found by use of
the control gains for the particular security strategy in Chapter III
with a state estimator used for state feedback.

The type strategies considered in this chapter are measurement
security strategies. The subclass of measurement security strategies
considered in this chapter are both system security strategies and sys—
tem risk strategies. Since each player has uncertainty in the game
dynamics in general the error in the estimate of the game state is not
realizable by each player. It is recognized that in specific problems
where one player has no uncertainty as to the game dynamics the player

may be able to realize his opponent'’s error in his estimate of the game
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dynamics. In general, the player runs a very definite risk by use of a
measurement risk strategy. Therefore, the measurement security strat-

egy will give the player a conservative and more realistic strategy.

This may be easily seen since each player does not have perfect knowledge
of the game dynamics. Thus, he runs a risk of his state estimator not
performing adequately versus that of an optimal Kalman filter. Arny attempt
on his part to reconstruct his opponent's state estimator is extremely
nonconservative as this reconstructed estimator may be in general at best
inaccurate and be at worst totally erroneous. There are three basic rea-
sons, The players, in general, only have a probabilistic representation

of his opponents uncertainty and, thus, runs a risk because of this.

Each player must utilize his opponent's control law in both his estimator
and his oppenent's estimator. Since his estimator will be biased because
of an erroneous opponent's control law caused by his uncertainty, any
further uncertainty in his opponent's control law may be compounded by
trying to reconstruct his opponent's estimation error. Since he does not
have his opponent's measurement subsystem, he certainly cannot recon-

struct his measurement functional.

The required parameter and state estimation will be discussed.

Parameter and State Estimation

)
be discussed. The expected value operators may be written as in Equa-

The expected value operators E ‘{'} and E_- {'} will
P 8 18 1T 8, 8¢ [ Te (1)

tion (159) in Chapter III, i.e.,

E .
en’eEle(t){ J;( )p(e”es‘lp(t))depdes o

. |
B o8 [T, 4y [°) = j;(')p(ep,eElIE(t))depdGE.

As in Chapter II1I, the above equations may be rewritten as

ep,esklzlpm{'} ) fn (Ip(8y |1, ())& 1, (0)) aep as;
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o8 1y ) = [ omee, 1 (0)mCe | 3¢ (2)) a, at -
The probability density functiens for p(GIY) where Y is the measurement
functional (Y¢I) will be developed as in reference (57). This willallow
one to obtain the necessary equations for parameter adaptation.

Also to be discussed in this section is the estimator in erder to
obtain the best estimate of the state x(t). This estimate is necessary
since the measurement subsystems of each player de net necessarily ob-
serve each state component directly but through a linear transfermation
which is also driven by additive white noise.

Theorem 4.3: (Lainiotis Partition Theorem). The minimum variance

estimate of the state of the system

x(t) = F(t,8)x(t) + G(t)w(t) (52)
where
x(t) is an n-vector denoting the state of the system,
8 is an p-vector of unknown time-invariant parameters

with a priori proebability density b(e),
F(t, 8) is an nxn system matrix parameterized by 8,
w(t) is an m-vector of white noise inputs with zero mean
and variance,
E{w(t)wT (1)} = w(t)§(t-7) (53)

which is observed by the measurement process

y(t) = H(t)x(t) + n(t) | (54)
where
y(t) is an g-vector of measurements,
H(t) is an g X n measurement matrix,
n(t) is an q vector of white noise inputs with zero mean
and variance,
E{n(t)nT (1)} = R(t)8§(t-7) (55)

is given by

L(t]o,) = J.)Q(tlot, 8)p(6]0,)as
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where

Oy represents the measurement functional, i.e.,
0y = {y(m), melto, t)}

é(tlot, B) is the minimum variance estimate of the state
given the parameter vector 6 and the measurement
functional,

P(elot) is the probability density of the parameter vector
B conditioned on the measurement functional.

The conditional state error covariance matrix is given as
n(2) = [p(e]) + [R(t]0) - R(0)ILR(¢ [8) - £()T'p (8]0,) Jae

where
P(t‘e) is the error variance for the Kalman filter conditioned
on knowledge of §.

Proof: The minimum variance estimate x(t O ) may be written as
A
x(t|0s) = BEfx(t) |o1. (57)

The use of the smoothing properties of expectations allows one to

. A
write x(t]0y) as

x(t |oy)

il

E{E{x(t) |0y, 8} ]0s] (58)
5.

I£(t|0t, o) (8lo,)as

where

2(t]o,, 8) = Efx(t) |o,, 8} (59)
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which is the well known Kalman filter estimate of a linear system.

This will be discussed later. The probability density function p(elot)
is required. This will now be derived by use of Bucy's Representation
Theorem (Lemma A.1 in Appendix A).

One may apply Baye's rule to obtain

p (x(t), glo,)
p (x(t) |0y, @)

p(8]o,) = . (60)

Now, one may define a new state vector x, by augmenting the state
vector x with 8, i.e.,
x(t)
x,(t) = | - --|. (61)
8
Bucy's Representation Theorem (see Appendix A) may now be used to

obtain

Eof{exp Holxg(t)}p{x;(t)}

p(x (t)o0,) = . (62)
& l : E?t{exp Ho }
where pfx, (t)} = plx(¢) [6}p(8)
and
t 1 -
P =f x" (@)H* () B (0)y(0) do -
tO
t
% H(g) | |31 - do -
Jloll R (g)
(63)
t
=j X (H (PR (¥ (dg -
to
.

szt l(ox(0) [Ba(, do-

0



The Representation Theorem may be applied again to obtain

p (x(t)]oy, 8, i.e.,

p(x(t) [oe, 8) = p(x,(t)] 0¢, )

i

B texp H |x, (t)Ip{x(t)]
E?*{exp H° |0} .

Thus, Equation (60) may be rewritten as
0
E°t{exp I |6}p(6)
Ept{exp HO}

p(8 0,)

EP?{exp Hole}p(e)

jhoi{gxp HOIG}P(G)dG

where
(o] : th
Bt fexp 1 |6f = exp [ [, % (0lo_, 8 (0)&?(0) ¥(0)do
o o
t . .
- % [, 1l n@xclo, Iz,
Thus, i Vi
t. .
exp { r JAcT(o"OG, 8)H (o)R! (o)y(o)do) -
l._to

p(elot) =

- \ )
A RIEOHE o, e‘)”R-1<c§i"}p(9)

to

t
Jew [ [ % lo,, 91 (@) (0)y(0)do -
- t

o]

to

the required result.

.
%[ ECHE S)HER_I(G?G}}Q(G)dG
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Theorem 4,4: (Lainiotis Partition Theorem over a discrete parameter
range. )

If the parameters are defined over a discrete range, then the con-
ditional probability Pr(eilot) for every parameter index i is given as

t
exo { [ ¥ (olo, 8)mt (X (@)y(o)as -
lto

% fttl ln(o)x(olo, 8% ; (O;iG}Pr(GQ
(6]

P, (8, |0y) = (68)

Eem { | " Golo, 8K (0)y(0)do -
=

to

VZItHH(G)J%(o'Iog, e,d[];_.l(mdg}p(e;).

t

Proof: Theorem&4.3 is used with the following substitution and

performing the required integrations
n
p(B) = ngpr(ei)g(e- 8, ) - (69)

Lemma 4.5: (Kalman Filter)

The minimum variance estimate of the state of the system

x(t) = F(t, 8)x(t) + G(t)w(t) (70)
where
x(t) is an n-vector denoting the state of the system,
6 ig an P=vector of known, deterministic parameters,

F(t, B) is an nXn system matrix,
w(t) is an m-vector of white noise inputs with zero-mean

and variance
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E{w(t)w (1)} = Q(t)6(t =) (71)
which is observed by the measurement process
¥y(t) = H(t)x(t) + v(t) (72)

where
y(t) is an g=vector of measurements,
H(t) is an q X n measurement matrix,
v(t) is an g-vector of white noise inputs with zero mean and

variance
E{v(t)vT (1)} = R(t)-8(t=17) (73)
is given aé the solution to the Differential equation
x(t]g, 0y) = F(t, é):‘l&le, 0¢) + K(£)fy(t) - H(t)x(t]oy, 8)) (7k)

where

K(t) is given by

K(t) = P(£)HT (t)R 1 (¢) (75)
and
P(t) = F(£)P(t) + P(£)FT (t) = P(£)HT (£)R (£)H(£)P(t) + |
(76)
G(t)Q(t)GT (t)
where
P(t,) = P,
2(ty) = Efx(ty)]6}.
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Proof: This is the well known Kalman filter and the proof may be

found in several references (68) (52) (21).
Example

The example problem in Chapter III will be studied again except
that instead of the evader having a measurement subsystem capable of
obtaining perfect measurements of the system state, the measurement

subsystem is noisy, i.e.,
Yy =X +V (77)

where

v is white noise with zero mean and variance
cov(v) = 10.0 . (78)

The pursuer has perfect information of the state. Each player plays a
measurement security, system security, opponent security strategy. The
pursuer's strategy is as shown in Equations (175) and (176). in Chapter

Chapter III. The evader's strategy is

b 3 | . .3 A .
v = -—==( T P8 |0, )P, (t, 8,))C T P(8 [0, 1)x(t]8)) (79)
rE 1=2 1=1

where Pé(t, B;) is as in Equations (178) and (179), Pr(@;lon_l) may be
determined by using the Partition Theorem. The variable Jt(tle£ ) is' the
Kalman filter best estimate conditioned on the parameter 9;-

The results of the research are compared with the strategies ob-
tained by using the derivation method in the work in (58) (60) and

extended to the differential game, i.e.,
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v(t) = =2 (5 P8, [0p2 B (x, 6 )x(t]0,)) (80)
£ iI=

where P: is the solution to Equation (186) in Chapter III.

The performance index using the results of research yielded a
performance index average over 200 runs of 1.77 while .the results
using Equation (80) yielded an average of 1.47. The results of this
research lead to improved performance index.

Again, reference (60) did not claim optimal results. However,
again it leads to.an appealing engineering solution.

A typical optimal sample run is shown in Figures 1-4., In Figure 1
the state trajectory is plotted versus time. Figure 2 shows the
evader's control law and Figure 3 shows the pursuer's control law.
Figure 4 contains a plot of the parameter probabilities versus time.

One may note that the adaptation takes place in ~0.5 sec.
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CHAPTER V

APPLICATIONS

Introeduction

This chapter will address itself to the use of the methodology of
solution for differential games under uncertainty to investigate an
area of proven and potential application. The area is that of target
interception. The uses of target interception theory include that of
missile guidance, air-to-air combat with aircraft, and the uncooperative
interception of vehicles in space. The problem of precision poeinting
of a laser beam while tracking a target might be considered that of
target interception. In the previous problems, it is necessary to find
control laws for a vehicle to insure that the vehicle will be as close
as possible to the target at some time. In the pointing and tracking
problem, one needs to find control laws for the pointing and tracking
control system to insure that the beam illuminates the specified point
on the accelerating target for a length of time.

In the development of guidance laws for target intercept as above,
one is faced with the fact that if the models of the interceptor and
the target were depicted as the full six degree of freedom equations,
then the equations would be boeth extremely difficult te work with and
it would be impossible te find feedback forms for the guidance laws.

Thus, in the past, very simple engagement models were used in order to
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depict the kinematics of the intercep%or—target geometry. Several
references for this area are (1), (2), (39), (25), and (31).

In the engagement models, it was assumed, except for reference (25),
that the interceptor control acceleration did not lag behind the com-
manded acceleration. This is, of course, erroneous due to the fact that
one has lags due to computation time, actuator lags, vehicle responsive-
ness, and smoothing time of measurements of the target motion. In the
development of new intercept laws in this chapter, the following assump-
tions will be made. First, the contrel acceleration lags the commanded
acceleration by a first-order lag. This applies to both interceptor
and target. Secondly, neither player knows the time constants of the
lags associated with his opponent. Thirdly, it is assumed that each
player has a direct measurement of the relative range vector and
velocity vector corrupted with neise, It will also be assumed that the
pertinent dynamics of the two vehicles be described by linear equations.
The interceptor will play measurement security, system security, oppo-
nent security strategies, and the target will play measurement security,

system security, opponent security strategies.
Statement of the Problem

A general problem of interception will be stated and a solution
proposed in this section. In the next section, the results will be used
more explicitly in the examples. The states of the pursuer and the

evader are assumed to be described by the following differential equations

¥, (t) = Fy(t, §,)x(t) + G, (t)ult)
(1)

I

X (t) = Fo (t, 8 )x (t) + G (t)v(t)
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where the definitions of the variables are as in the previous chapters
and dim X, = dim Xg

The performance index is the terminal miss

&)l () = 3 (£)] 24, (2)

where the matrix A is of the form [I:0]. In order to limit the control
the following inequality constraints will be used (it is evident that

each player will use all control available to him -~ thus, the equality

will be used), i.e.,

Il
=]

t, ,
Jo, Nullg at -,
:, (3)

[, 11v]1z ac

The constraints may be adjoined to the performance index. Thus,

1}
o]

. tf
3= 2lls e = x e [ 2y o [ dlullz IV 12 et @)

Except for the consideration of the parameter sets ep and SE at this
point the problem formulation follows that of reference (20). A new

state vector will be defined, i.e.,
2(t, 8, 8) = ALB,(t,, t, 8)x, (t) =8, (t,, t, B )x (t)) (5)

where &, (t,, t, 8,) is the transition matrix for the pursuer's dynamics
and @E(tf, t, SE) is the tranéition matrix for the evader's dynamics.

It may be shown that the new state equations become

Z(t, 055 6 ) = Gp(ti 8,)ult) + G, (¢, & )v(t) (6)

where



126

Gy (t, 8,) = A% (t,,t, B,)G,(t)
(7)
G (t, 6 ) = =A% (t,, t, 6;)G (t)
and
Z(tg) = AL (ty, to, B )x,(td ~ & (t;, to, 8 )x (to)]} (8)

The performance index may be rewritten as

t )
= gl el ] il < ol e )

The pursuer has the information set

vIp(‘t) = peE (65 YU ep U‘Ypl .(T)s

(10)
TE(Et@$ t]) U (yEl(T)’ Tel:toa t])-
where Yp, s Ye, are linear measurements of x,(t) and x; (t) assumed
corrupted by additive neise.
The evader has the information set
I (t) = Py (GP)LJGElJ(y5é(T),
£ (11)
e ([0, tDUy (1), e [to, t]).
where Yp,» Ve, are a linear measurements of x,(t) and x, (t) assumed
corrupted by additive noise.
The Hamilton-Jacobi equations may be written as
oV, aV; - -
min E {=— + = (G (t, 8 )ult) + G (t, B )Iv(t)) +
P El p(t)
B(uT (£)R, (t)ult) + v¥T(£)R, (t)v*(t))} = 0 (12)
" max A | _ |
vevg E { Se 7;;'(Gp(t, BpJu(t) + G (t, B )v(t)) +
p’eslls(t)

B(uT (£)R, ()u*(t) + vT (£)R (t)v(t))]} = o. (13)



Extremization yields

— vy
wr(t) = -BT() . E (G (¢, 8)55)
B 61 Ip (1) -
| o
vi(t) = KM (t) B (G (¢, & )gz)
65y O L (t) '
or
uk(t) = -R51 (2)G, (t, 8,) ['az =}
BB IIE(t)
_ Ve
vi(t) = ~RN ()G (t, ) E {x7l .

ep,SE IE (t)y

The solution will be taken in the form

V,(t) =% E {z(t, 0,, 6)} B, (t) E {Z(t, 8,, )} +

O le O |~Ip

OB {2(t, 8, 6} R (t) B [z(t, 6, 8)) +

v, (t) =
B 1T, Op [Ie
A (t) .
Thus,
wt(t) = ~-K1(0G (¢, 8,) B (P ()} E {z(t, 8, )}
G Ip ey 15
vi(t) = ~R LG (t, 8) B {P. (D)} E {z(t,

9;,,95 IE ('c) Qp IE

The above may be rewritten as

8yr 8} -

ut(t) = ~E1(£)G, (t, 8,) E {P, (£)]Z (t)

BB 15+,
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(14)

(15)

(16)

(17)

(18)
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vi(t) = -1 (£)G (t, 6) E (P, (£)}Z (t)
ep,eg IEEt)

where

Z,(t) = B {z(t, 8,;-8))
eE|I$

(19)

Z(t) = B {2(t, 6, &)}
eDlIE

The Hamilton-Jacobi equations may be written as in Chapter IV. This
yields the following equations for the gains. The gains for the pursuer

are

3P, (t) _ _
st =B (16 (DK ()G (1) E (P (0}+ E {P ()]G (¢)
Gp,eg Ip ( t‘) ep,eg Ip(t)

- R3H(£) G (£)P, (t) + P ()G (£)R? ()G (0T, (£) + (20)

ST (DR ()G (0P, (£) = E (P ()]G, ()R (¢)

epseg Ip(t)

Gt) B IR, ()} - T, ()5, (0K ()G ()T, ()
Op10e Ipty

and

3T, (¢)
Tt

= T, (£) {6, (DK (0T, (6) + G (DR ()T (0T, (). (21)

The gains for the evader are

JP; (t) _ e _
—7 =P (UG (K ()G () E {P()}+ E [P ()]G (¢)
ep@E‘IE(t) B0k 1Tk (t)
TN (DG, (0P, (£) + P, (£)G, (DK (0T, ()T, (£) + (22)

T, ()G, (D) (DG, ()P, (£) = T, (DG, (DK ()G, (£)T, (¢) -
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E (P (t)]g (t)R;Ht)E;(t) E [P (1)}
9,,,65 I; (t) e'p'leE Ie ¢ty
and
AT, (t) _ _r _ ‘ _r
= = 5 ({6 (DF(£)6 (1) + & (DK ()G ()] (¢). (23)

The boundary conditions are

P, (t,) = B, (t,) = T,(t,) = al.

Interception Problem

The problem to be considered is an interception problem in space.
This problem was first treated by reference (20). However, the assump-
tion was made that the control acceleration equaled the commanded
acceleration. This:is not. true, in general,due to actuator’ lags
and engine lags. Thus, the assumption that the control acceleration
lags the commanded acceleration by a first order lag will be made. It
is assumed that each player is observing the relative range and the
relative velocities between the two vehicles. The state equations are

as follows

Fp =V
Vp- = 8y
ap = Fyay+u
. (24)
re = v
%E = ag



where
r,, i
vy, 1
a; , i
f,, 1
Foy i
It will be

= P, E,
= P, E,
=P, E,
= P, E,
= P, E,
assumed
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is the position vector of a body in three
dimensions,

is the velocity vector of a body in three
dimensions,

is the control acceleration,

is the gravitational force per unit mass,

is a diagonal matrix of time constants representfng
the first order lag model.

that f; ~ f; . That is, the positions in space are

near enough such that the differences between the two gravitational

forces are negligible.

3= 2] ry ) e, G| P8 [ M (GTus v v)ae

The performance index to be considered is

(25)

to

The state equations for the pursuer may be written in matrix form

as

where I is a 3 X 3 identity matrix and

(0] I Ty 0
= |0 O vy +1 0 | u (26)
0 (@] a, L.I
-1 0 0
A1
F, = 0 T o |. (27)
0 0 ~%,
b —l




The state equations for the evader may be written in matrix form as

o I re 0
= 0 0 Ve + (6] v
0o o ar I
where
-
-1,
/m O Y
t
-1,
Fp = 0 /Ts 0 .
0 0 Y,

The transition matrix for each player may be written as

8 (t, to) = exp{A, (t-1t5)]
and
8 (t, to) = exp{A; (t-1t5)}
where
0 1 0]
A, = o o I
o o ]
o 1 0]
AE'= o o I{ .
o 0 &

Thus, since

By (ty s to) = 8, (ty, t6)8, (t, )73
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(28)

(29)

(30)

(31)

(32)

(33)
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and
B, (tyy t) = & (t,, to)& (¢, t)? (34)
then
8 (t,, t) = exp{Ap(tfq-to)}exp{—Ap(te-to)}
(35)
8 (t,, t) = exp{A; (t, = t5) Jexp{-Ag (t - t5)}
or
& (t,, t) = exp{A (¢, - 1)}
(36)
§ (t,, t) = exp{A (t, -t)} .
Thus, the matrices necessary to solve the auxiliary problem are as
follows
A=1[1I?% 0] where I is a 3 X 3 identity matrix and O is a
3 X 6 null matrix, (37)
G, =[0] , G=[0], R =¢c', andR = ' .
o .
The transition matrix for the pursuer may be found as
I
exp{ApT}= 1 (38)
o)

where
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1 ‘ : |
- {exP(bll'T')"bll’T"'l} 0 0
11°
_ 1 }
Bl = 0] ) {exp(bze'r) - b22T-' 1 0]
bss .
0 0 =tofexp(b_7)=b -1}
byg © XPiDsg 33

(39)

f’"fexmbu T)=1} O 0

11 v
1
By 0 '.B—' {exp(bgg’T‘) - 1} 0] (40)
22
1
0 0 —— {exp(d 1)~ 1}
b3 33
.eXP bisT O o
B = O exp boaT 0 (&1)
o) 0 exp by T

t .. .
and the bii are the ii h element of Fp. The transition matrix for the

evader may be found as

, T
I I By
, _ £
exp AET = 0 I Bé

0 0 B

r

(42)

£ ’ ' .
where the B; matrices are of the same form as the B, matrices except

1

that the elements b;, are the iith element of F;.

The pseudo control gains E; and E; may be written as

Gy (ty, t) = By (£, t)

G (ty, t) = Bi(ty, t).

(43)
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The new pseudo state vector may be written as

z(t) =1 1 B] F-rp_ -1 1 B] ‘_r:
Vp Ve
2 a

=1, +V, +Bia, = 1g —vE' —BE1aE ‘ (L4lh)

i

£
(rp =rg) + (vy =vg) + (Byay = Bia ).
Thus, the control law for the pursuer is

u(t) = -c,B B {P(t)} E {z(¢)} (45)
Opse IIp(t) B |Yp

and the control law for the evader is

vit) = =cEB§T_ "B . {PE(t)} E {z(¢)} . (46)
Bpsbe lIs(t) B 1Y

The gain equations may be written as

3P,

T T
~— = P,Bic,By E{P }+E{P }Bic,B; P, +
9t P11 %p » P »

o eT 3 g7 ) T } L
P Bic,Bi T, + § Big By P, ~E{P,}Bic,B1 E{P,} -~ (47)
T
E
T, BicBi T,

where

T

T P ET
"aT = TE {BIC'PB:L +BICEB1 }TE (48)

and
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oP,

T T
T Bic, By E{P,} +E[P, a4 ¢ B Py +

T T :
PgBicgBr T, + T,BicyBy P —TpBlcherg - (49)

.
E{P, }B: c; B; E{P, ]

where

T, '
P T E ET
= = T,{Bic,B; +Bic By }T, (50)

ot
with boundary conditions

P, (t,) = P (t,) = T, (t,) = T,(t,) = al.

The gain equations may be rewritten as

3P,
o _
el PprEfpﬁ} +E{P,}D,P, +P D, T, +
(51)
Ty D; Py = E{P, JD B[Py } = T, D, T,
where
’T,
= - T, {D, +D, } T (52)
and
3P, .
5o = PeDE{P }+E{P, }D, P, +P,D, T, +
(53)
T,D,P, = T,D, T, = E{P, }D, E{P, }
where
3T, ,
57 = B0 + D, }T, (54%)
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with
(ty=t)  (t,~t) .
Tl{exp@ T )= T, -1}32 o 0
| (£,-t) (t,=t)
D, = 0 T2 {exp(~ )= -1 o (55)
2 T2 : :
C (k=) (tp-t) .
0 0 71 {expt T = - -1}
N —_ 1
and
(tp=t)  (t,~t)
T {exp(- )= -1 2 o0 0
(tp=t) (tp=t)
D, = 0 T fexp(- - i -1F 0 (56)
(t,-t) (t,-t)
) 0 71 {exp(- - )= ra— 1}

and boundary conditions
Po(t,) = P (t,) = Ty(ty) = T (t,) = al.

One may note that each player requires knowledge of the other
player®’s control acceleration. This may be obtained by obtaining an
estimate of the opponent's acceleration. Several references that treat
the problem include Asher (6), Singer (89), and Fitzgerald (35 (36).
Also, one needs knowledge of the time to go,lire;, ty=t.  This may be-
approximated by dividing the range by the range rate.

Thus, it is shown that the problem of differential games under
uncertainty does arise in a missile guidance problem.

The results shown in this chapter may be applied to a realistic

guidance problem.



CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

The problem of differential éames under uncertainty has been con=
sidered in this research. The state equations are assumed modeled. by
differential equations in which the equations are parameterized by a
time invariant parameter vector. The parameter vector contains elements
both known and unknown to each player. It has been shown that each
player's strategies depend on the information contained in his informa-
tion set. That is, the level of intelligence will dictate whether the
player has to play certain security strategies or risk strategies. The
types of strategies that may occur in differential games under uncer-
tainty and imperfect information are developed in several structure
definitions. Past work in differeﬁtial games with imperfect information
is shown to be imbedded in the stfucture definitions. The definitions
classify the type strategies .that may occur and, thus,iclassify the
type strategies found in this research. Also, one may use the definis’
tions to indicate future work necessary in differential games under
uncertainty.

An optimality condition has been developed and proved to be suf-
ficient for the general nonlinear dynamics problem. The condition uses
an expectation conditioned oﬁ an information set for each player. It
is shown that only a third player with an information set that contains

both the pursuer's and the evader's information sets can solve the game
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without including the assumption as to the type strategy that his
opponient will play. One may include this assumption in his information
set.

The linear, quadratic problem for both perfect and imperfect
measurements is treated and solved for the optimal open~loop feedback
strategies. A separation between control and state estimation occurs.
The stochastic control analog to this problem is solved and shown in
Appendix C. This extends previous work by several authors in that this
appendix gives the optimal open-loop feedback controls whereas the other
authors only have suboptimal controls.

An example problem of target intercept originally treated by refer-
ence (20) is extended and shown to fall within the theory developed in
this research. The optimal results are obtained.

One of the pertinent aspects of the solution to differential game
under uncertainty is that each player must adapt and learn the parame-
ters unknown to him. If he does not, then he stands to lose some aspect
of his goal.

There are seYeral areas to be explored in differential games under
uncertainty, i.e.,

(a) the problem of unknown parameters in the performance

index (may be solved by state augmentation if the
parameters are identifiable),

(b) extensions to non-zero sum differential games,

(c) treatment of the probiem whereby the parameters are

true~va#ying,

(a) finding(the dual control strategies

(1) optimal strategies



(e)

(£)

(g)

(h)
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(2) implementation schemes that are suboptimal,

study of the matrix differential equations for the
control gains to determine separability conditions,
determining for several classical differential game
problems the effect of an unknown parameter on the
location of various surfaces such as barriers,
application of the theory in order to gain insight into
several problem areas such as aircraft performance, and

study of the relative effect of parameter identifi-

ability on the solution results.
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Bucy's Representation Theorem

The following theorem is the basis for work in filtering theory.
The solution to the conditional probability density yields all informa-
tion necessary for the nonlinear estimation problem.

Lemma A.1: (Bucy's Representation Theorem (21)) Consider the

nonlinear system

dx= f(x, t)dt+o(x, t)ag(t) (1)
with
E{(B(t)-—B(to))(B(s)==B(to))T}-=J;min(t’S)Q(T)dT
0
and
x(ty) = ¢,
and where the system is observed through
dz = h(x, t)dt+ dv(t) (2)

where

. t

B{v(t)v ()} = [ R(s)as.
to

Suppose there exists on the interval (t,, t) a unique continuous sample
function Markov process x(t), a solution of Equation (1) having all
its joint probability distributions absolutely continuous with respect
to Lebesgue measure. Further, assume that

Efexp [' sup llh(x(s), s)l'irl(t==to)]} < =,
t) } s

s&(tpo,



Then the conditional distribution of x(t) given O; (where O, is the
minimal ¢ - field determined by z(s) for se(ty, t)) has a density
PQXIOt) which satisfies

Eot{expﬂgtx(t)}=wut(X)
P(X'lot) = =

Eot{e }

where
t t
H = =% f | In(x(s), s)l'z_lds4-f h' (x(s), s)R;1dz(s)
t : tg
and 4 (x) is the density function of x(t).

Proof: See reference (21).
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Solution of the Perfect Information Linear

Quadratic Differential Game

The solution to the linear quadratic differential game with perfect

information will be shown in this appendix. The system equationsg are
x(t) = F(t)x(t) + G, (t)u(t) + G, (t)v(t) (1)

where
xeR® is the state vector,
"
ueR.” is the pursuer's control vector,
B
veR is the evader's control vector.
The performance index is

t
I =% (68080 + % [, I (£)Q0E)x(E) +
0

(2)
uT (£)R; (t)u(t) + v7 (£)R (t)v(t)lat

where
Q and S are n X n symmetric, positive semi~definite matrices,
R, is am X m symmetric, positive definite matrix,
R, is a m, X m, symmetric, negative definite matrix.
The Hamilton-Jacobi equation may be written as
min max (V¥ QJVF. ' g
— + 0 [ Fx+ + G v] +
uelU vev {Bt ax[x Gu+ G ]
' , . (3)
Vz(xTQx+uTRpu+vTREv)} =0

Extremization over u and v yields
|

u(®) = <K (0] (1)L
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v(t) = K1 (£)6] (¢) avx(t‘) . (&)

Substitution of u and v into the Hamilton-Jacobi equation yields

oV OV -1.T QV* av*
3t ox [Fx -G, K" Gy ox GERE GT ] +
: , (5)
WA o1l A VAT pa o QU
Te(xT Qx + 5= pR; G 5% * 55 G G 5= 0
or
V¥ owT T QV*
SE * oy Fx ¥ ax- pR; Gp—%}—c--
\ (6)
Vzav Ge Rt GT%’;~ o .

The solution to the Hamilton-Jacobi equation will be taken to be
v+ (t) =1éx+P(t)x. (7)
This may be substituted into the Hamilton=Jacobi equation. This yields
1 x (P + PF + FTP-P(GI;R;:LG;+GéR§1Gi)P+é)x = 0. (8)
Since x is arbitrary

, L
P=-~PFa=FP+P(GR G, + G R G )P = Q. (9)
At t=t,

Ve(t,) = %x™Sx . (10)

Thus, the boundary condition for the matrix differential equation is

P(t,)
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The control strategies may be written as

ult) = ~K1 (£)6] (£)P(£)x(t)

It

(11)
v(t)

K16 (£)P(£)x(t).
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Optimal Open-Loop Stochastic Control for

Systems With Uncertainty

In this appendix, the problem of the optimal control of systems
with parameter uncertainty will be considered. In particular, a spe=
cialization of the results given in the dissertation will be shown for
the stochastic control (one sided differential game) problem. These
results extend previous results found by Lainiotis (56) and Lee (60).

The system dynamics are

x(t) = F(t, 0) x(t) + G(t) ult) + w(t) (1)

where

xeR® is the state of the system,
ueUcR® is the control input,

weR® is a vector of white noise inputs with zero-mean and

variance

Efw(t)w’ (1)} = w(t)s(t~-1), (2)

feR is a time invariant upnknown parameter vector.

The system is observed through

y(t) = H(t)x(t) + v(t) (3)

where
¥YeR? is the measurement vector,
veR? is a vector of white noise inputs corrupting the

measurements with zero-mean and variance

E{v(t)vI (1)} = R(£)§(t=7). (&)
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The control, ueLE{I, R’“} where I = [to, tf), is required to minimize

the performance index
. | ;.
I BT ()8 x(t,) +% [ (7 (DAMDx(E) + w (£)B(Du(e)ath.  (5)
) 6]

One may write the Hamilton-Jacobi equation as

min _¢0V = oVT
weu Blay & [Pt B+ Gul- -
(6)
1/z(x"le+uT’Bu)+1/2 % EZ 62 N'} =0
1=1 J=1 Bx Bx i'j

where Y is the observation functional Y = {y(1), 7. [t5, t)} and
= {a},;-
. . . . N . e .. . A »
Sufficient 'statistics: for Y are x(t|8) and p(8]|¥). These can

also be written as x(t) and p(8|Y) where
20 = [ xe]ernte]vat.

Thus, the Hamilton-Jacobi equation may be written as

:‘:;E E{'gv %—Y[F(t 6)x+Gu]+

A7)

n n
(xTAx+uTBu) +% 'Y

(=1 le axaa mulx(t), P(G'Y)}

Minimization over ueU yields
u(t) = _B—lmAT(t) E{BVI 2(t), ple|l. (8)

This equation may be substituted for u in Equation (7). This yields

0

E(SY - a" - [F(£0)x~ GB ralB{2X|4,p(8| VI T" %’szTAwyzE{ - L 14,p(8] 1))
(9)

6B 6T B[S [x,p(elfr)}+1~: z - >: al,a {Q§“|£,p(eiy)}
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The use of Lemma 2 in Chapter IV and the properties of cenditional

expectations allows one to write this equatien as

{E‘L aYT[F(t,e)ﬁ- GBlGT E{—alf-l :'E,p(elY)}] +‘%>A.T.<A£+itrAP
ot dx
VT 1 dV | A LI - A A
1 @ T T/ . -
+/éE{E,[\— 4. 08|V }cB G E{gl £,p08| D)} + % 1=21 J_Ell —r—raxiaxj{Q}” |4,
p(8|V)} = o. | (10)

The solutioen to the Hamilton-Jacobi equation will be taken as

Vv =%E[X(t]e)r(t) E{£(t]0)} + At)
8lY ol

= 1dTP(t)d + c(t). (11)

Substitutien inte Equatioen (10) vyields

BT (P + PF + FTP - PGB 1 *]E {P}+a- T {PlE 'c"P
BlY BlY

+ BE{PleF'¢" E{PM+C+tr AP+% I IP m,}=0 (12)
Bly 8ly t=1 =1

where P:L‘1 is the ijth element of P.
This implies
P(t) = -P(t)F(t) =F(£)TP(¢) + P(£)G(t)B " (t)

.a’®) E {P(t)} - E {P(t)}e(¢+)B? (1)GT (¢)
8lY 8lY

. E{P(t)} - A(t) + E {P(t)}a(t)B ! ()G (£)P(t)
oY | oly
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with boundary condition
P(t,) = S. (14)
Th’e control law is

u(t) = =B-1 (£)GT (t) T{p(t)}é‘c(t).
olv
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