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CHAPTER I 

INTRODUCTION 

Many problems in engineering and in socio-economic systems exist in 

which there are two or more entities with conflicting goals engaged in 

the process of control (for engineering systems) or in the process of 

decision making (fa; socio-economic systems). The goals conflict in 

that if one entity chooses the •wrong' control law or makes a wrong 

decision the other entity stands to gain in some aspect if he chooses 

the right control law or makes the right decision. The first entity may 

lose in some aspect part of the goal he is trying to satisfy. The ques­

tion arises as to how should each entity make a decision or choose a 

control law to insure that he realizes his goal in some sense. This 

choice must be irrespective of what decision or control variable his 

opponent chooses. That is, based upon the assumption that the entity's 

opponent will play his best decision or control law contrary to the 

first player's goals then what should the first entity choose as his 

control laws? The methodology for analysis of problems of this type 

comes from game theory. In specific, when the models of the entities 

may be modeled as differential equations, then the analysis methodology 

comes from differential game theory. 

The study of dynamic games is a study of the process of decision 

making or the controlling of two or more entities with conflicting 

goals. The models of the entities are dynamic in the sense that the 

1 
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functional relationship representing the model evolves in time according 

to some functional rule. The relationship describing the time evolution 

of the models is a differential equation if the state space of the en­

tity is a continuum. If the state space is a countable set (a set is 

countable if it is in the range space of the integers), then the time 

evolution of the models is a difference equation also referred to as a 

discrete-time equation. The dynamical game is considered to be a dif­

ferential game if the functional rule for the time evolution of the 

states of the entities are differential equations. Similarly, the 

dynamic game is considered to be a multistage, difference or discrete­

time game if the functional rule for the time evolution of the states of 

the entities are difference equations. 

Each entity has certain variables called decision variables (in 

socio-economic systems) or control variables (in engineering systems) 

that he chooses in order to satisfy some particular goal. The control 

variables are, in general, constrained to be chosen from some admissible 

set. 

The goals of the entities are assumed to be mathematically describ­

able as a functional relationship between the states of the dynamic 

model and the decisio'n or control variables of the entities. That is, 

if one entity makes a wrong decision or chooses a wrong control such 

that he loses some aspect of his goal, then the loss will be given 

directly to the other player assuming he has made the correct variable 

choice. Thus, the dynamic game is zero-sum. 

Motivation for Differential Games 

The process of decision making or control of two or more entities 



with conflicting goals occurs naturally in many problems in both engi-

neering and socio-economic situations. For example, such problems may 
r 

arise in the determination of the control laws required to control an 

anti-ballistic missile (ABM) in its pursuit and attempt to intercept an 

oncoming and maneuverable reentry vehicle (MaRV). The goal of the MaRV 
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is to destroy its assigned target while the goal of the ABM is to inter-

cept the MaRV. In order to achieve its goal, the reentry vehicle must 

choose its control law such that it avoids interception. Yet, it must 

carefully choose its control law such that it is able to recover from 

any perturbations of its state made to avoid the ABM and still reach the 

target with the required accuracy. 

Another example is that of air-to-air combat where there are two or 

more aircraft engaged in dogfight situations. The goal of the attacker, 

for example, might be to minimize the distance between his aircraft and 

the evader's aircraft. The goal of the evading formations would be to 

maximize the distance between their aircraft and the attacker's aircraft. 

If the attacker (target) chooses his angle of attack, bank angle, and 

thrust rate (through his control stick and throttle) suboptimally, then 

the target (attacker) may take advantage of this in order to maximize 

(minimize) the distance between the aircraft. Another engineering 

example is that of min max controller design. That is, it is assumed 

that nature is playing against the dynamic system being designed. It is 

assumed that nature always acts to degrade the system performance. 

Systems designed in this manner are called 'worst' case controller 

designs. If nature does not play as the worst case, then the system-

performance will be better than that expected from the system design. 

This technique has been used for. design of control systems by Salmon (8J) 



and for the desigh of estimation algorithms by D1 Appolito (27). 

Another application is that of performance analysis of aircraft and 

missiles. That is, given that a fighter aircraft is in a design stage, 

what should its performance characteristics be in order to outperform 

its immediate or future threat aircraft assuming that the pilot in the 

threat aircraft plays optimally. One may use differential games for 

this type of application. Also, one of the questions that may be con­

sidered is the performance benefits of a thrust vector controlled (TVC) 

missile with thrust modulation control (TMC) over just a thrust vector 

controlled missile. One might formulate this problem as a differential 

game problem in which an intelligent target is choosing his control laws 

optimally in order to evade the missile. One may then compare the per­

formance of a missile with TVC and TMC over that of a missile with just 

TVC. 

In a socio-economic setting, many situations may arise where two or 

more corporations or two or more nations are in direct conflict. For 

example, the classical examples of game theory fall into that of two or 

more nations at war. Each nation is trying to choose its controlling 

variables such that it maximizes the other nation's losses while mini­

mizing its own losses. Another example might be that of two or more 

businesses in direct competition to sell some particular good. The good 

might be such that it is known or at least assumed that the consumer 

market will over a given period of time buy a given amount of the par­

ticular item. An example is that of the automobile industry. Each par­

ticular corporation's profit structure might be represented as 

differential equations. This gives a time-varying representation of the 

profit structure to various factors such as labor disputes, advertising 
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costs, manufacturing costs, sales of the automobiles, and any other 

major factor that may occur. Since it is assumed that a certain quan-

tity of automobiles will be bought over the particular time period in 

question, then the sale of one automobile by a particular corporation 

represents a direct loss to the other corporation's profit structure. 

Thus, each corporation must carefully choose his advertising costs and 

manufacturing costs, and minimize labor disputes such that the sale of 

the corporation's automobiles are maximized (assuming a direct correla-

tion between advertising costs and manufacturing costs to the profit 

structure and to the sale of automobiles, a highly complex structure but 

not an unrealistic assumption). The following explains the mathematical 

structure of differential games. 

Dynamic Games 

In order to establish the salient features of dynamic games, one 

must indicate under what conditions the dynamic models under considera-

tion evolve. In a differential game, the state of the game at time tis 

described by the continuous vector function x(t)eRn where x(t) evolves 

according to the functional relationship defined by the differential 

equation 

with 

dx(t) 
dt 

f[x(t), u(t), v(t), t] 

x( te) = Xo. 

The variables contained in Equation (1) are defined in the following: 

x(t)eRn is a vector denoting the state of the game at time t, 

m 
u(t)eU where U is a subset of R 1 and is a vector denoting the 

( 1) 
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control variables of one of the players to be known 

as the pursuer, 

v(t)ev 
ma 

where Vis a subset of R and is a vector denoting 

the control variables of one of the players to be 

known as the evader, 

is the time derivative of the state of the game and 

is continuous with respect to x(t). 

The goals of the players are assumed to be mathematically incorporated 

in a scalar functional known as the performance index, defined as 

Jt, 
J = G(x(tf), tr) + t: Q(t(t), u(t), v(t), t)dt. (2) 

The assumption that the pursuer and the evader must choose his control 

from the set of allowable control actions U and V may be justified 

physically. 

Solutions to differential game problems are conservative in nature 

in that it is assumed that a player's opponent is going to choose his 

control law contrary to the player's goals, and choose them in some 

optimal manner. Thus, the solution to the differential game will give 

conservative, worst case strategies. The objective of each player is to 

choose his control function u* or v* over the time interval (t0 , tr) 

such that the following saddlepoint inequality is satisfied 

J(u*, v) < J(u*, v*) < J(u, v*). ( 3) 

If the pursuer plays u*, then the performance index will be no greater 

than J(u*, v*). Similarly, if the evader plays v*, then the performance 

index will be no less than J(u*, v*). This gives each player a guaran-

teed cost. However, if either player knows that the other player will 
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play a solution suboptimal to the above strategies, then this informa­

tion may be used to recompute an optimal strategy superior to the 

saddlepoint strategy. This will be illustrated in an example on page 11. 

Unlike a conventional optimal control problem whereby one is trying 

to choose the best control to extremize the performance index in an 

unconservative manner, the problem of differential games is to conserva­

tively choose your control law based on the assumption that your oppo,­

nent will play optimally also. 

In order to have a meaningful game solution, the control strategies 

must be in feedback. form. This may easily be seen since if one player 

were to constrain his control to be open loop, then the other player's 

optimal strategy would be to play in any closed loop fashion to keep 

correcting his trajectory such that his goals are satisfied. Thus, each 

player must find his closed-loop, saddlepoint control strategies. In 

the terminology of Berkovitz (15), each player must choose his pure 

strategies (if they exist). 

The game is said to be completed either when time evolves to a 

given point or when the state vector and final time enters a terminal 

manifold 

( l.i:) 

The dimensionality of the set of constraints, W, is less than or 

equal to the dimensionality of the state vector and includes a fixed 

final time constraint. Conditions under which a game might terminate 

are very complicated. In fact, the various problems that occur in game 

completion and in various surfaces that the game may transcend makes 

dynamic game problems very difficult to solve in the large. These con­

cepts are explained in Isaacs (50). 
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Similarly, in a difference game, the state of the game evolves 

according to the difference equation 

x(k+1) = f[x(k), u(k), v(k), k] (5) 

with 

x ( 0) = :xo and k = 0, 1, ••• , n. 

The variables contained in Equation (5) are defined in the following 

x(k)eRn is a vector denoting the state of the game at time kT 

where Tis the sampling period and is suppressed in 

the nomenclature, 

m . 
u(k)eU where U is a subset of R 1 and is a vector denoting the 

control variables of one of the players to be known as 

the pursuer, 

v(k)€V 
m2 

where Vis a subset of R and is a vector denoting 

the control variables of the other player to be known 

as the evader, 

is a functional representation of the transition to 

another point in the discrete space. 

Again, the goals of the players are assumed to be mathematically repre-

sented as a scalar function known as the performance index and is 

defined as 

J 

N':""1 

G [ x ( N) ' NJ + I Q[ x ( i) , u ( i) ' v ( i) ' i J. 
i=O 

( 6) 

The players must again choose their control action from a set of allow-

able control actions. The objective of each player is to find the con-

trol sequence [u(i)}~:~, where[·} denotes an ordered sequence, such 
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that the saddlepoint condition occurs 

J[u*(i), v(i)] < J[u*(i), v*(i)] < J[u(i), v*(i)]. (7) 

One may justify the use of the discrete-time analog of the 

continuous-time physical model on the basis that in sophisticated con­

trollers one usually uses a digital control loop. The computer is used 

to calculate the required control laws. These signals are converted 

from digital to analog signals and physically applied to the entity 

being controlled. Thus, since the computer is an inherent discrete-time 

device it is natural to solve the discrete-time approximation to the 

continuous physical system in order to obtain digital algorithms. 

The following explains the motivation behind stochastic games. 

Stochastic Differential Games 

Many physical entities that must be very accurately controlled may 

be such that the system dynamical model may not be known to the accura­

cies required by a deterministic model. That is, there may be some 

residual modeling error that could possibly be treated as system noise. 

Certain plant parameters may not be exactly known or the plant may 

be such that it is forced by a disturbance vector that is unknown. 

Another area of concern is that in order to use feedback signals to con­

trol the plant one must measure the state variables to be fed back. 

However, several of the variables may be measured by an inherently noisy 

measurement device. For example, one may use a tracking radar to 

measure range and angle information to a target. However, the angle 

information at short range is corrupted by scintillation noise (28) (33) 

(75) and dynamic lags in the tracker servo-system. The range 
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information is corrupted by a similar phenomenon known as glint noise. 

Thus, one does not, in general, have perfect information about the state 

of a dynamical system. 

The situation is that the players are taking imperfect measurements 

of the state of the game. The dynamical model of the game may not be 

perfectly known due to random disturbances. Each player must choose 

their feedback strategies based upon this imperfect information. This 

type of game is called a stochastic dynamic game. 

The next section discusses a type of a stochastic differential game 

that is the basis for this dissertation. 

Differential Games Under Uncertainty 

Situations occur in differential games whereby one or both players 

may have uncertainty in their opponent's dynamics, For example, the 

combatants engaged in air-to-air combat may not know their opponent's 

maximum life coefficient. An actuator lag necessary to model the 

pertinen_t missile dynamics may not be known with certainty. In .the 

problem of interception of a maneuvering reentry vehicle by an ABM, the 

defense is taking noisy measurements about the loca"tion of the reentry 

vehicle. The problem the defense has is that of determining the optimal 

control variables it should use in order to intercept the maneuvering 

reentry vehicle. However, in order to determine the set of control 

variables it must use, the defense has to know the dynamic model of the 

reentry vehicle. However, unless intelligence reports were exceedingly 

good, certain important parameters in the dynamic model of the reentry 

vehicle may be unknown. An example would be that of not knowing the 

minimum turn radius of the reentry vehicle or the ballistic 
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coefficient. In the use of differential games to determine precise 

control necessary for intercept, it is important that one knows the 

dynamic characteristics of the adversary. 

As pointed out by M. Ciletti and A. Starr (2q), the assumption that 

each of the players has total knowledge of all the state variables and 

of the dynamic description of their opponent's system is very basic to 

realistic applications of dynamic game theory. That is, in many appli-

cations problems, as previously illustrated, one does not know certain 

physical parameters that may be modeled in the state equations. Also, 

in many applications, one may not be able to measure all the state vari-

ables perfectly. Thus, the above statement points out a basic defi-

ciency in differential game theory. To date, no work has been 

accomplished in the problem with uncertainty in physical parameters. 

This is the basis for the dissertation. 

In order to illustrate some of the pertinent aspects of the theory 

developed in the dissertation, a simple example will be considered. The 

purpose is to show that the player improves his performance by learning 

his unknown parameters. It is shown tha~ by playing nonconservativelY, a 

player may improve his cost. That is, if he uses his information level 

as to his opponent's uncertainty, then he stands to improve his cost as 

compared to the cost if he plays conservatively. 

The system dynamics are 

. 
.x 8x +au+ bv (8) 

where u is the pursuer's control and vis the evader's control. The 

pursuer is trying to minimize and the evader is trying to maximize the 

following performance index: 



J = %sx2(tt) + % jt(nu2 + r 2 v2 )dt 

to 

where n > O. Several cases will be considered. The first case will be 
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that of each player having perfect knowledge as to his opponent's dynam-

ics. Next, the case where the evader has uncertainty as to the pur-

suer's dynamics is treated. The time interval (t0 , tr) is partitioned 

into two subintervals (to, t 1 ) and (t1, tr) where t 0 < t1 < tr• The 

evader does not know the true value of 8 over (t0 , t1 ). However, at t1 

he learns the true value of 8 and uses this new information to recompute 

his optimal strategy over (t1, t 2 ). It is shown that he improves his 

performance by trying to learn his opponent's dynamics since his optimal 

strategy depends on knowledge of the pursuer's dynamics. 

In this case, each player has the same information from which to 

choose his control strategies. Each player is trying to find the con-

trol strategies such that the following saddlepoint inequality is 

satisfied 

J(u~ v) < J(u*, v*) < J(u, v*). (10) 

The general problem of this type has been treated by Rhodes (80). This 

general problem is stated with dynamics: 

. 
x 

and performance index 

J = J6xT (tf )S(tf) X (tf) + J6 rt (uTQi_ U + vTQ2v)dt 

to 

where the matrices Qi and Q2 are symmetric, positive definite and 

(11) 

(12) 
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negative definite, respectively. The matrix S(tt) is symmetric, posi-

tive definite. The solution for the strategies is 

u(t) = -Q- 1 (t)Gi (t)P(t)x(t) 

v(t) -Q21 (t)GJ(t)P(t)x(t) 

where P(t) is the solution to the matrix Riccati equation 

0 

with boundary condition 

P( tr ) S ( tr ) • 

The general solution will be applied to the specific example. 

The solution to the previously posed problem may be written as 

u*(t) 

v*(t) 

- ~ P(t)x(t) 
r1 

b P(t)x(t) 
r2 

where P(t) is the solution to the Riccati equation 

i:>Ct) 

with boundary condition 

P(tf) s. 

Thus, each player's optimal strategy depends upon knowledge of the 

( 13) 

(14) 

( 15) 

( 16) 

system eigenvalue 8. If each player used the above control strategies, 

the performance index would be equal to J(u*, v*). Also, J(u*, v*) is 

such that the following inequality is satisfied: 



J(u*, v) ~ J(u*, v*') < J(u, v*). (17) 

Another important point to note is that each player has perfect knowl-

edge about the game state x(t). This as~umption is not valid in general, 

but the discussion of this point will be deferred until later. Also, it 

has been assumed that each player knows the weighting of the performance 

index each player is using. In a problem solved by Ho et al. on optimal 

guidance laws, the weighting factors are assumed known by each player. 

The next case to consider is that of the evader having uncertainty 

as to the value of the game dynamics over a subinterval of [t0, tt)• 

The evader has uncertain knowledge as to the game dynamics over the 

first time segment [t0 , t1) and perfect knowlege of@ over the time 

interval [t1, tt) where t 0 < t1 < tr· The cost to go from to to t1 is 

given as 

(18) 

and the cost over the second segment is given as 

( 19) 

The evader's best knowledge of the dynamics over [t0 , t1) are given as 

. 
x 91 x +au+ bv. (20) 

Thus, the strategy the evader.will play is given py 

VO ( t) (21) 

where P1 (t) is the solution to the Riccati equation 
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Since the control v0 is not equal to v*, the following inequality 

applies at t, 

J1 ( u*, v0 ) < J1 ( u*, v*). 

15 

(22) 

(23) 

Thus, over the interval [t0 , t1 ), the evader loses some aspect of his 

goal. At t1 he learns the true value of the game eigenvalue and recom­

putes his strategy to be played over [t1, tr)• This will be equal to 

v*. T):ms, the to.ta! cost JT equals the cost over the interval [ t 0 , t1 ) 

plus the cost over [t1, tt), i.e., 

J1 (u*, v0 ) + J8 (u*, v*). (24) 

However, 

JT < J1 (u*, v*) + J8 (u*, v*) = J(u*, v*). (25) 

Also, if the evader never learned the true eigenvalue and played v0 over 

the total interval [t0 , tr), then the cost would be equal to the cost 

over [t0 , t1), i.e., J1(u*, v0 ) plus J 2 (u*, v0 ). However, 

Thus, 

J1 (u*, vei) + Ja (u*, v0 ) < Jr < J(u*, v*). (27) 

The evader will, thus, gain if he can learn the pursuer's dynamics, and 
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will lose some degree of his goal if he does not know or learn the 

pursuer's dynamics. 

If each player had uncertainty about each other's dynamics, then it 

is reasonable to expect that each player would base his game solution 

upon his best guess of his opponent's dynamics. Thus, the pursuer would 

use the strategy u 9 where 

u 9 ( t) -· ~ Pg ( t ) x ( t ) 
r 1 1 

and the evader would use the strategy vs where 

VS ( t) 

where Pg 1 and Pg 2 are the solutions to the following differential 

equations: 

with 

s. 

(28) 

(29) 

(JO) 

The pursuer is in essence solving the differential game with the per-

f'ormance index 

(J 1) 

while the evader is solving the differential game with the performance 

index 
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(32) 

If the pursuer has knowledge that the evader is playing his optimal 

strategy but that he has uncertainty in the knowledge of the pursuer's 

dynamics, then the pursuer may use this knowledge in order to better his 

strategy if he has perfect information. For example, if the pursuer 

realizes that the evader will use the parameter values 91 , then he 

knows that v will be of the form 

where PE is the solution to the differential equation 

with 

The pursuer may now form the new system equation 

f;'.l -1 2p x = ,t,x + au - r 2 b E x. 

The performance index he may minimize is 

J = ~sx2 (tt) + ~stt (r1 u2 + r 21 b2 P~x2 )dt. 
te 

This is a linear quadratic problem with solution for u 

where PP(t) is the solution to the differential equation 

(33) 

(31±) 

(35) 

(36) 

(37) 
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(.38) 

with 

Thus, if the pursuer plays nonconservatively, he stands to decrease the 

cost as seen by him as his optimal strategy as given by (.37) and not by 

( 15). 

Another problem which necessitates total knowledge of the game 

dynamics will be illustrated. This problem will not be heuristically 

solved as was the previous example. However, the problem will be con-

sidered again in Chapter V after the basic theoretical results necessary 

to solve the problem have been developed. 

The system dynamics of the pursuer is 

. 
~ (.39) 

where u is the pursuer's control. The system dynamics for the evader is 

( 1±0) 

where vis the evader's control. The performance index is 

J ( 1±1) 

where r 1 > 0 and ra < o. The pursuer is trying to minimize J and the 

evader is trying to maximize J. The solution to the general problem as 

considered by Baron, Bryson, and Ho (20) will be given next. 

One may follow the formulation as explained in reference (20) or in 

Chapter V and redefine a new state vector z(t) where 
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This new state vector represents the predicted terminal miss if each 

player uses no control over the interval [t, tt). 

One may easily derive the fact that the general formulation applied 

to the specific problem of consideration yields 

( 43) 

where 

Z ( t0 ) 

and 

(44) 

The solution for u and vis 

u( t) 

v(t) 

whe:re 

K( tr , t) 
1 

= s + M,, ( tf ' t) - ~ ( tf ' t) (46) 

and 

( ) 1 rt 29p(t,-t) 
Mp t f , t = - e dt 

r1 t 
0 

(47) 

(48) 

One may note that in order to solve the optimal problem each player 
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must compute the value of the state at time t and Kat time t. However, 

knowledge of the reduced state Z(t) and K(t) depends on knowledge of 

9~ and 9E. Thus, if an·erroneous value of 9~ or 8E were used, the 

strategies would be suboptimal. 

Research Objectives and Results 

The class of systems considered in the research are modeled by 

linear or nonlinear stochastic differential equations which are parame­

terized by a time invariant parameter vector, elements of which are 

known to the pursuer and unknown to the evader, and elements of which 

are known to the evader, but unknown to the pursuer. The system is 

forced by both the pursuer's control and the evader's control. The 

goals of each player directly conflict. Each player is trying to choose 

his control laws in order to extremize some performance index. The per­

formance index is a mathematical measure of the player's goals. The 

players are assumed to have measurement subsystems that give either a 

perfect measurement of state or a noise corrupted measurement of state. 

The objective of the research was to develop a sufficiency condition 

for the class of problem described and solve the linear quadratic prob­

lem for the above class of systems. Chapter II contains the results of 

a literature search in differential games. 

The results of this dissertation are as follows. In Chapter III: 

(a) A structure for the type strategies that may occur for 

differential games with the above uncertainty in the 

system dynamics is defined. 

(b) A sufficiency condition for differential games under 

uncertainty and perfect information is developed and proved. 



(c) The open-loop feedback. strategies for the linear quad­

ratic game under uncertainty and perfect information 

is solved for several types of strategies that occur. 

In Chapter IV: 

· (a) A sufficiency condition for differential games under 

uncertainty and imperfect information is developed. 

(b) The open-loop feedback. strategies for the linear quad­

ratic game under uncertainty and imperfect information 

is solved. 

In Chapter V: 

(a) The problem of interception first introduced by Ho et al. 

(20) is formulated and solved. 

(b) The results are applied to a typical missile intercept 

problem. 
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CHAPTER II 

LITERATURE REVIEW 

Differential Games 

Isaacs, in his book (50) and in a series of Rand reports, first 

developed the theory of differential games totally independent of what 

is commonly known as optimal control theory. His "main equation" 

derived independent of Hamilton-Jacobi theory is in fact the sufficiency 

condition based upon the Hamilton-Jacobi theory. One interesting point 

is that one may imbed optimal control theory in differential game 

theory. Thus, Isaacs in the fifties accomplished some very basic work 

that imbeds aspects of optimal control theory. In the book by 

Pontryagin (77), Kelendzheridze considered a deterministic minimum time 

pursuit-evasion problem. Other results in linear differential games 

were published by Pontryagin (78), and Gadzhiev (40). Berkovitz (15) 

treated differential game theory from a rigorous calculus of variations 

viewpoint. This was an extension of work published by Fleming (37). 

Other work in the time period included additional work by Fleming (38). 

Ho, Bryson, and Baron (20) considered the continuous time deterministic 

pursuit evasion game for linear systems, quadratic cost, and fixed final 

time. Survey papers which summarize the aspects of differential games 

include Athans (7), Ho (49), and .Sarma and Ragade (86). 

In 1965, the first result in stochastic differential games appeared 

in a paper by Ho (44). Speyer (91) in 1967 considered another 

22 
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formulation of a stochastic differential game with controllable param­

eters. Other papers that appeared were by Ciletti (22), Meschler (74), 

Wong (100), and Berkovitz (16). The' paper by Wong was one of the first 

general aerospace applications of differential game theory. In 1968, 

Behn and Ho ( 13) treated the. 1 inear stochastic differential game with 

one player having imperfect measurements. Behn (14) also treated this 

problem in his dissertation. Rhodes (80), (81), (82) treated the linear 

dynamics, quadratic cost problem with imperfect measurements. Willman 

(99) also treated this problem, but the results were not as general as 

Rhodes; results. Shea (87) treated the differential and discrete linear 

game problem independent of the above papers. Other papers at this time 

were by Meier (71), and Salmon (85). Many papers began to appear at 

this time. Interest dictated the First International Conference on the 

Theory and Applications of Differential Games (48). 

In 1970, many papers including several by Ciletti (23), (24) 

appeared in the important problem of differential games with information 

time lag. Another survey by Ho (46) pointed out a new concept called 

Generalized Control Theory (GCT) in which both optimal control and 

differential games were only subsets of GCT. Interest increased in 

trying to apply differential games. Several references are given in the 

preceding paper. Other application papers include the dissertations by 

McFarland (67) and Othling (76). Also, a report by Baron et al. (9) 

attempts to apply differential games to air-to-air combat. A report by 

Systems Control Inc. treats the ABM versus MaRV problem (84). Bernhard 

(18) treated a theoretical application problem. Another dissertation by 

Lin (62) considered the ABM versus MaRV problem. 

In 1971, Merz (72) treated the homicidal chauffeur problem. 
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Leatham (59) and Baron (10) considered several subclasses in treating 

air-to-air combat as a differential game. Other dissertations included 

(41) (63) (93) (97). 

Further interest was felt at the Air-to-Air Combat Analysis and 

Simulation Symposium at Kirtland Air Force Base in 1972 where several 

papers on differential games were presented. 

Two interesting and important features of all the above papers are 

that the assumption that each player knows the game dynamics with cer­

tainty and that each player assumes his opponent knows the game dynamics 

with certainty. 

Estimation Theory 

In many control problems, one is faced with the problem of extract­

ing estimates of the state of the system from noisy measurement data. 

The theory by which this may be accomplished in estimation theory. 

Weiner (98) solved the problem when the system and noise statistics are 

stationary by spectral factorization. In 1960, Kalman (53) solved the 

problem of a nonstationary discrete linear system. Kalman and Bucy (54) 

developed what is known as the Kalman filter for continuous, linear 

nonstationary systems. The method Kalman utilized was that of orthogo­

nal projections. There has been many results and applications of linear 

and nonlinear filtering. Several books include that by Bucy (21), 

Meditch (68), and Jazwinski (52). Applications of filtering theory in-

elude many aerospace problems in orbit determination, navigation, and 

pointing and tracking problems (5) (6). 

One of the more important results that is utilized in this disser­

tation is that of Bucy's Representation Tehorem (21) (also stated in 



Chapter IV). This theorem is the basis of the filtering problem for 

nonlinear stochastic systems. The result represents the evaluation of 

the conditional probability density function. 

Estimation Under Uncertainty 
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Estimation under uncertainty implies that one has uncertainty of 

key variables or parameters in the estimation problem. This may 

include uncertainty in system parameters or uncertainty in elements of 

covariance matrices necessary to solve the estimation problem. There 

has been an outflux of work in what is known as adaptive estimation. 

Key work in this area includes work by Mehra (69) (70), by Magill (65), 

Tapley (92), Martz (66), Jazwinski (51), Lainiotis (57), Hilborn (42) 

(4J), and Sims (88). A good survey on adaptive filtering may be found 

in Mehr a ( 70) • 

The main result used in this research is the Partition Theorem of 

Lainiotis (57). 

Stochastic Systems Under Uncertainty 

In many dynamic problems, one may be concerned with controlling a 

partially unknown system. The system may contain parameters that are 

not totally known or even may be completely unknown. Many papers have 

been written in this area. For example, Sims and Asher (4) consider the 

problem whereby the control gain matrix contains uncertain parameters. 

Tse (94) treats a similar problem. Dajani (26) considers the problem 

with system uncertainty. This problem has also been considered by 

Lainiotes (56) and by Lee (60). The basic work in these two papers 

leads to suboptimal controls. The work is suboptimal for two reasons: 
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Their results do not take into consideration the dual control problem 

(Feldbaum (34)) in which the control is used for both identification and 

control objectives. Also, their results are suboptimal open-loop feed­

back strategies to the problem which solutions are shown in this 

dissertation. 



CHAPTER III 

SYSTEM UNCERTAINTY AND PERFECT INFORMATION GAME 

Introduction 

In this chapter, the problem of differential games with uncertain 

parameters conta.ined within the system matrix and perfect measurements 

is solved. It is assumed that each player knows the basic structure of 

the game dynamics. However, the system matrix for the game is parame­

terized by elements of a time invariant parameter vector containing 

those parameters unknown to either player. This parameter vector, 9, 

may be partitioned into two subvectors, 9p and SE. The subvector, @E, 

contains elements that are known to the pursuer but unknown to the 

evader. The subvector, Sp, contains elements that are known to the 

evader but unknown to the pursuer. It is assumed in this chapter that 

each player has a measurement subsystem capable of giving perfect mea­

surements of the system state. 

Definitions are given to indicate the type strategies that may be 

found by solutions of the differential game under uncertainty and 

imperfect information. It is shown that, under these definitions, 

previously found strategies for differential games with imperfect 

information, Rhodes (80) and Ho (13) are a type of security strategy 

called a system security strategy iq which it is assumed that each 

player assumes his opponent has perfect knowledge of the game dynamics. 

27 
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The structure given by the definitions helps one to identify the types 

of strategies that are both previously given and given in this disserta­

tion. Also, it is useful in visualizing some of the future problems to 

be solved in differential games under uncertainty and imperfect 

information. 

A Hamilton-Jacobi equation formulation is developed for the general 

nonlinear problem. The Hamilton-Jacobi equation formulation is proved 

to be a sufficient condition for optimality. The sufficiency condition 

is used to develop the strategies for the linear dynamics, quadratic 

cost differential game with system uncertainty. In this game, the 

dynamics of the players are assumed modeled by linear differential equa­

tions with uncertainty in the system matrix for the state equations. 

Each player has, in general, different uncertainty in the state equa­

tions. This model uncertainty is assumed represented by a time invari­

ant parameter vector, 6, as explained earlier. It is assumed that each 

player has an a priori probability density function relating his best 

knowledge of the parameter subvector unknown to hime 

It is shown that the linear problem may be solved in a feedback 

form whereby the equations necessary to solve for the gain are integral, 

partial differential equations. Each player's strategy also includes 

use of his measurement vector for adaptation in order to estimate the 

unknown parameters. Also, each player 0s strategy includes a risk in 

that his control strategy depends upon knowledge of his opponent's 

uncertainty as to the game dynamics. The dual control aspect (see 

definition 1 on page J1) of choosing the control strategies for both 

identification and control objective is not considered. The strategies 

found may be classified as open-loop feedback strategies (see definition 
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2 on page 31) in that one solves the open-loop problem with measurements 

taken at the particular time of interest based upon the assumption that 

no more measurements will be taken. Thus, any control strategy used for 

identification will not be considered since the assumption is made that 

no more measurements will be taken to use for identification purposes. 

The strategies are recomputed as open-loop feedback strategies at each 

time of control application based upon the above assumption. The dual 

control aspect of the differential games problem may consist of each 

player both choosing his control to both identify his opponent's parame­

ters and to cause his opponent 1 s measurement and estimation subsystem to 

have excessive error. This will be left for future work. Thus, the 

assumption that each player uses his control input only for control ob­

jective is made. References on dual control include (34), (95), and (96~ 

In this chapter, it is assumed that the system is continuous and 

that the control is continuously applied to the system, but that the 

parameter estimation occurs at discrete instants of time. An informa­

tion set formulation of the problem is made. Each player must find the 

function mapping the information set into the control space such that 

the performance index is extremized. 

There are several insights to be pointed out in the formulation of 

the game under uncertainty. At the outset of the game, each player has 

essentially solved a differential game that is different than what his 

opponent has solved. This is evident since each player has different 

uncertainty as to the game dynamics. This means that the solution to 

the game is dependent upon the information sets of each player. Each 

player uses his measurement information to adapt upon and learn the 

parameter subvector unknown to him. This is reasonable as each player 
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can obtain a cost favorable to him if information as to the true value 

of the parameter set is used to obtain a better estimate of the true 

values as was shown in Chapter I. Each player may solve for his strat­

egy by using his best information as to the true value of the game 

dynamics. This would yield a somewhat nonconservative strategy in that 

if he were grossly in error then this strategy could yield a result very 

favorable to his opponent. He could talce a very conservative estimate 

as to bounds on the unknown parameter set and solve for the parameter 

set that would give the worst case results. This would yield a very 

conservative strategy. However, this type of strategy would not easily 

allow for inclusion of available information obtained as the game pro­

gresses. That is, this would not allow for the use of measurements in 

order to learn the values of the unknown parameters. Thus, each player 

may use the approach placed forth in the research to obtain a more 

realistic, conservative strategy and to obtain non-conservative strat­

egies that will allow a gain in desired performance. 

The following lists the contributions of this chapter: 

(a) a structure for the strategies for differential games 

under uncertainty and imperfect information; 

(b) a sufficiency condition for differential games under 

uncertainty; 

(c) the solution to the linear, quadratic game under 

uncertainty and perfect information; 

(d) the open-loop feedback strategies for the stochastic 

control problem may be found by constraining the 

evader's controls to be zero. The solution extends 

those found by (56), (58), and (60). The solution 

to this problem is shown in Appendix C. 

The following section considers a structure for differential games under 

uncertainty and imperfect information. 
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Grune Structure 

In this section, a structure for differential gaines with uncer­

tainty and imperfect information is given, This structure gives several 

definitions which.relate to the types of strategies that one may obtain 

for this type of gainea It is important to classify the types of strat­

egies for two basic reasons~ The first is that previous work and the 

work considered in this dissertationare of a special class of the gen­

eral problem, This may be identified from the structure0 Secondly, it 

enables one to obtain insight into some of the areas for future research 

in games under uncertainty0 

Definition 1: If the control input is used for both control objec­

tive and identification, then the strategies found are dual control 

strategiese 

Definition 2: If each player solves for his strategies at each 

instant of time under the assumption that he may not obtain any more 

measurements of the state of the gaine, then the strategies found are 

open7 loop feedback strategies (see (11))~ Open-loop feedback strategies 

imply that neither player will try to impulsively control the system in 

order to instantaneously identify the system, This may be discussed 

further in that each player is trying to obtain a terminal miss accord­

ing to his goals, but at the saine time limit the energy expenditure0 

Thus, a high energy expenditure at the beginning may allow a player to 

identify the system, but may make his control cost too expensive. Also, 

if the control energy is constrained, he may exceed this constraint dur­

ing the play of the game~ If either player feels that the other player 

is going to do the above, then he may either choose a canceling control 

input or may increase the noise level by playing his control input as 
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white noise. There is much research to be conducted into the dual con­

trol aspect of differential games under uncertainty. In effect there is 

a tri-control problem in which one is choosing control for control ob­

jective, for identification, and for decreasing his opponent's measure­

ment subsystem's signal to noise ratio. Thus, the strategies found in 

this thesis are open-loop feedback strategies (OLFS). 

Defintion 3: If the information set for each player includes the 

assumption that his opponent has no uncertainty as to the game dynamics, 

then the strategies found by mapping the information set into the con­

trol space are called system security strategies (SSS). 

Definition 4: If this information set for each player includes the 

knowledge (or assumed knowledge) of the opponent's best knowledge of the 

game dynamics, then the strategies found by mapping the information set 

into the control space are called system risk strategies (SRS). 

Definition 5: If the information set for each player includes the 

assumption that his opponent has a measurement subsystem that can obtain 

perfect measurements of the state of the game, then the strategies 

found by mapping the information set into the control space are called 

measurement security strategies (MSS). 

Definition 6: If the information set for each player includes the 

knowledge of the opponent's error in his estimate of the state of the 

game, then the strategies found by mapping the information set into the 

control space are called measurement risk strategies (MRS). 

Definition 7: If the strategies found by each player include the 

assumption that his opponent is playing measurement security, system 

security strategies, then the strategies are called opponent security 

strategies (OSS). 

Definition 8: If the strategies found by each player include the 

assumption that his opponent is playing measurement security, system 



risk strategies, then the strategies are called opponent risk 

strat~gies (ORS). 
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The implication of the term security modifying a player's strategy 

is that no risk of making a wrong guess is taken by assuming the worst 

case of the player's opponent having perfect measurements or no uncer­

tainty as to the game dynamics. Similarly, the contrary of the term 

security is the term risk modifying a player's strategy. The implica­

tion is that the player takes a risk by trying to include information as 

to his opponent's uncertainty or his opponent's imperfect measurements 

in order to calculate his strategy. 

Thus, under the previous definitions, the previous work by Rhodes, 

Ho. etc. (980) (13) considered the measurement risk, system security 

strategies~ 

The problem to be solved is formulated in the next section. 

Statement of the Problem 

In this section, the general nonlinear problem is formulated. The 

dynamical description for the state of the game is given as the follow­

ing stochastic differential equation: 

dx(t) ::::, f(x(t) ,u(t) ,v(t) ,e,t}dt + g(x(t) ,u(t) ,v(t)@,t}d ~ (t), 

to be interpreted in the sense of Ito (52). 

The variables are defined as follows: 

x(t)£R'1 is a vector denoting the state of the game at time t 

u(t)eU where Uc Rm 1 is a vector denoting the control variables 

of the pursuer at time t 

( l) 



where 

v(t)ev where V c Rma is a vector denoting the control variables 

of the evader at time t 

eeifi+Pa is a time invariant parameter vector parameterizing 

the system dynamic matrix and which is partitioned as 

follows: 

@Peit 1 is a time invariant parameter vector known to the pursuer 

but unknown to the evader 

@E£RPa is a time invariant parameter vector known to the evader 

but unknown to the pursuer 

feRn is a nonlinear system vector 

g is an X m matrix 

d~ (t) is am vector of zero-mean Brownian motion processes with 
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E(d~ (t)d~T-(t)}:::: w(t)dt. (2) 

The initial conditions are assumed known to bot.h players. The initial 

condition is 

x( t0) :::: XO 

where 

11 x < te ) 11 < = • (3) 

Each player has access to certain information sets that he uses to 

solve for his strategies. The sets contain the a priori information as 

to the uncertain parameter sets, any a priori information that he has as 

to his opponent's uncertainty, and in the perfect information case 
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considered in this chapter, the information set contains the state 

trajectory of the game~ The information set of the pursuer at time tis 

denoted by Ip (t). Similarly, the information set of the evader at time 

t is denoted by ~ ( t) 5 For every time te[ t 0 , tr ) ~ the information sets 

\(t) and IE (t) of the pursuer and the evader are, respectively, 

and 

where 

Pe ( 8E ) is the probability density function representing the 
!: 

a priori information known by the pursuer about the 

unknown parameter vector 8E , 

PS (Sp) is the probability density function representing the 
p 

a priori information known by the evader about the 

unknown parameter vector Sp, 

Sp is the parameter vector known by the pursuer, 

e. is the parameter vector known by the evader, 

Pe: 8 (8p) is the probability density function representing any 
p 

knowledge the pursuer may have about the knowledge the 

evader possesses as to the parameter vector Sp , 

Pp 8!: (80) is the probability density function representing any 

knowledge the evader may have about the knowledge the 

( 1±) 

(5) 



pursuer possesses as to the parameter vector 9E, 

PESE (SE) is the probability density function representing any 

knowledge the pursuer has about the evader's know!-

edge of the pursuer's uncertainty of the parameter 

vector Si; , 

Ppe (Sp) is the probability density function representing any 
p 

knowledge the evader has about the pursuer's know!-

edge of the evader's uncertainty of the parameter 

vector 8p, 

xh),,-e:[t0 ,t] is a functional that represents the state trajectory. 
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The significance of the inclusion of the parameter vector 8P in IP 

and the parameter 8E in IE is that it is assumed the pursuer and the 

evader, respectively, have perfect knowledge of these parameters. This 

could be easily weakened to a knowledge of an a priori probability 

density function. However, this will not be considered any further 

since the salient features of the game under uncertainty might be 

obscured. The significance of the probability density functions repre-

senting knowledge that the player's opponent possesses is that the game 

solution depends upon each player knowing his opponent's knowledge. The 

worst case or the most secure strategy would occur when the player 

assumes his opponent has perfect knowledge of the game dynamics. This 

would yield a security strategy that is most conservative for each 

player based upon his uncertainty. 

An important point to note about the information sets is that 

IP(t) n IE (t) I~ where~ is the null set. It is reasonable to expect 

that in many applications problems the intersection of the two informa-

tion sets should be the null set. That is, if 
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IP ( t) n IE ( t) = '+), ¥ t E: [to , tt ) , then each player must choose his 

strategies from totally different information, a very realistic situa-

tion. The perfect information problem insures that IP n IE I~ since 

each player has access to the state trajectory. 

The dynamics and information structure is given by Equations (1), 

(4), and (5). It is assumed that the goals of each player are ade-

quately incorporated in the scalar function known as the performance 

index, i.e., 

( 6) 

where E[·} denotes the expectation over all random processes under the 

bracket. 

It is assumed that each player chooses deterministic controls and 

does not randomize his control policy. The final time will be assumed 

fixed in the developments of this dissertation, i.e., 

constant. (7) 

Thus, the performance index in Equation (6) is a functional mapping the 

state space and control space into the reals, i.e., 

J (8) 

Each player must choose closed-loop control laws as was explained 

previously. Thus, the pursuer must at each time t e [t0 , tf) find the 

function mapping the information set available to him at time t into the 

admissible control set such that the performance index is minimized, 

i.e. , 

u * : . [ x ( 'T ) , 'T E: [ to , t J } X [ t 0 , t] --+ U c Rm 2 • 
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Similarly, the evader must each time t € [t0 , tr) find the function 

mapping the information set available to him at time t into the admissi-

ble control set such that the performance index is maximized, i.e., 

v* · [x(r), T t [to, t]} x [t0\t] ..... V .. c R. 
;' 

(10) 

The control strategies u* and v* are assumed to be the minimizing and 

maximizing control strategies, respectively. 

The set of admissible controls u is assumed to be a subset of 

L2[I, Rm 1 } where I= [t0 , tr), and the set of admissible controls vis 

assumed to be a subset of L2[.J, Rm2} where .J= [to, tr). 

Also, the admissible control set consists of control functions 

which are nonanticipating9 That is, one may define the extension of a 

function f(s), s € [te, t) as 

(TTt f) (s) 
{f(s) , t < s < t 

f(t) t ~ s < t • 

Thus, the admissible controls u and v are such that 

where 

u(t) = Wp(t, TTt c1-(t)) 

v(t) = 'VE(t, TTt~(t)) 

~ (t) [ x ( r) , T e: [ t o, t] } • 

(11) 

(12) 

Each player wishes to choose his control strategies such that the fol-

lowing inequalities are satisfied: 

E[J(u*, v*) I Ip } ~ E[J(u, v*) I l:'.P } 

( 1.3) 

E[J(u*, v) I IE } ~ E[J(u*, v*) I l:E } • 
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Th~se inequalities will now be explained. 

Each player agrees on the basic performance index that he must 

satisfy. However, each player will not agree as to the value of the 

optimal cost since he is basing his optimal strategy on different infor-

mat ion sets. Thus, the game is similar .in nature to a non-zero sum 

differential game whereby each player is trying to extremize different 

performance indices. However, since the basic performance index is the 

same, it is not a non-zero sum game. The cost that the pursuer will 

calculate to be the optimal cost is E{J(u, v) I IP}. The cost that the 

evader will calculate to be the game cost is given by E{J(u, v) Ir.}. 
The pursuer is trying to minimize the game cost while conservatively 

choosing his strategy such that he obtains a guaranteed bound on the 

cost. Similarly, the evader is trying to maximize the game cost while 

conservatively choosing his strategy such that he obtains a guaranteed 

bound on the cost. 

Neither the pursuer nor the evader can find their opponent's worst 

case strategies since they do not in general have the totality of the 

game dynamics. If either player has access to the uncertainty his 

opponent has as to the game dynamics, then this may reflect into the 

player's choice of strategy. The pursuer will use the inequality 

where 

v0 is the evader's maximizing strategy for the pursuer's best 

guess of the true game 

to find his strategy u*. 

( :1,4) 
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The evader will use the inequality 

( 15) 

where 

u0 is the pursuer's minimizing strategy for the evader's best 

guess of the true game 

to find v*. One must note that the evader's (pursuer's) best strategy 

is not v0 (u0 ) since this strategy is based upon an erroneous game and 

not the true game. 

Thus, there will be two perf.ormance cost surfaces. The first sur­

face is due to the pursuer minimizing J conditioned on this information 

set Ip• The second surface is due to the evader maximizinQ l condi­

tioned on his information set IE. Each player is, thus, choosing his 

strategies based upon different cost surfaces. Thus, the game is very 

similar to a non-zero sum game. One may note that, in general, the 

basic definition of a Nash equilibrium strategy may not be applied since 

neither player has enough information, in general, to find the equiva~ 

lent equilibrium point defined by 

( 16) 

If enough information were available, say to a third player, then the 

above would define an equilibrium strategy. 

In order to find the most conservative strategies based upon a par­

ticular game, each player may assll!lle the worst case. That is, that 

their opponent has certain knowledge of all the game parameters. This 



will give them a conservative guaranteed cost based upon their informa-

tion sets. However, in a similar manner as to the measurement risk, 

system security strategies one may take into account the opponent's 

uncertainty. 

Sufficiency Condition 

In this section, a Hamilton-Jacobi equation is derived for the 

general problem of differential games under uncertainty. The results 

are used later in order to find the optimal strategies of the problem 

posed in this chapter. 

The first use of the Hamilton-Jacobi equation was made by Jssacs 

(50). In his book, the Hamilton-Jacobi equation is called the main 

equation. The Hamilton-Jacobi approach has been used by Maguiraga (6~) 

and by Kushner (55) for the problem of stochastic differential games 

under the assumption of certainty. Rhodes (80) proved a sufficiency 

condition for differential games with imperfect information that is sim­

ilar to a Hamilton-Jacobi approach. Maguiraga considered the problem 

where the state equations of the game contained both control dependent 

and state dependent noise. Kushner considered the general problem of a 

stochastic nonlinear game state equation without random parameters. 

However, none of the above references consider the problem with 

uncertainty. 

The general problem will be considered first. The problem of major 

concern of this dissertation will be worked as a special case of the 

general problem. The state of the game evolves according to Equation 

(t), repeated below for convenience, 

dx(t) = f[x(t), u(t), v(t), 8, t}dt + g(x(t), u(t), v(t), @, t}dS(t). 

(17) 

The cost function is scalar functional (see Equation (6)). 



J :;:: E[6(x(tt), tt) ft Q(x(t), u(t), v(t), t)dt} 

to 

where the expected value is over all random variables within the 

( 18) 

bracket. It is assumed that each player chooses deterministic control 

l~ws and does not randomize his control policy. 

It is assumed that the final time is fixed. The players have 

access to certain information sets, IP ( t) and IE ( t), where the sub,-

$cripts p and ~ denote tne pursuer and eva<;ler, respectively. These sets 

are defined as 

where R, denotes the collection of the a priori information as to the 
; 

parameter sets Sp and SE and ;J. denotes the state trajectory 

(x(r), T € [t0 , t]) (see Equations(~) and (5)). 

(19) 

The pursuer and the evader wish to find their optimal strategies 

u* and v*, respectively, such that the following saddlepoint inequali-

ties are satisfied¥ t € [to, tr) 

E(J(u*(t), v*(t)) J IP(t)} ~ E(J(u(t), v*(t)) J IP(t)} 

(20) 

E[J(u*(t), v(t)) J IE (t)} ~ E[J(u*(t), v*(t)) J IE (t)}. 

This reflects the fact that both the pursuer and the evader wish to choose 

their control strategies such that if their opponent plays optimally then 

the cost is bounded above or below by some acceptable value (depending 

upon whether the player is the pursuer or the evader). However, 



the solution to the above problem depends upon total knowledge of the 

game dynamics. It is the major topic of the dissertation to consider 

the problem whereby neither player has total knowledge of the game 

dynamics. Thus, an alternative problem to the one above must be solved. 

The pursuer will find his strategy prior to the start of the game 

by considering the following inequality: 

E( J ( u * , v0 ) I Ip ( t)} < E( J ( u ( t) , v0 ( t) I ·~ ( t) } (21) 

where v0 (t) is the evader's optimal strategy based upon the pursuer's 

as sum 0 d game. This is not the strate~y that the evader should play 

sin~e it is for a game different than what the players are actually 

playinge Similarly, the evader will find his strategy prior to the 

start of the game by considering the inequality 

E(J(u' (t), v(t)) I IE (t)} ,!: E(J('l.i;i(t), v*(t)) I IE (t)}. (22) 

Again, u0 (t) is the evader's best knowledge of the pursuer's optimal 

strategy0 The Hamilton-Jacobi equations will now be derived- The 

derivation will first be carried out by considering the inequalities 

(20). This will be done in order to gain insight into this problem. 

However, the extension to the problem defined by inequalities (2) are 

easily made by consideration of the type of strategy each player is 

assuming his opponent is playing. The derivation follows. 

The cost that will be incurred by the pursuer in order to terminate 

the game given that at time t the state of the game is known and given 

as x(t) is defined as Vp(x(t), t)~ It is assumed that Vp(x(t), t) is 

twice continuously differentiable with respect to x(t) and continuously 

differentiable with respect tote The ·cost Vp(x(t), t) is given as 



V9 (x(t), t) min E[G(x(tt), tt) + 
u e:U 

I tt Q(x(t), u(t), v*(t), t)dt I Ip(t)} 
't:.' 

(23) 

where v*(t) is the optimal strategy of the evader. Similarly, the cost 

incurred by the evader in order to terminate the game given that at time 

t the state of the game is known and given as x(t) is defined as 

VE (x(t), t)® It is assumed that VE (x(t), t) is twice continuously 

differentiable with respect to x(t) and continuously differentiable 

with respect to L The cost VE (x(t), t) is given as 

v,(x(t), t) = max E[G(x(tt), tr)+ rtQ(x(t), u*(t), v(t), t)dt I IE(t)}. 
ve:V t 

The Principle of Optimality (8) allowsi one t.o· write the'. costs as 

VP ( x ( t ) , t ) min E[ VP ( x ( t ) + D;. x; t + !). t ) + 
u e:U 

Jt+!).tQ(x(t), u(t), v*(t), t)dt I lp(t)} 
t 

VE (x(t), t) = max E[VE (x(t) + !::.:x, t+f::,.t) + 
v e: v 

It+/).t 
Q ( x ( t) , u * ( t) , v ( t) , t) di; I IE ( t) } 

t 

(24) 

(25) 

(26) 

by the mean value theorems Since Vp(x(t), t) and VE (x(t), t) are twice 

continuously differentiable in x(t) and continuously differentiable in 

t, Vp(x(t) + !::.x(t), t + !).t) and VE (x(t) + ~x(t), t + ~t) may be 

expanded in a Taylor series about x(t) and t. This yields the following 

expressions: 

VP(x(t) + t::.x(t), t + 6t) 
ovP av; ,.. __ 

Vp(x(t), t) + at 6t + ox wi.: + 

(27) 



and 
.. 

ovE av; 
VE (x(t) + tx(t), t + 8t) = VE (x(t), t) + cf.t 6t + ox 8x + 

(28) 

Thus, the cost Vp(x(t), t) and VE (x(t), t) may be written as 

Vp(x(t), t) 

n n o2 V 

312 r )' p 

L, OX1 axJ 
8X1 8XJ + Q ( X ( t ) , U ( t ) , ( 29 ) 

i=1 j=1 

v*(t), t) 8t + 0(6t2 ) I Ip (t)} 

and 
ovE ovr 

V!x(t), t) = max E[VE (x(t), t) + 2it Lilt + oi LilX + 
veV 

v(t), t) 8t + O(&t2 ) I IE (t)}. 

(30) 

The use of the smoothing property of expectations allows one to write 

equations (29) and (30) as 

VP(x(t),t) min 
u8U 

o(M2 ) I e, r~ Ct)}} (31) 



and 

VE ( x ( t ) , t ) = max 
veV 
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n a2v l ox1 ~Xj 8x1 8Xj + Q(x(t), u*(t), v(t), t)t>.t 

j=1 

+ o(&t2 ) I e, IE Ct)}}. (32) 

The inner expectation may be distributed yielding 

VP(x(t), t) 
av avr 

min E [Vp (x(t), t) + -::,tp 6t + _P E[t.xl 8 Ip (t)] + 
u e u e I rp ct ) u ax ' 

Q(x(t), u(t), v*(t), t)t,t + o(t.t2 )} 

and 

V~ (x(t), t) = max 
veV 

n 

127' 
i~1 

n a2 v 

l E 

oxi ch:j 
j:=1 

Q(x(t), u*(t), v(t), t)t.t + 0(6t2 )}. 

(33) 

(34) 

One must notice that since the inner expectation is conditioned on x(t) 

and since the controls u(t) and v(t) are assumed deterministic, i.e., 

functions oft and x(t) whe;re x(t) is known, several of the terms are 

deterministic. A similar argument occurs with the outer expectation; 

however, the distribution of the outer expectation will be deferred 

until later. The increment 6x must now be considered. The increment 
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may be written as 

6x(t) == f[x(t), u(t), v(t), e, t] 6t + g[x(t), u(t), v(t), e, t] l).~(t). 

(35) 

The expectations over the increments may be obtained as follows 

E[6x(t) 8, IP (t)] f[x(t), u(t), v*(t), e, t]6t 
(36) 

E[ 6x ( t) J 8, IE ( t)] f[x(t), u*(t), v(t), 8, t]6t 

and 

E[ 6x ( t ) 6x r ( t ) j 8 , Ip ( t ) ] = g [ x ( t ) , u ( t ) , v * ( t ) , 8 , t] x 

w(t)i/[x(t), u(t), v*(t); e~ t]M + o(tit2 ) 

E[6x(t)6xT(t) J 8, IE (t)]::: g[x(t), u*(t), v(t), 8, t] X (37) 

w(t)gT [x(t), u*(t), v(t), 8, t]8t +<O(l).t2 ). 

Thus, the expressions in Equations (33) and (34) may be rewritten as the 

following: 

and 

VP (x(t), t) min 
u E: u 

n n I 
o-::,vx; f[x(t), u(t), v*(t), 8, th,t + % ) , \ o

2
VP m1 .· * 6t + 

o /...., L OX1 OXj. j V 

Q(x(t), u(t), v*(t), t)l).t + O(l).t2)} 

VE ( x ( t ) , t ) = max 
v E: v 

i:,:1 j:1 
(38) 

(39) 
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Q(x(t), u*(t), v(t), t)&t + O(&t2 )} 

where m1.l corresponds to the i, j-th element of the following matrix: 

(mu} = g[x(t), u(t), v(t), 9, t]w(t)gT [x(t), u(t), v(t), 9, t]. 

(40) 

Both sides of Equations (38) and (39) may be divided by 8t and the 

limit taken as 8t ~ o. This yields the following partial differential 

equations for the cost for both the pursuer and the evader: 

and 

min 
u e: u 

n 

~I 

{ov'P av! 
E ""at+ -0- f(x(t), u(t), v*(t), 9, t} + 

el1;i<t) x 

ln 02v I } 
O P m1 j v* + Q(x(t), u(t), v*(t), t) = O 

-1=1 j=1 
X1 OXj 

T 
max E {av. oVE } 

v e: v el 1. (t) ot + ox f(x(t), u*(t), v(t), 8, t 

n n a2 v 

~I l 
E 

OX1 OXj 
i=1 j=1 

mu lu* + Q(x(t), u*(t), v(t), t)} = o. 

In order to obtain a shorthand notation for the Hamitton-Jacobi 

one may define the modified differential generator as 

n 

£.ri =I f 1(x(t), u( t), v* ( t), e, t} 
0 
-- + 

i=1 
OX1 

n n 

~I l m1 J Iv* 
a2 

OX1 OXj 
i=1 j=1 

and 
n 

~ =I f 1 (x(t), u* ( t), v( t), e, t} 
0 

OX1 
i:1 

n n 

~I l m1 J lu* 
a2 

ox1 OXj 
i=1 j=1, 

(41) 

(42) 

equation, 

(43) 

(44) 



Thus, one may write the Hamilton-Jacobi equations as 

and 

min E { 0:: + ~ VP + Q ( x, u, v*, t ) } = 0 
ue:U 8IIp 

max E 
ve:V8!3t 

{ oVE } 
clt +~VE+ Q(x, u*,v, t) = 0 

where the boundary conditions ar~ 

G(x(tt), tr)• 

( 45) 

( 46) 

( 47) 

It will now be proved tnat the Hamilton-Jacobi equations are sufficient 

for an optimal strategy. 

Theorem J.1: It is sufficient that there exists two scalar functions 

VP and VE where 

V p ( x ( t ) , t ) : Rn X [ t 0 , t J -+ R1 ( 48) 

and 

in order to solve for the closed loop optimal strategies u* and v*. The 

functions VP and VE are twice continuously differentiable in x(t) and 

continuously differentiable in ts· The functions are defined as the 

solutions to the following equations: 

ov, 
I;,= Tt +~VP+ Q(x(t), u(t), v*(t), t) (50) 

and 

oVE -, 4 = ~ + c;:1-,E VE + Q ( X ( t ) , U * ( t ) , V ( t ) , t ) (51) 

where the differential generators are as shown in Equations (43) and 

(44) and 



The boundary conditions for the above equations are 

The functions I;, and 4 are such that 

and 

min E[~(x(t), u(t), v*(t), 8, t) I Ip(t)} = 0 
u E: u 

max E [ 4 ( x ( t ) , u * ( t ) , v ( t ) , 8 , t ) I IE ( t ) } = 0 
v E: v 

Proof: Consider any u € U, then 

E[L].l (x(t), u(t), v*(t), e,. t) I Ip (t)} > o. 

50 

(52) 

(53) 

(54) 

(55) 

One may take an additional expectation conditioned on the information 

set IP ( '!"), '!" ~ t~ This yields 

E[E[I;, (x(t), u(t), v*(t), 8, t)IIp(t)} 1.~(1")} > O. (56) 

The expected value operators may oe interchanged 

Since Ip('!") c IP(t), this inequality may be rewritten as 

E[I;, (x(t), u(t), v?l'(t), e, t) I Ip (1")} > o. 

This may be integrated over [1", tt], i.e., 

Itt E[I;,(x(t), u(t), v*(t), e, t) I Ip('T")}dt > o. 
1" 

(58) 

(59) 
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The integration and expectation may be interchanged 

(60) 

The definition of I;, ma-y now be used to give 

Et,r:•(":: +:t,v, + Q(x(t), u(t), v*(t), t,}~t I :r,(r)} > o (61) 

or 

E{s:tcOOV; +ct;vp) d~ I Ip('!")}~ ... E{J'rtfQ(x(t), u(t), 

v*(t), t)dt I Ip('!")}. (62) 

The integrand of the lefthand side is the total derivative of VP with 

respect to times Thus, this equation may be written as 

Thus, 

However, 

Thus, 

E{J'l"tr (~:) dt I IP('!")}> -E{J'l'ttQ(x(t), u(t), 

v* ( t) , t) dt !I Ip ('I")}. 

(63) 

(64) 

(66) 
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-E{ r:t Q( JI:( t) ' u ( t) ' v* ( t) ' t) dt I Ip ( T)}. 

E{vP(x(r), r) I I:i,(r)} ~ E{G(x(tt), t!")-+ (67) 

The second term is the expected value of the cost J(u, v*, r) where T 

denotes that the cost is over the interval [r, tt]• Since Tis 

arbitrary, T can range over the interval [t0, ttJ• Thus, Equation (67) 

may be written as 

E[ v p ( x ('!') ,. ,. ) I lp ( ,. ) } ~ E[ J ( u' v * ' ,. ) I Ip (,.)} • 

If one used the o~timal strategy u*, then the inequality becomes an 

~quality. 

Thus, 

E[Vp (x(r), '!") I Ip (r)} = E[J(u*_, v*, ,-) I Ip (r)}. 

E[J(u*, v* ' r) I rP (r)} < E(J(u, v*, r) I Ip(,-)}, 

(68) 

(69) 

(70) 

Thus, the equations are proved for the pursuer, The equations will be 

proved for the evader. Con.sider ahd v € V, then · 

E[ 1t < x < t ) , u * < t) , v < t) , e, t) I 1e: < t)} < o. (71) 

One may take an additional expectation conditioned on the information 

set IE(,-), T ~ t. This yields 

E[ E[ 1t < x < t ) , u * < t ) , v < t ) , e , t) I IE < r) } I IE < t ) } < o. < 72) 
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Since IE (r) c IE (t), the inequality may be rewritten as 

E[I,... (x(t), u*(t), v(t), e, t) I IE (r)} ~ o. 

This may be integrated over [r, tr], i.ee, 

rt E(4 (x(t), u*(t), v(t), 8, t) I IE (r)} dt <: o. (71±) 
T 

The integration and expectation may be interchanged 

E{ttr... (x(t), u*(t), v(t), 8, t) dt I IE (r)} ~ 0. 

The definition of L. may now be used to give 

or 

EUTtr~ov: +o'fe:vE) dt I IE (r)} ~ -E{JTtf' Q(x(t), u*(t), 

v ( t) , t ) dt I IE ( T ) } • ' 

(75) 

The integrand of the left~hand side is the total derivative of VE with 

respect to timee Thus, thi~ equation may be written as 

E{J.Ttf c::) dt I IE (r)} ~ -E{Ltf Q(x(t), u*(t), v(t) ,··t) dt I IE (r)} e 

(78) 

Thus, 

However, 

E{(vE (x(tr), tf) - VE.' (x(T), r)) I IE (r)} ~ 

-~rtt Q(x(t), u*(t), v(t), t) dt I IE (r)}. 
T 

VE (x(t1 ), tr) ::;: G(x(tf'), tt ). 

(79) 

(80) 



Thus, 

or 

E[ (G(x(tf), tr) - VE (x(T), '!")) I le: (r)} < 

-E{Jtf Q(x(t), u*(t), v(t), t) dt I IE('!")} 
T 

(81) 

Jtt Q(x(t), u*(t), v(t), t) dt I IE (r)}. (82) 
'!" 

The second term is the expected value of the cost J(u*, v, r) where T 

denotes that the cost is over the interval [r, tf]• Since'!" is 

arbitrary, T can range over the interval [to, tf]. Thus, Equation (82) 

may be written as 

E[v. (x(r), r) I~('!")}~ E[J(u*, v, T) I 1c (r)}. ( 83) 

If one used the optimal strategy v*, then the inequality becomes an 

equality. 

E[ VE ( x ( T ) , T ) I 1. ( T ) } E[J(u*, v*, r) I IE (r)L ( 81±) 

Thus, 

E[J(u*, v, r) I 10 (T)} ~ E(J(u*(t), v*(t))I IE (T)}, 

(85) 

Sufficiency is thus proved~ 

Linear, Quadratic Problem 

The problem of main concern in this chapter will now be explored. 

The system dynamics are assll,med to be adequately represented as 
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x (t) F(t, 9p, 9E )x(t) + GP (t) u(t) + ~ (t) v(t) + w(t) (86) 

where 

x(t) C Rll is a vector denoting the state of the game at time t 

u(t) CU where UC Rm 1 is a vector denoting the control 

variables of the pursuer at time~t 

v(t) £ V where V C R'l12 is a vector denoting the control 

variables of the evader at time t 

F( t, Sp , SE ) is a n X n matrix parameterized by 9p and SE 

with continuous and bounded elements 

Sp € RPl is a time invariant parameter vector known to the 

pursuer but unknown to the evader 

S. e: RP2 is a time invariant parameter vector known to the 

evader but unknown to the pursuer 

w(t) e: R:i is a vector of white noise inputs corrupting the 

system model, assumed Gaussian with known statistics 

E[w(t)} = 0 

E[ w ( t ) w T ( 1" ) } = W(t)6(t - ,. ) (87) 

Gp ( t) is a n X m1 control gain matrix for the pursuer 

Ci. ( t) is a nx~ control gain matrix for the evader. 

The initial conditions are assumed known to both players. The initial 

condition is 

x(te) Xe· 

The performance index is 

J %E[xT (tf )S(tf) x(tf) + t:f (:x:T (t)Q(t) :x:(t) + 

uT (t) Rp (t) u(t) + vr (t) ~ (t) v(t)) at} (88) 



where 

S( tr ) is a nXn positive semi-definite, symmetric matrix 

Q(t) is an X n positive 1,emi-definite, symmetric matrix 

~ (t) is a m1 Xm1 positive definite, symmetric matrix 

Hi! (t) is am2xm2 negative definite, symmetric matrix. 

The information structure is as given in Equations(!±) and (5), i.e., 

Ip ( t) 

(x(r), 'TE: [to, t]) (89) 

( X ( 'T ) , T E: [ to , t] ) ( 90) 

where the variables are as defined on page 35. The first problem to be 

considered is the solution for the system security strategies. The 

information structure is given as follows for this problem. 

Pe, ( 8! ) U !:),, U ( x ( 'T ) , 'T e: [ to , t ] ) ( 91) 

and 

I. ( t ) = Pl'\ ( 8p ) U 80 U ( ;x: ( 'T) , 'T E: [ to , t J ) • 
Op 

(92) 

Theorem J.2: !he measurement security, system security, opponent 

security strategies u* and v* for the pursuer and the evader, respec-

tively, for the system defined in Equation (86), the cost in Equation 

(88), and the information structure as in Equations (89) and (90) are 

given as 

u*(t) 
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(93) 

where Pp ( t, 8p, e. ) is given as the solution to the integro-partial 

differential equation 

oPp ( t) 

ot 

• H; 1 ( t) ~ ( t) 8. E 8 . I . (. ) [P ( t)} + ®E 8 I 1 ( t) f Pp ( t)} Gp ( t) H; 1 ( t) G~ ( t) ·· 
p , E IP t P p , E p 

and 

oT. ( t) 
at 

P; ( t) } :._ TE ( t) GE ( t ) Ri .~ ,( t ):.GJ ( t) 1\ ( t} . - . Q { t) 

TE ( t )[ Gp ( t ) Hp 1 ( t ) GJ ( t ) + GE ( t) R; 1 ( t ) GJ ( t ) } TE (t ) - Q ( t ) 

( 91,i:) 

(95) 

and where PE ( t, 8p, 8E ) is given as the solution to the integro.,..partial 

differential equation 

oPE ( t) 

ot -P. (t) F (t, e.,, eE) - F(t, 8p, eE )TpE (t) + 

Pe: (t)GE (t)R; 1 (t)GJ (t) 8 E8 11 (t)[PE (t)} + 
P , E E 
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(96) 

and 

(97) 

Tp ( t ) [ Gp ( t ) Hp 1 ( t ) G; ( t ) + G~ ( t ) .fl; 1 ( t ) Cal ( t)} Tp ( t ) - Q ( t ) 

with boundary conditions 

The expected values used are the best values or estimates of the parame-

ter values Sp and SE since each player assumes the other player has 

perfect knowledge of the game dynamics but is playing a security 

strategy. 

Proof: The Hamilton-Jacobi equations may be written as follows: 

where 

and 

' 
~ (t)v:i:T(t)] + :Jl,i(xT (t)Q(t)x(t) + uT (t)~ (t)u{t) + 

n n azv 
v*T (t)~ (t)v*(t} + % L. I dx1 a:J m1J} :;: 0 

i=1 J=1 

~ (t)v(t)] + :Jl,i(xT (t)Q{t)x(t) + u*T (t)~ (t)u*(t) + 

v T ( t ) RE .( t ) v :( t ) ) . t 72 t ! d:;a :~ ·, ·~,i J } = O • 

i 1 , .. 1 . 1 J = J= 

(98) 

(99) 
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The minimization over uC.U of the first equation yields 

(100) 

and maximization over v&V of the second equation yields 

( 101) 

Since I\, is positive definite, Equation (98) is minimized by u. 

Similarily, since Re: is negative definite, (99) is maximized by v. 

The strategies may be substituted into (98) and (99)m This yields the 

following equations: 

( 102) 

and 

{ oVE oVJ 
. E.· --+-,-.-.F(t, 
Sp , e. I 1. < t) at ax · 

oV[ 
Sp , SE ) X ( t ) - ox G'P ( t ) R; l ( t ) G; ( t ) 

.. 

{av])} av: {ov.} 
·e Ee I I (t) ~ - ~x GE (t)Ri 1 (t)GJ' (t) e·~,e ... I I .. (t) ::,x·. + 

. j) 1 . O j) ux U ,- O O U 
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( 103) 

One may note that the Hamilton-Jacobi equations are coupled partial 

differential equationso The solutions to the equations will be assumed 

to be 

VP (t) == ;fxTPP (t)x + ~ (t) ( 101±) 

The assumed solutions will be used in the above equations in order to 

determine the necessary equations for a solution® 

The strategies may be written as 

u(t) ( 105) 

The use of the assumed solutions in the Hamilton-Jacobi equations yields 

the following equations: 
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• G Ct)Ri (t) 'E ',, ' ·(P (t)} '+·" E·. I ·, (P. (t)}G (t)JT" 1 (t)· . p , ' ~'P 9 e . I ( t) p ··, e O I ( t) . E ' ' ' E ~y 
- __ .P' E P p,V£ .• E .· . 

n n 

O Gl ( t) e:, eE I IE ( t) ( PE ( t) })x + ~ ( t) + '}2 l l pp 1 j m1 j} = 0 ( 106) 

i=1 j=1 

n n 

~ ( t) + ~ I l PE 13 m1 J} = o. 
i=1 j=1 

(107) 

This.yields the following equations which must be solved for Pp and PE: 

OPP ( t) 
ot = -Pp(t)F(t, ep, sE)..,. FT(t, Sp, sE)Pp(t) + Pp(t)Gp(t)~1 {t) 



( 108) 

and 

OPE ( t) 
ot = -PE (t)F(t, el), e.) - FT (t, Sp, e. )PE (t) + P. (t)Gp (t)~ 1 (t) 

(109) 

with boundary conditions 

and 

(110) 

with boundary conditions 
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The differential equations for AP and Ae; are uncoupled from the problem 

since they do not affect the control. The equations for PP and PE are 

functions of Sp and eE • Thus' pp = Pp ( t' ep' eE ) and 

PE = PE ( t, 9p , 9E ) • However, the arguments have been suppressed. 

One may note that the equations for Pp and PE are coupled. Thus, 

the solution depends upon each player knowing his opponent 1 s information 

set in order to solve for the strategies. In general, neither player 

has this information. Thus, only a third player with perfect intelli­

gence can solve the game. Therefore, in order to obtain a strategy 

playable by each player, the players must use the knowledge within his 

information set to determine the required expected values. Howeve~ the:e 

strategies may be utilized to compare the strategies obtained by each 

player using the knowledge in his information set. The strategies may also 

be used to find playable strategies- ones that are based upon only each 

player 1 s information sets. 

The problem may generate into what Ciletti (24) calls an "infinite 

well" problem in that if each player chose his strategies based upon 

counter, u •, counter intelligence, then. the amount of information neces­

sary may become infinite. In this theorem, it is assumed that each 

player is choosing his strategies based upon the assumption that his 

opponent is playing worst case, i.e., with no attempt to use intelli­

gence in order to independently optimize the game, but is playing with 

perfect game information. 

The required strategies are measurement security, system security, 

opponent security strategies. Thus, each player assumes his opponent 

has perfect information, but does not try to independently optimize by 

use of intelligence. 

The pursuer solves the game by assuming the evader is solving the 

game with no uncertainty. That is, he assumes his Hamilton-Jacobi 
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equation is coupled with the following equation (derived in Appendix B): 

oVE oVJ 
~ + ox [ F ( t , Sp , SE ) x ( t) + Gp ( t) u ( t) + GE ( t ) v ( t) } + 

(111) 

}2(xT (t)Q{t)x(t) + UT (t)~ (t)u(t) 1 +·vT;,_{t)l?t,{t)y(t)) = 0 

with the solution 

( 112) 

and 

u(t) -Rp 1 (t)Gi (t)TE (t)x(t) 

( 113) 

v(t) = -~1(t)Gl (t.)TE (t):x:(t). 

This yields the following equations for the pursuer in order to deter'-· 

mine PP: 

oPp ( t) 
ot = -Pp (t)F(t, Sp, e.) - FT (t, ep, e. )Pp (t) + 

and 

Sp ~eE I Ip < t > [ Pp < t > }Gp < t > R; 1 < t > Gi < tYP11 .ff> ::~ J'.pit>Gi(t>n; 1 tE)GJ ct) • 

• TE (t) + T. (t)G. (t)~ 1 (t)GJ (t)Pp (t) - 9p~9E I Ip (t)[Pp (t)} " 

• TE ( t) - Q ( t) ( 114) 

(115) 

TE ( t ) [ Gp ( t ) R; 1 ( t ) G~ ( t ) + GE ( t ) R; 1 ( t ) GJ ( t ) } TE ( t ) - Q ( t ) • 



A similar derivation holds for the evader. Thus, the evader solves the 

following equations to determine PE (t): 

and 

clP0 ( t) 

,h 

clTr, ( t) 

clt 

• ~ 1 (t)GJ' (t)PE (t) - Tp (t)~ (t)R; 1 (t)Gi (t)Tp (t) -

Tp ( t )[ ~ ( t ) ~ 1 ( t ) G; ( t ) + ~ ( t ) Hi 1 ( t ) GJ ( t ) } Tp ( t ) - Q ( t ) 

with boundary conditions 

( 116) 

( 117') 

The above uses the result developed in Appendix B, ;ic.er.\.;Equatiori {9) that 

gives the form of the JUc;c:ati equation if each player has no uncertainty 

in the game dynamics. This gives each player his opponent's security 

strategy. 

TheoremJ.J: The measurement security, system security, opponent 

security strategies u* and v* for the pursuer and the evader, respec-

tively, for the problem posed in Theore~_J;~;and under the assumption 

that €lp and 8E have a discrete parameter range are given as 



u*(t) 

v*(t) 

-~1 (t)Gi(t) cf Pl'(8E1,I Ip(t))PP1(t, 8p,-eE1Ux(t) 

i=1 

-~ 1 (t)Gl(t)(t Pr(ep 1 IIE(t))PE1 (t, 9p 1 , 8E))x(t) 

i=1 
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(118) 

where PP 1 ( t, @p, SE1 ) is the solution of the following equation evalu­

ated at the ith parameter value: 

Pp 1 ( t) = .:.pp c{ t )F(,f, sp·; · SE/,- Ft~; Hp ,·, sE1)Pp 1 (tJ1 ·+ Pp 1 ct )Gp (t) , · 

Pa Pa 

·R;;1(t)G~(t) CI Pr(e.j I rp(t))Pp~ (t) + CI Pr(eEj I rp(tJ) 
j~1 j=1 

•PPJ (t)) GP (t)~ 1 (t)G~ (t)PP 1 (t) + Pp 1 (t)~ (t)~ 1 (t)GJ' (t) 

•TE1 (t) + TE/t)GE (t)}y{t;:foJ (t)J'p~ (t\. (119) 

Pa Pa 

CI Pr(SE jIP(t))PPJ (t~Gp(t)R/tt)Gi(t)(,t Pr • 
. 1 j . ' ' J= J=1. ,.,·. 

( eEj I Ip (-1: ) ) pp ( t ))- - TE ( t ) GE ( t ) ~ 1 ( t ) Gl ( t ) TE ( t) - Q ( t ) 
j 1 1 

and 

•Gt, ( t). +. GE (t)R;1 ( t)Gr ( t) }TE1 ' (t)~ - Q{t:~), :i .b'.1,, 2, ••• , Pa 

(120) 

and where PE (t, ep , SE) is the solution of the following equation 
1 1 

1 t d t t .th l eva ua e a he 1 parameter va ue: 

i\~t) -P. (t)F(t, Sp·, eE) - F(t, ep , eE )TpE (t) + 
1 1 1 iJ 

P, ( t) GP ( t) ~ 1 ( t) Gi ( t) Tp ( t) - Tp ( t) GP ( t) IT 1 ( t) GPT ( PE ( t) + 
1 1 1 -,, 1 

iftl 

PE/ t ) GE ( t ) ~ l ( t ) GJ' ( t ) ( l pr Ulp j I IE ( t ) ) p E/ t ) ) +. 

j=1 
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Pl 

c!· pl' (6Pj I le: (t) )PE/ t)) ~ (t)~ 1 (t )G{ (t )PE1(t) _ 

j:1 

Tp ( t ) GP ( t) R; J, ( t) ~ ( t) Tp ( t) 
. 1 1 

J?1 

• GE (t)R; 1 (t)Gl (t) (! (121) 

and 

( 122) 

Tp ( t) [ Gp ( t) Rj; 1 ( t ) Gi ( t) + GE ( t) R; 1 ( t) Gt ( t ) } TP - Q ( t) 
1 1 

with boundary conditions 

Proof: The proof follows that of Theorem 3.2·wtth' the·use of the 

definition of the expected value operator over a discrete parameter 

range. 

The next theorem considers the problem of the me~surement security, 

system risk, opponent security strategies. In these strategies, a risk 

is taken in order to use any knowledge of the player's opponent's uncer-

tainty as to the game dynamics. The information structure for this game 

is as follows: 

( 123) 

(x(r), TC [t61 ,t]) 

and 

IE < t ) = P ~ < ep ) u eE u i>p ~ < eE ) u 
~p OE 

(12'*) 

(x(r), re: [tG),t]). 
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Theoremjk: The measurement security, system risk, opponent 

security strategies for the system defined in Equation (86), the cost 

in Equation (88) is given as 

(125) 

(126) 

where PP(t) :i,s the solution to the integro ... partia:ldifferentialequa-· 

tions given as follows: 

oPP ( t) 
ot = -Pp <t)F(t, Sp, eE) - F(t, ®p, @E )Tpp <t) + P, <t)G, (t)Rj;1 <t) 

(127) 

an<;! 

• GJ < t ) ep ~ ~E I Ip < t ) [ TE < t ) } + e,, ~' I 1, < t ) [ TE < t ) } ~ < t ) ~ i < t ) 

• _Gl < t ) TE < t ) - Tp < t ) Gp < t ) R; 1 < t ) G; < t ) Tp < t ) - 9~ ~ ~E 1 1,, < t ) [ TE < t )} • 

(128) 
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and 

clT:= ( t) 
___ o_t_ = -Tp ( t ) F ( t , 8p , eE ) - F ( t , ep , e. ) T Tp ( t ) + Tp ( t ) [ Gp ( t ) R; 1 ( t ) 

• G~ ( t ) + GE ( t ) Ri 1 ( t ) GJ ( t ) }T., ( t ) - Q ( t ) (129) 

with boundary conditions 

The matrix PE (t) is given as the solution to the following integro-

partial differential equation: 

OPE ( t) 
ot = -PE (t)F(t, 8;,, e.) - F(t, e.,, e. )TpE (t) + P. (t)Gp (t)R; 1 (t) 

( 130) 

Q(t) 

and 

oT; ( t) 
ot = -T:(t)F(t, e.,' eE) - F(t, e.,' eE )TT;(t) + T;(t)Gp (t) < 
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T/(t)GE (t)R; 1 (t)Gl(t)T;(t) - ll Ei;i II •(t)[T;(t)}G'P(t) 
"P ' 9 E E 

( 131) 

where 

-T,,.' ( t ) F ( t , ep , eE ) - F ( t , ep , e. ) T T.' ( t ) + T/ ( t ) [ Gp ( t ) 

• ~ 1 ( t ) G; ( t ) + G_ ( t ) ~ 1 ( t ) GJ ( t ) }T/ ( t ) - Q ( t ) ( 132) 

with boundary conditions 

S( tt ) • 

The expected value operators will now be explained. The operator 

E[} denotes the expected value for the player's best estimate of the 

parameters based upon his observation functional. The operator E 1
['} 

denotes the expected value over what the player feels his opponent 

possesses as the best estimates of the parameters. 

Proof: Each player is solving his Hamilton-Jacobi equation for his 

control based upon the assumption that he has the coupling Hamilton-

JaGobi equation his opponent is using to solve for his controls. Since 

the strategies are system risk, opponent security strategies, the 

strategies for each player assume that he knows the uncertainty as to 

the unknown parameter of his opponent and that his opponent is playing 

a system security strategy. Thus, the coupling equation is of the form 

as in Theorem 3.2 except that al 1 expected values are conditioned on the 

player's information set. 'rhus, the proof is the same as in Theorem J.2 

with the above considerations. 
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Theerem J.~ The measurement security, system risk, opponent 

security strategies for the system defined in Equation (86), the cost in 

Equation (88) and the information structure as in Theorem ,3.4, and under · 

the assumption that @J.l and SE have a discrete parameter range are given 

as 

u*(t) 

Pa 
-Rj;1(t)Gi(t) (I Pr(®e:1,I I,(t))P~ 1 (t)) x(t) 

i;::1 

I?t 

v*(t) -~1 (t)GJ (t) er· Pr (9, 1 I IE (t) )PE1 (t~ ;x:(t) 

i:1 

( 133) 

where PJ.l (t) is the solution to the following differential equation 
1 

PJ.)1 (t) = -P,1 (t)F(t, @,, 6E1) - F(t, @,, @E1)TpJ.l1 (t) + 

J>a 

and 

P JI i ( t ) G, ( t ) R; l ( t ) Gi ( t ) c l PI' ( @E j I IJ.) ( t ) ) Pp J ( t ) ) + 

~ . ~1 

CI pl' (SE 31 ~ (t) )PJ.lj (t)) ~ {t)a:; 1 (t)Gi·<t)PJ.l1 (t) + (134) 

ji:, 1 Pl 

PJ.)1 (t)GE (t)~ 1 (t)GJ (t) er pl' (@J.lk I Ip (t) )TEn/t>) + 

P2 k=1 

( I PI' < el,) k I IJ.) < t > > TE 1 k < t >) ,Gr < t > R; 1 < t ) GJ < t ) P J.) 1 < t > -

k=1 
Pi Pa 

( I Pr< eE j I IJ.) < t) )PJI J < t >) ~ < t )R; 1 < t )G; < t > ( L -pr< eE3J IJ.) <t)) 

j::::1 Pl J=i:1. 

•P;J (t)) - (! pl' (@J.lk I IJ.) (t))TE1k <t>) ~ {t).Ri 1 (t)G[ (t)'•'" 
. k=1 

Pl 

I ct pr ( e)JI k I Ip ( t) ) TE~ k ( t D - Q ( t) 

k::1 



where 
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( 136) 

Tll 1 k ( t) [ GP ( t) R; 1 ( t) Gi ( t) + GE ( t) R; 1 ( t) Gl ( t) hp i k ( t) - Q ( t) , 

i L, 2, ••• , P2 

k=1,2, ••• ,pl 

with boundary conditions 

P,.. (tf) = TE (t 1 ) = T ... (t1 ) = S(tt)• 
"1 1k "ik 

The matrix PE/t) is the solution to the following differential equation: 

-PE(t)FCt, e ... , eE.)-FCt,· e .... , eE·)TPE.(t).+: 
1 · ,. 1 .. . "1 . 1 ' 

p 

PE/t)GP (t)R; 1 (t)Gi (t) ( I? Pr (8Ek I IE (t) )T;!k (t)) + 

P2 k=1 

( I P !' c e. k I IE ct) ) T; 1 k ct) G_, ct) R; 1 ct) Gi ct) PE1 ct) + 

k=1 P;i, 

PE/ t )GE ( t )R; 1 ( t )Gl ( t) ( l Pr ( ®p j I I. ( t) )PE/ t V + 

P1 . 
j=1 

(LPr(8Pj IIE(t))P!/t)) GE(t)H; 1 (t)GJ(t)PE/t) -

j=1 
P2 Pa 

( l pr (e.k I IE (t) )T:H (t)) G)) (t)R;; 1 (t)Gi (t) ( l l\ (9Ek I 

k -1 ·, ~1 
- . P1 

' IE ( t) T; 1 k ( t )) .. ( l Pr ( Sp d I IE ( t) ) PE j ( t )) ~E ( t) Hi 1 ( t) 
j=1 

P1 

• Gl ( t) ( I pr ( ell j I IE ( t) )PE j ( t )) - Q( t) 

j::1 

( 137) 



and 

f: (t) = -T: (t)F(t, e.,,,, eE.) - F(t, e ... , eE )TT: (t) + 
"ik ":!k "1 k "1 k "ik 

P2 

T; 1 k ( t ) G'.P ( t ) R;;1 ( t ) G; ( t ) ( l Pl' ( eE j I rE ( t ) ) T; u ( t ) 

j=1 
n 

( \" Pl'(9E, IIE(t))T; (t)) ~(t)Rj;1(t)Gi(t)T; (t) + L " n ik 
j=1 . . 

T: ( t) GE ( t) R"" 1 ( t ) GET( t) T/ ( t) + TE' ( t) GE ( t) IT 1 ( t) 
" 1 k ~c: · 1 k 1-·k -1: 
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Pa 

• Gl( t) T; 1 k ( t) - Cf.1 PI' ( SE j I IE ( t) ) T; 1 j ( t)) G'P ( t) R;;1 ( t) Gi ( t) 

Pa . c \ p I' ( SE j I IE ( t ) ) T; • ( t ) ) - Ti k ( t ) GE ( t ) Hi l ( t ) . /;;1 1" 1 

( 138) 

where 

Ti:' ( t) 
i'k: 

( 139) 

T; (t)(G,, (t)lr 1 (t)G'P'i' (t) + GE (t)R; 1 (t)GJ (t)}T/ - Q(t) 
ik " -~ ik 

i = 1, 2, • ••, P1 

k=1,2, •• •,Pa 
with boundary conditions 

The interpretation of the adaptive feature on parameters known to 

each player is that each player is trying to reconstruct his opponent's 

best estimate of the parameters unknown to him. 

Proof: The use is made of Theorem3.4and the definitions of the 

expected value operation over a discrete range. 

Theorem 3.6: The measurement security, system risk, opponent risk 

strategies u* and v* for the pursuer and the. evader, respectively, for 
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the system defined in Equation (86), the cost in Equation (88), and the 

information structure as in Equations (89) and (90) are given as 

( 14:o) 

where P'.P(t) is given as the soiution to the following integro, partial 

differential equation: 

oP'.P ( t) 
ot :;:: -P, (t)F(t, e'.P' eE) - F(t, ®p' ti\ )Tpp (t) + p'.P (t)G]:) (t)R:/ (t) 

and 

oTE ( t) 
ot = -TE (t)F(t, e]:), 6E) - F(t, 6'.P, eE )TTE (t) + 



• sl) ~eE i Ip < t) r TE < t)} - Q( t) 

where 

OTP ( t) 
ot · = -Ti, (t)F(t, Sp, @E) - F(t, @p, @E )TTP (t) + TP (t)Gp (t) • 

and 

clT; < t) 

ot 

•Rj; 1 (t)G~(t)T:p(t) + Ti:,(t)GE(t)~ 1 (t)f3l(t)T/(t) + T;(t) 

Q(t) 

Tt(t)[Gi:,(t)R; 1 (t)G~(t) + GE(t)~ 1 (t)Gl(t)}T;(t) - Q(t) 

with boundary conditions 

" 
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(142) 

( 14.3) 

( 144) 

Similarly, the matri~ PE (t) is obtai11ed as the solution to the integro, 

partial differential equations: 
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( 14:5) 

and 

c'lTp* < t) 
ot = -T'P*(t) F(t, ep, eE) - F(t, 9p, eE )TTp*(t) + Tp*(t) Gp(t) 

( 14:6) 

where 

oTt( t) 
at = -TE* Ct)FCt, e'P, eE) - FCt, ep, eE )TTE* Ct) + TE* Ct)GpCt) 

• Ir' 1 Gi ( t) T * * ( t) + T * * ( t) G ( t) Ir' 1 ( t) GT ( t) T * ( t) + -1J p 'P :p p --p p E 



where 

oT **(t) 
ll 

ot 
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• I"! E~' I I [ TE* ( t)} - Q( t) 
Op , OE E 

Q(t) (148) 

with boundary conditions 

T **(t ) ll t 

The expected value operators will be explained. The operator E[} 

denotes the expected value for the best estimate of the parameters. The 

operator E 1(} is over what the player feels his opponent possesses as 

the best estimate of the parameters. This takes into account the uncer-

tainty the opponent has. The operator E 11 [} denotes the expected value 

over what the player feels his opponent's information is as to the 

player's uncertainty. 

Proof: Each player is solving his Hamilton-Jacobi equation for his 

control based upon the assumption that he has the coupling Hamilton-

Jacobi equation his opponent is using to solve for his control. Since 

the strategies are opponent risk, each player realizes his opponent has 

the same assumption and is independently trying to optimize. Thus, each 

player uses three Hamilton-Jacobi equations representing the information 

known to him. Therefore, proof follows from previous procedures. 

The equations over a discrete parameter range may be established as 

in previous theorems. 
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Theorem J.7: The measurement security, system risk, op~onent risk 

strategies u* and v* for the pursuer and the evader, respectively, for 

the system defined in Equation (86), the cost in Equation (88), and the 

information structure as in Equations (89) and (90) and under the 

assumption that 8p and 80 have a discrete parameter range are given as 

Pa 

u*(t) 

v*(t) 

-~ 1 (t)Gi(t) CI Pr (8E1 J IP (t))Pp 1 (t))xCt) 
Ls1 

P1 

-H/(t)Gl(t) CIP!'(e!l1 II. (t))P!/t)) x(t) 

i=1 

where PP 1 (t) is given as the solution to the following differential 

equation 

. and 

I\/t) = -PP 1 (t)F(t, (9P, 9E 1) - F(t, 8p, 8E1)Tppi (t) + 

:P2 

Pp i ( t ) Gp ( t ) R;;1 ( t ) GJ ( t ) c t Pr ( e.j I Ip ( t ) Pp f ( t ) ) 

~ j=1 er Pr (80jl IP (t) )P.,d (t)) Gp (t)~ 1 (t)G., (t)P., 1 (t) + 
. 1 • J= ~ .. 

PP 1 ( t ) G. ( t ) R; 1 ( t ) GJ ( t ) ( l P: ( 8p k I I., ( t ) ) T. 11/ t ) ) + ( 150) 

P1 . k=1 

( L P; ( e., k I I., < t ) ) T. 1 / t ) ) G. < t ) ~ 1 ( t ) Q < t ) Pp r ( t ) -

k=1 
~ P,2 

( l Pr < e. J I I., < t ) ) Pp j < t ) ) Gp < t ) Bj;[ < t ) Gi < t ) ( .l pl' < eE .11 Ip < t ) ) 
j=1 P1 J=1 

.pp/ t0 - ( 2 p: ( 9pk I ~p ( t) )T.1 / t )) G. ( t )~ 1 ( t) • 

n· k=1 
..-.1 

·GJ"(t) (l.P:<e.,k JI.,(t))T.11/t))- Q(t) 

k=1 
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where 

TP1 k<t) = -T'P Ct)F(t, e'P , e.) - F(t, e'Pk, eE )TT'P Ct) + 
1k . k · 1 1 1k 

and 

:P2 . 

T'P1k(t)G'P(t)R; 1 (t)G;(t) CLP:'(@E,1l1p(t))T'P1,1 (t)) + 

P. j=1 . 
2 . 

( I P/ ( 6E,1I Ip ( t) )Tp 1 .1'( tJ): G'P (t)Rj; 1 (i)G~'.('t rr'P i~ ( t) + ( 152) 
j:1 

TP (t)~ (t)~1 (t)Gl (t)TE'~ (t) + TE' (t)~ (t)R;1 (t) " 
ik ik 1k 

P:2 

"Gl(t)TP (t) - c·\'P;' (®E,11Ip(t))TP 1 ,1 (t)) Gp(t)Rj; 1 {t)·" 
1k L1 
Pa J= , . 

•G; (t) ct P:1 (@Ejl I'P (t) )TP1J (t))- T/1,/t)GE (t)H; 1 (t) ~ 
j::1 

• GT ( t ) '.C I ( t ) - Q ( t ) 
E E1 k 

•Rj; 1 (t)Gi (t) + ~ (t)~1 (t)GJ" (t)}T/1/t) - Q{t) (153) 
i=1,2, •• •,P2 
k=-1,2, ••• , Pl 
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with boundary conditions 

The probability Pr UlEJ I Ip ( t )) ggnotes the probability of the parame-

ter 8EJ assuming the a priori information available by the pursuer as to 

the best estimates of the true parameter values8 The probability 

P: l 8:pk I I'.P (t)) is the probability of the parameter 8llk as known by the 

evader. The pursuer uses his a priori information as to the evader's 

parameter uncertainty in order to calculate this value. The probability 

P;' ( 8E j I I'P ( t)) is the probability of the parameter 8EJ which contains the 

knowledge the pursuer has as to the evader's knowledge of the pursuer's 

uncertaintye The pursuer uses his a priori knowledge of the evader's 

knowledge of the pursuer's uncertainty in order to calculate this value. 

The matrix P0/ t) is given as the solution to the following differ-

ential equation: 

-PE/t)F(t, 8!' 1 , 8E) - F(t, 8!' 1 , 8E )TpE/t) + 

P2 

P01!t)G:P (t)~ 1 (t)Gi (t) ( l P; (9Ek Ir. (t) )Tp*1k (t)) + 

Pa k=1 

( l P; < e. k I r. < t ) ) Tl' *1 k < t ) ) Gll < t ) ~ 1 < t ) ~ < t ) PE/ t ) + 

k=1 Pi 

P./ t) G. ( t) ~ 1 ( t) Gl ( t) ( r Pr ( 8:p J I r. ( t) ) PE J ( t)) + 

~l j=1 . 

(lPr<ellJ ir. (t))P.J!t))GE(t)~1 (t)Gl(t)P./t) -

j=1 

E2 ~ 

( 154) 

(IP:<e.k Jr. (t) )Tll*1k Ct)) Gll (t)~ 1 (t)Gi (t) ( l P:<eEk I 
k=1 Pi k=1 

• ~ < t ) ) Tll ~ k < t ) ) - ( l PI' < ef) J I rE < t ) ) P. J < t ) ) Ge: < t ) R; 1 < t ) • 
j::1 



and 

ip~/t) = -Tp*1k Ct)F(t, ep 1 , e.k) - F(t, ep 1 , eEk )TT1,*1w Ct) + 

P2 

Tll *1 ( t ) Gp ( t ) 1~;1 ( t ) aj' ( t ) ( I P: ( ®•J I I. ( t ) ) TP *1 ., ( t ) ) + 
k • 

P2 J=i . 

(IP: (SE 3 II. (t))Tll 1J (t)) G.p(t)R;;1Ct)Gi(t)Tll*1k(t) + 

j=1 .T.\' 

81 

:f-1 

TP~k (t)G. (t)H; 1 (t)Gl Ct) ( l P;,' cellJ I I. Ct) )TE;J Ct))+ (155) 
p j=1 

( f P ;' c ell J I I. ct,) TE:/ t)) G. ct) R; 1 ( t) GJ ( t) Tl) *1 k ( t) -
j=1 

P2 ~2 

( l P: rnEJ I IE ct ) ) Tl) 1 ~ c t ) ) Gp ct ) R;;1 ct ) GJ ct ) ( l P: c e. J I 
j=1 P1 j=1 

•I. (t))TPq (t))- c r P;" (@llJ I IE (t))TE;/t)) ~ (t) 
j=1 n 

·R; 1 (t)GJ' (t) ( l P;' (ellJ I IE (t) )TE7/t)) - Q(t) 

j=1 

where 

T.* Ct) -Tp* (t)F(t, ell , eE.r - F(t, @p , eEJ )TT.1*J(t) + 
1 j 0 1 J 1 • 1 

T * (t)G (t)ir1 lt)GT (t)T ":* (t) + T ** (t)G (t)ir1 (t) ' 
•1j 1) -,, 1) ll1j ll1J 1) -,i 

yP1 

• G; ( t) TE* ( t) + TEt / t) G0 ( t) R; 1 ( t) GJ ( t) ( l P ;' ( @ll k I ~ ( t) ) 
1 J k=1 

;P1 

·T.:/t)) + \f/:' (@llk I IE (t)T.;/t)) ~ (t)~ 1 (t)GJ' (t) 

• T * ( t ) - T * * ( t ) G ( t ) Ir l ( t ) GT ( t ) T * * ( t ) - ( 156) Ei j ll 1 .l ll -;, ·.. ll p iJ 

~ ~ 

(?1 Pt c eh I ~ ct) )T.; /t))~,<t)H;1 ct )GJ" ct) \.~/ ; 1 c ellk I 

Ii,: ( t ) ) TE* ( t )) - Q ( t ) 
ik 



where 

Q( t) ' i 1, 2, ·~·, Pa ( 157) 

k 1, 2, ••• , Pl 

with boundary conditions 

The probability Pr (8Pj I I, (t)) denotes the probability of the 

parameter e, j ' denoting the best . information. available by the 

evader as to the best estimates of the true parameter values. The 

probability P: ( e. k I I. ( t)) is the probability of the parameter (i)E k as 

known by the evader. The evader uses his a priori information as to 

the pursuer's parameter uncertainty in order to calculate the value. 

The probability P;'(t=\,k I IE (t)) is the probability of the parameter (i)llk 

which contains the knowledge the evader has as to the pursuer's knowl-

edge of the evader's uncertainty. The evader uses his a priori knowl-

edge of the pursuer's knowledge of the evader's uncertainty in order to 

calculate this value. 

Proof: The proof follows from Theorem 3:6 and the definition of the 

conditional expectation over a discrete range. 

Parameter Estimation 

The expected value operators eP!lE I Ip ( t) [.} and Sp ~e. i IE ( t) [.} will 

be discussed. The expected value operators may be written as 
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( 158) 

where D denotes the domain of the parameters. It is assumed that the 

parameters @p and 9E are independent. Thus, Equati'on · ( 158) may be 

rewritten as 

( 159) 

A result will be given for the probability density functions P(@P la) 

where ~ = ( x ( '1') , '1" £- [ to I t] ) • 

At this point, an assumption that need not be made for the problem in 

Chapter IV will be made. This is that the time interval over which the 

game is played, i.e., [t0 , tr] is partitioned into a finite number of 

time intervals 

part{ t 0 , tr ] 

It is assumed that the control strategies previously found are con-

tinuously applied to the system but that adaption for learning the 

unknown parameters occurs at the time t 1 • That is, the conditional 

probability deQsity functions are upoated at times t1, t 2 , ••• , tn• The 

updated density functions are then used over the next interval to com-

pute the control strategies. Thus, the probability density functions 
k k k 

may be written as p(6j,l(x(i)] 1=1) and p(@E (x(i)} 1=1) where [x(i)}1=1 

denotes the ordered sequence of states at the kth time instant for 



updating. The use of the nomenclature On will be made in order to 

n 
denote the ordered sequence [ x( i)} 1 =l,. 
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The objective is to find the conditional density function P(8lon)• 

The system equation 

dx(t) 
dt 

F(t, 8p, 8E )x(t) + Gp (t)u(t) + GE (t)v(t) + w(t) ( 160) 

may be solved and the solution given as (where i, i + 1, represent the 

corresponding sampling instant 

x( i + 1) I i+1 
;p < i + 1, i , ep , e. ) x < i ) + i ;p < i + 1 , 1", ep , e. ) [ Gp < r) u < r ) + 

( 161) 

This may be rewritten as 

x( i + 1) I i+1 [ 
ip ( i + 1 , i , e'P , SE ) x ( i ) + 0 ip ( i + 1 , T , filp , e. ) Gp ( T ) u ( T) + 

]. 

( 162) 

where 

_ I i+1 
w ( i ) = 

0 

'P ( i + 1 , T , 8p , @E ) w ( T ) d 1'. ( 163) . ]. 

The variance of w( i) is given as \Tw ( i + 1) where 

vw ( i + 1) Ji+1 
0 

;p < i + 1 , r , ep , e. ) w <r y;p r < i + 1 ) , 
]. 

( 164:) 

and W( T) is the variance of w( T). It may be shown that V~ · is·· the 

solution to the following matrix differential equation at the ( i + 1)st 

sampling time, iee., 



( 165) 

v- ( t ) = 0 w 1 

One may note that Vw is a function of 9, and @E. 

The conditional expectation is dependent upon knowledge of the 

conditional probability density function P( @I On_-;1. }' wlier~ On-1 denotes 
n-1 

the ordered sequence [x(i)}1=@• The conditional probability density 

function will now be developed. 

Lemma 1.1: A sequential equation for the evaluation of the above 

probability density function is given as 

p(@lon-1)p(x(n)lx(n-1), u(n-1), v(n-1), @) 
( 166) 

tp(Slon-1)(p(x(n)lx(n-1), u(n-1), v(n-1), @) d9 

Proof: Application of Baye's Rule 

The probability density function p(x(n)lx(n-1), u(n-1), v(n-1), 9) 

is Gaussian with mean ~n = 12(n, n-1, S)x(n-1) + G, (n-1)u(n-1) + 

~ (n-1)v(n-1) and variance V; ( i). 

At the initial stage, the ;probability density function P( 9 I x(O)) 

may be written as 

where P(9) is the a priori probability density function for the parame-

ter e. 
Since the density function p(x(n), x(n-1), u(n-1), v(n-1), 9) is 

Gaussian, it may be written as 
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p(x(n)lx(n-1), u(n-1), v(n-1), 8) = 

1 exp(-%(x(n) - µiq,)T(V;(nl8~J-l(x(n) - µX1:1)} 

1 ( 2rr) 1:1 I vw ( n I 8 ) I 
( 167) 

where the nomenclature Vw'.(nl@) includes the possibility that the vari-

ance may be a function of 8 and, thus, must be conditioned upon 8~ This 

allows one to write the required density function as the following 

sequential equation: 

(168) 

If it is known that the range of 8 is discrete where N denotes the 

total number of values of 6 in the range, then the a priori probability 

density may be written as 

N 

p(8) = l p(81) 6(8 - 81 )~ 

i=1 

(169) 

The a posteriori probability for each parameter in the range of 8 may be 

written as 

(170) 

i 1,2, ••• ,N 

where the initial probability is Pr(8 1 ), i 1, ••• , N. 

In order to relate the mathematics to a physical process at this 
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point, one may consider the problem of precision pointing and tracking 

( 6). 

One of the quantities required to track a target is the target's 

acceleration. It has been suggested by Singer (89) that an appropriate 

model for acceleration in a tracking filter would be given by 

. 
a = 

1 
a + w (171) 

where w is a white noise input. If the target were maneuvering rapidly 

the time constant, Ts, would be very large indicating little correlation 

from time instant to time instant. If the target was unaware, then it 

would be very small indicating a large correlation from time instant to 

time instant. Thus, one might choose an appropriate quantization for 9 

and apply the abpve equations in order to adapt upon the correct value 

for 
1 

Ta 

As the adaptation proceeds, the probability corresponding to the 

correct value of the parameter will converge to one while the remaining 

probabilities will converge to zero. 

One may notice that the computation of the mean is given by an 

expression necessitating knowledge of the opponent's control. Each 

player must use the information sets to obtain their opponent's control 

strategies. These will, in general, be in error since each player has 

uncertainty as to their opponent's optimal strategies since he does not 

have knowledge of the game dynamics and uncertain knowledge of the 

opponent's information. This type of problem has arisen in preceding 

papers by Ho et al. and Rhodes in the treatment of the imperfect 

measurement game. If the opponent's control is in error, then one 

would expect the estimator to be biased. 



Example 

The following example problem will be considered. The system 

dynamics are given as 

x = Srx +au+ bv + cw 

where 

Sr is a 'system eigenvalue perfectly known by the pursuer 

but unknown by the evader 

w is white noise, zero mean and unity variance. 

The performance index is given as 

J = ~sx2(tf') + ~ fr.(rpu~ + rEv2)dt}. 
ti:;, 

The system parameters are 

Sr = -2.0 rp = 2 

a = 2.0 rE -3 

b = 1e0 s = 10 

c = 2.0 tr 2.5 secs. 

x(O) 5.0 

Each player must find his measurement security, system security, 

opponent security strategy. 
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(172) 

( 173) 

(174) 

The evader has an initial probability function for his best guess 

of the system eigenvalue of (1, .5, -2.0} where each element has 

probability f · 
The strategy the pursuer plays is 

u(t) =-~PP (t)x(t) 
rp 

(175) 



where 

(176) 

The strategy the evader plays is 

( 177) 

where 

and 

(179) 

with 

The probability of the ith parameter conditioned upon the measurement 

sequence is given as 

.. ' 

exp[ -~(rij'e) }Pl' { 81 I dn-1 J" 
Pr(81 Ion):~~-'-".:.........:;~,~~~----~~~~~~~~~~~~~~~ 

3 ,, 
(180) 

,/IVi(n!e~) :~1 . __ 1 . exp[~~<~l@J')}p;·ceJ lon-1) 

J- 11Vw(nl8J )! 
where 

(x(n) - µx )TW- 1 (n-1) (x(n) - ~ ) 
II 1 II 1 

( 181) 

and 
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bv(r)}dr (182) 

The evader uses his control v(i) to. calculate µx .• However, he does 
n 1 

not have knowledge of u(i). Thus, he must use his best knowledge of the 

control that the pursuer will use in the equation for µx • 
n 1 

In this example, it is assumed that the evader updates his parame-

ter values at a rate of ten per second. 

The probability of the ith parameter conditioned on the measurement 

update sequence may be found from Equation (170) with the required mean 

µii: . found from 
n :! 

and 

i, €lj )µ -
x n"'-1 j 

+ J.i+ 1 <.!i(i + 1, i, ej )[au(r) + 
1 

(18J) 

( 184) 

The evader uses his control v(i) to calculateµ • However, he does 
Xni 

not have knowledge of u(i). Thus, he must use his best knowledge of the 

control that the pursuer will use in the equation for Pr(xlon)• 

The results by using the contributions of this research are com-

pared with the results for differential games following the derivations 

of references (56), (58), and (60). The resulting equations for the 

evader's control strategies using this derivation method may be easily 

found to be 
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(185) 

where 

p}' = -28 P * + c . i E 
P *2 E • ( 186) 

The average performance index (average over JO runs) using the 

results of this research was -0.02990. The average performance index 

(average over 30 runs) using the above results was -0.0886~. Thus, the 

pursuer was able to gain in cost when the evader used the suboptimal 

strategies as based on the equations for the evader's control found by 

strategies derived by using the method of Lainiotis. The strategies 

based on the work of this research give superior performance. 



CHAPTER IV 

SYSTEM UNCERTAINTY AND IMPERFECT 

INFORMATION GAME 

Introduction 

In this chapter, the problem of differential games under uncertain­

ty in the system matrix and imperfect measurements is solved. As in 

Chapter III, the system matrix for the game is parameterized by elements 

of a time invariant parameter vector S. The parameter vector Smay be 

partitioned into two subvectors Sp and SE where SP is known to the pur­

suer but unknown to the evader and where SE is known to the evader but 

unknown to the pursuer. Each player has a measurement subsystem that 

takes imperfect measurements of the state of the game. The measurement 

equation is a linear transformation of the state plus additive noise. 

The strategies found in this chapter are measurement security strate­

gies. That is, each player assumes that his opponent has a measurement 

subsystem that is capable of taking perfect measurements of the state of 

the game. The assumption that the parameters be updated at discrete 

instants of time may be weakened such that adaptation occurs continu­

ously. A sufficiency condition is developed and used to solve for the 

strategies for the linear quadratic problem. It is shown that for the 

open-loop feedback strategies the control and estimation separate. The 

strategies for the linear quadratic problem include the equations 

developed in Chapter III in order to calculate the necessary control 
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gains and equations in order to obtain the conditional mean of the state 

estimate. The conditional mean may be generated by use of Bucy's 

Representation Theorem and Lainiotis 1 partition theorem. 

The contributions of this chapter are as follows: 

(a) Extension of the sufficiency condition developed in 

Chapter III to include the measurement functional. 

(b) Solution to the linear quadrat.ic game under uncertainty 

and imperfect information. 

(c) The open-loop feedback strategies for the stochastic 

control with imperfect information and uncertainty may 

be found by constraining the evader's control to be zero. 

The solution extends those in (56), (58), and (60). The 

results may be found in Appendix C. 

Statement of the Problem 

The dynamical equations representing the system models of each 

player are assumed to be adequately represented by the following dif­

ferential equation: 

d~~t) = F(t, Sp, SE )x(t) +G~(t)u(t) +GE (t)v(t) +w(t) 

where the subscripts p and E denote the pursuer and the evader, 

respectively. The variables in Equation (1) are defined as follows: 

x(t)cRn is a vector denoting the state of the game at time t, 

u(t)cu where UcRml is a vector denoting the control variables 

of the pursuer at time t, 

v(t)cV where VcRma is a vector denoting the control variables 

of the evader at time t, 

(1) 
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F( t, el) ' SE ) is an n x n matrix parameterized by el) and ~ 

with continuous and bounded elements, 

9!)eR' 1 is a time invariant parameter vector known to the 

pursuer but unknown to the evader, 

e R;, a · t · · · t t t k t th Ee is a ime 1nvar1an parame er vec or nown o e 

evader but unknown to the pursuer, 

w(t)eRm is a vector of white noise inputs corrupting the 

system model, assumed Gaussian with known statistics 

Efw(t)} = 0 

E£w(t)wT('f)} = W(t)5(t-1') 

~ ( t) is a n X m1 control gain matrix for the pursuer, 

GE ( t) is a n X ma control gain matrix for the evader. 

The initial conditions are assumed to be non-Gaussian with a priori 

probability density p~ (x( t 0 ) I 9:p, SE). This probability density func ... 
Q 

tion is assumed known to both players prior to the start of the game. 

Each player has access to. certain observations or measurements of 

the state of the game. These measurements are taken to be linear trans-

formations of the state of,the game plus additive measurement noise. 

The measurement equation available to the pursuer is 

y !)• ( t) :::! I\ ( t) x ( t ) + Tl:P ( t ) :(3) 

where 

ql 
y!)(t)eR is a vector of measurements made by the pursuer 

of the pursuer's state, 
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~ (t) is a q1 X n measurement matrix with continuous and 

bounded elements, 

ql 
'r'IP (t)eR is a vector of wpite noise inputs corrupting the 

measurement model, assumed Gaussian with known 

statistics 

(~) 

The measurement equation available to the evader is 

YE (t) = J\,(t)x(t) +11E (t) 

where 

q2 
Y,E (t)tR is a vector of measurements made by the pursuer 

of the pursuer's state, 

I\ ( t) is a q2 X-n measurement matrix with continuous 

and bounded elements, 

qa 
'ilE (t)eR is a vector of white noise inputs corrupting 

the measurement model, assumed Gaussian with 

known statistics 

Efrl~(t)} = O 

(6) 

E[rJ.E (t)'l'l,;(rr)} = NE (t)5(t..,-). 
~ 

Each player has access to certain information sets that he uses to 

solve for his strategies. The sets contain the a priori information as 

to the w1certa:in parameter sets, any a priori information that he has as to his 
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oppo;nentvs uncertainty, the measurement functional, and implicit in the 

information set is the assumption that the player's opponent has perfect 

measurements of the state of the game. The information set of the pur-

suer at time tis denoted by Ip(t). Similarly, the information set of 

' 
the evader at time tis denoted by IE (t). For every time te[to, tr) 

the information sets IP(t) and IE (t) of the pur~uer and the evader, 

respectively, are 

and 

where 

PE 9 <ei,,)UpF. .. <sE )U<Yp(,.), ,.e[to, tJ) 
p 9E·· 

p~ (x( to) I Sp, eE ) is the a pr1iori probability density function 
Q 

for the initial conditions, 

is the probability density function repre-

senting the a priori information known by 

the pursuer about the unknown parameter 

vector 9E , 

P9. (Sp) 
p 

is the probability density function repre-

senting the 'a priori information known by 

the evader about the unknown parameter 

vector Sp, 

(7) 



is the parameter vector known by the 

pursuer, 

is the parameter vector known by the 

evader, 

is the probability density function 

representing any knowledge the pursuer 

may have about the knowledge the evader 

possesses as to the parameter vector Sp, 

is the probability density function rep-

resenting any knowledge the evader may 

have about the knowledge the pursuer 

possesses as to the parameter vector SE, 

is the probability density function rep-

resenting any knowledge the pursuer has 

about the evader's knowledge of the pur-

suer's uncertainty of the parameter vecto~ 6E, 

is the probability density function repre-

senting any knowledge the evader has about 

the pursuer's knowledge of the evader's 

uncertainty of the parameter vector ®p , 

(yp(r),re[t0 ,t]) is the infinite dimensional measurement 

functional of the pursuer, 

( YE ( T), rE:[ t© , t J) is the infinite dimensional measurement 

functional of the evader. 
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The dynamics and the information structure of the game is given by 

Equations (1) and (7). It is assumed that the goals of each player are 



adequately incorporated in the scalar functional known as the perfor-

mance index, i.e., 

r t:!' 
J = E[Y.!x:T (t:!' )S(t:!' )x(t:!') + ~ (xT (t)Q(t)x(t) + 

. to 
(8) 

uT (t)Rp (t)u(t) + vT (t)RE (t)v(t) )dt} 

where E[·} denotes the expectation over all random processes under the 

bracket and where 

S( tf) is a positive semi-definite,symmetric matrix, 

Q(t) is a positive semi-definite, symmetric matrix, 

~ (t) is a positive definite, symmetric matrix, 

Rr ( t) is a negative definite, symmetric. matrix. 

Thus, the performance index in Equation (8) is a functional mapping 

the ~tate space and control space into the reals, i.e., 

I!."· 
J:R XU XV ..... Hl 

Each player must choose closed-loop control laws as was previously 

explained. Thus, the pursuer must at each time te[t0 tf) find the func-

tion mapping the information set available to him at time t into the 

admissible control set such that the performance index is minimized, 

u *: [ Ip ( t)} X [ t 0 , t J -> U cHm l • ( 10) 

Similarly, the evader must at each time te[to, tf) find the function 

mapping the information set available to him at time t into the admis-

sible control set such that the performance index is maximized, i.e., 
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The control strategies u* and v* are assumed to be the minimizing and 

maximizing control strategies, respectively. The set of admissible 

controls U is assumed to be a subset of LafI, R'" 1 } where .,I= [ti!), tr], 

and the set of admissible controls Vis assumed to be a subset of 

Each player wishes to choose his control strategies such that the 

following inequalities are satisfied 

E[ J ( u* , v*) l IP } 5. E[ J ( u, v*) IP } 

( 12) 

E[J(u*, v) I IE}$'_ E[J(u*, v*) I IE}. 

These inequalities were discussed in Chapter III. 

A sufficiency condition based upon the results obtained in Chapter 

III will be shown now. 

Sufficiency Condition 

Theorem 4.1: It is sufficient that there exists two scalar functions 

VP and VE where 

( 13) 

and 

VE (x(t), t) ( 14) 

in order to solve for the closed-loop optimal strategies u* and v*. 

The functions VP and VE are twice continuously differentiable in x(t) 

and continuously differentiable int. The functions are defined as 

the solutions to the following equations 

clVp 
L:p == ot + ,ff! V p + Q ( x ( t) , u ( t) , v* ( t) , t) ( 15) 
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oVE . 
4 = ~ +£.EVE + G(x(t), u*(t), v(t), t) 

where the differential generators are as shown in Equations (50) and (51) 

of Chapter III and 

lvp l+lvp l+lxllvp · l+lxl 2 IVP 1<cc1;1xl 2 ) 
T x xx 

, I I j 

!vE l+lvE 'l+!~l !vE 't!!+!xla lvE · · l<C(1+lx!a) • 
T x xx 

The boundary conditions for the above equations are 

VP (x(tf), tf) = VE (x(t,), tr) = G(x(t,), t,). ( 17) 

The functions 4, and 4 are such that 

min l } u€U E[L;,(x(t), u(t), v*(t), 9, t) I,(t) = 0 ( 18) 

and 

:;~ E[4 (x(t), uT (t), v(t), 9, t) !rE (t)} = o. ( 19) 

Proof: The proof follows from Theorem 1 of Chapter III where the 

information sets have been redefined as in Equation (7) of this chapter. 

Linear Quadratic Problem 

The following lemma will be used to solve the problem outlined in 

the previous section. 

Definition: A statistic g(t, y(t)) a function of the data 

(Y(t) = (y1 (,-), TC[t0 , t]), i = P, E) at time twill be called equivalent 

to the distribution p(A!Y(t)) if the distribution depends on the data 

only through g[t, Y(t)], that is 

p(A!Y(t)) = p(Alg[t, Y(t)]). (20) 

The above definition denotes that if there exists statistics(sufficient 

statistics) satisfying the above conditions, then the dist~ibution may 
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be replaced by these statistics. 

Lemma 4.1: The conditional mean ~(t le) and th,e distribution p(9IY) 

are statistics which are equivalent to the distribution p(x(t) I Y(t)) 

for the system as defined in Equation (1). 

Proof: The use of Bayes rule allows one to write p(x(t) I Y(t)) as 

p(x(t) I Y(t)) = p(x(t) I Y(t), 6)p'(9IY). (21) 

for the linear problem under· consideration it is well known that the 

i;;tatistie ;(tie) where :(tie) is the expected value of x(t) conditioned 

on Y(t) and 9 is equivalent to P(x(t) !r(t), 9). This is the conditional 

mean generated by the K;alman filter whic)J. is valid. it: 9 is known~· · Thus, 

p(x(t) !Y(t)) may be written a.s 

P(x(t) IY(t)) = P(x(t) ,:(tie), p(e!Y)). (22) 

A 
Lemma 4.2: Let x be a random variable with mean x and variance P. 

Then, 

E{xT~} 

Proo~: One may write 

Since 

E{x} 

this may be rewritten as. 

" " xT Qx + tr QP • 

" :::: x, 

(23) 

(24) 

(25) 
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Also, 

.,. 

(26) 

One may talce the expectation and obtain 

r A T A } [ A A T ]} E (x=x) Q(x=x) = Eftr Q(x-x)(x-x) 

= tr QP. 

Thus, 

Efx!.Qx} 
,. ,. 

== x T Qx + tr QP. (28) 

The problem outlined in the previous section will now be solved. 

Theorem1±.2: The measurement security, system security, opponent 

security, strategies u* and v* for the pursuer and the evader, respec~ 

tively, for the system defined in Equation (1), the cost in Equation (8), 

the measurement subsystems in Equations (J) and (5), and the information 

structure as in Equation (7) are given as 

u*(t) 

v*(t) = -~ 1 (t)e,; (t) E [PE (t)} E. (::(t)l·ep )} 
e'P , sE I rt c t ) Sp I IE c t ) 

where P'P(t) and PE (t) are given as the solutions to Equations (94), 

(95), (96), and (97) of Chapter III. The condi t.i,onal mean denoting the 
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best estimate of the state of the game given the measurement functional 

is given ai;; 

~d 

~ ( t ) = E [ ~ ( t ) le~ ) } 
9E I I, co 

~ (t) "' E [:~(ti 9~)} 
e, I rE c t) 

(JO) 

(;31) 

A . 
where ;x:( t) 91 ) , i == P, E is the mean conditioned upon both the .measurement 

' 
functional and 91 • 

Proof: The Hamilton=Jacobi equations may be written as 

av- av,. 
min 1' 1' 
ucU E[ot + ox [F(t, SJ!, 9E')x(t)+G.,(t)u(t) +. 

G.E'(t)v*(t)] + Ua(xT(t)Q(t)x(t;) + uT(t)R,(t)u(t) + 

-:,2y 
. B n o · ]) 

v* T ( t) ~ ( t ) v* ( t ) ) + J1a t t O a m~ J j r, ( t) } == O 
1 :::1 .,::1 Xi Xj 

where m1 J = [w(t)} 1 J 

and 

max 
v€V 

~ (t)v(t)] + Ua(xT (t)Q(t)x(t) + u~r (t)R'.P (t)u*(t) + 

These equations may be rewritten as 

(32) 

(JJ) 



and 

where 

min 
ueU 

I 

av, avJ 
E{ ot + ox [F(t, 9,, 6e; )x(t) + ~ (t)u(t) + 

Ge: (t)v*(t)] + }2(xT (t)Q(t)x(t) + uT (t)R, (t)u(t) + 

max 
ve:V 

. r 
oVE oVE 

E['ot + ax; [F(t, 9,, 9.;)x(t)+G_,(t)u*(t) + 

~ (t)v(t)] ,1-}2(xT (t)Q(t)x(t) + u*r (t)R, (t)u*(t) + 

cf VE 
v T ( t ) R ( t ) v ( t ) ) + }2 · ~ i:; ax: c5 m .' j I v_ ( t ) , lE ( t ) .., "E ( t ) } = 0 ·e i :1 j :1 i 'Xj i ~ ,I.I 

Y'P ( t) = ( y, (:r) , te: [ t 0 , t ) ) 

The use of Lemma4.1 allows one to write the equations as 

and 

min 
ue:U 

av, 0'1 
Ef ot + ox [F(t, 9,, 9E )x(t) + G, (t)u(t) + 

<t (t)v*(t)] + J-2(xT (t)Q(t)x(t) + uT (t)R, (t)u(t) + 

I'P ( t ) - Y, ( t ) } = 0 

max 
ve:V 
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(34) 

(35) 

(36) 

(37) 
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GE (t)v(t)] + Ui(xT (t)Q(th::(t) + u*T (t)~(t)u*(t) + 

oav 
n · E A · 

E d cl ml j. l XE ( t l ei, ) , P ( ~ I Y. ) , 
,l = l :X:1 XJ 

n 
yT (t)R,; (t)v(t)) + J1i 't 

. l = l 
(38) 

lE ( t) - YE ( t) } = 0. 

Minimization and maximization yields 

IP ( t ) ..,. YJI ( t ) } (39) 

For convenience the following nomenclature will be used 

( /,i,Q) 

Thus, the equations may be written as 

oVJI 1 . 

Ui(xT(t)Q(t)x(t) +E[ ox !A1'}GJl{t)Rj;1 (t)G;(t) 

oVP oVE T . ovE 
•E[-~ A,J + E[ ox I AE }GE (t)~ 1 (t)~ (t)E[ O:lC I AE} + 

n n 'o2V1' 
Ui ·z:: E m1 3 IAJI] = 0 

1=1 j:lOX10Xj '. 



and 

max 
vev 

ovE ov., 
·Efrx1AE}-G_ll(t)R; 1 (t)G;<t)Ef ox IA'.P} + 

o~ . _ o~ 
Y:z(xT(t)Q(t)x(t) +E[ ox IA'.P}Q.,(t)R;1 (t)~(t)E[ ex JAP} 

The Hamilton-Jacobi equations may be rewritten as 

oV 
QE~ 1 G;E[ o; IAE }] + Y:z(~ (t)Q~ (t) + tr QPP'.P + 

oV T oV oV T 

E [ o: I A,] G.p R; l G.; Er o; I AP } + E f o~ I AE } ct ~ ± 

and 
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(42) 

(43) 

(44) 



where 

~ < t > = . E . f ~ < t I eE ) } 
Se: I Yi, 

!E(t) = E r!E(t!e,)}. 
e, I Yt-
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(45) 

The solution to the Hamilton-Jacobi equations will be ti:lken in the form 

VE ( t) 

= }12 ,E [~T(tle~)}P,(t) .E [~<tleE)}+A,(t) ,,~ ~,~ 

::: }12 E [~T(t!e,)}P~(t) E .[~(tle,)}+A~(t). 
~,~ ~,~ 

This yields the optimal open-loop feedback strategies 

u*(t) = =R; 1 (t)~i(t) E .[P,(t)} E {~(tl9E)} 
e, , eE I 1i, c t ) eE I t, 

v*(t) = =~ 1 (t)Ql(t) E ,[P~(t)} E [~·(tje,)}. 
e, , eE I Ir < i, e, I Ye 

(46) 

In a similar manner as in Chapter lII, the above Hamilton-Jacobi equatiohs 

will be coupled. Thus, each player will make the asS.Jlilption that his opponent 

has a measurement subsystem that takes perfect measurements and that 

his opponent is playing the security strategies as outlined in the 

statement of the theorem. Since each player does not have a measurement 

subsystem taking perfect measurements, he uses his best estimate of the 

state as his best knowledge of his opponent's measurements. One may use 

the assumption and the assumed solution form into the Hamilton-Jacobi 

equations as in Chapter III. The equations may be placed into the 

:following :form. 
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The Hamilton-Jacobi equations may be rewritten as follows with the 

above assumptions 

and 

. . ' 
F(t, s'P, ee: )TpJl Ct>+ Q(t) - PJl <t>o'P (t)R; 1 Ct>oii Ct> 

, E .[Pi,(t)}- E. [P:p(t)}Oi,(t)Rj; 1 (t)~(t)Pi,(t) -
eJl , eE 11 11 ct) e'P , eE Ir p ct) 

P~(t)G~(t)~ 1 (t)Gj(t) .E [PE(t)} -
9p , Se: !1 E ( t ) 

E (PE (t)}~ (t)~ 1 (t)<¥ (t)P'.P (t) + .E [P:p (t)}~ (t) 

ep , sE I i. c t ) Sp , eE h " c t , 

"Rj; 1 (t)~ (t) .E fP'.P (t)} + E ,fPE (t)}ct (t)RE1 (t) 

Sp , eE I Ip c t ) Sp , ~E lie c t , 

. A • 
·~ T(t) E ,[PE (t)})x'.l,(t) + tr QP + AP(t) + 

9p , Se: I IE c t ) 

fl' oPE (t) 
Ef~ r <t> < ot + PE (t)F(t, Sp, eE > + 

(48) 

F(t, 9:p, SE )Tp~ (t) ,- PE (t)G,(t)~1 .(t)~ (t) ,E fP~ (t)} - (49) 
ep , sE I Ip c t , 

.E ,{PJt(t)}Gp(t)R; 1 (t)~(t);p~ (t) - PE (t)ct (t)Hi 1 (t) 

ep , eE I 1'P c t) 

·~ (t) ,E {Re: (t)} ~ , E. fPE (t)}~ (t)~ 1 (t)Ci (t)PE (t) + 

e" , eE I Ie: c t, ep eE I 1E ct) 
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Q(t) + E 'fp'P (t)}~ (t)R; 1 (t)G); (t) .E [PJ> (t)} + 

e'P , eE Ir J) c t ) e'P , eE I r'P c t ) 

.E [PE, (t)}Ct (t)R;1 (t)~ (t) ,E ,fP~ (t)})~ (t) + 

9:p , 9e: Ir E ct, 9p , SE Ir E ct, 

Thus, the strategies consist of solving the same equations for the 

c,ontrol gains as in the perfect ;i.nfonnatio.n problem except that the 

expected v~lues used are conditioned on the measurement ·-:functional and 

not on the state trajectory. The best estimate of the state is used for 

feedback. Thus, separation under the assumptions occur. 

It may be established that the strategies for the imperfect infor-

.mation problem are the same as the perfect information problem except 

that the controller is cascaded with an estimator. Thus, one may use 

the same equations as in the theorems of Chapter III for the control 

gains. In order to eliminate redundancy, the equivalent theorems will 

not be proved, The particular security strategy may be found by use of 

the control gains for the particular security strategy in Chapter III 

with a state estimator used.for state feedback. 

The type strategies considered in this chapter are measurement 

security strategies. The subclass of measurement security strategies 

considered in this chapter are poth system security strategies and sys-

tern risk strategies. Since each player has uncertainty in the game 

dynamics in general the error in the estimate of the game state is not 

realizable by each player. It is recognized that in specific problems 

where one player has no uncertainty as to the game dynamics the player 

may be able to realize his opponent 0 s error in his estimate of the game 
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dynamics. In general, the player runs a very definite risk by use of a 

measurement risk strategy. Therefore, the measurement security strat-

egy will give the player a conservative and more realistic strategy. 

This may be easily seen since each player does not have perfect knowledge 

of the game dynamics. Thus, he runs a risk of his state estimator not 

performing adequately versus that of an optimal Kalman filter. Any attempt 

on his part to reconstruct his opponent I s state estimator is extremely 

nonconservative as this reconstructed estimator may be in general at best 

inaccurate and be at worst totally erroneous. There are three basicrea-

sons. The players, in general, only have a probabilistic representation 

of his opponents uncertainty and, thus, runs a risk because of this. 

Each player must utilize his opponent I s control law in both his estimator 

and his opponent I s estimator. Since his estimator will be biased because 

of an erroneous opponent's control law caused by his uncertainty, any 

further uncertainty in his opponent's control law may be compounded by 

trying to reconstruct his opponent's estimation error. Since he does not 

have his opponent's measurement subsystem, he certainly cannot recon-

struct his measurement functional. 

The required parameter and state estimation will be discussed. 

Parameter and State Estimation 

The expected value operators E · [ •} and E · [ •} will 
ep , eE I Ip < t) ep eE I 1E < t) 

be discussed. The expected value operators may be written as in Eq~a-

tion (159) in Chapter III, i.e., 

(50) 

As in Chapter III, the above equations may be rewritten as 

e e EII (·} = Jn (·)p(e,11,(t))p(SE lr:i>(t))d@pd8E 
P'E p(t) · 
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9 9 El 1 [ • } = J ( · ) P ( e, I rE ( t) ) P ( eE I rE ( t) ) d8, d9E • 
JJ'E E(t) D 

The probability density functions for p(9IY) where Y is the measurement 

functional (Yer) will be developed as ip reference (57). This will allow 

one to obtain the necessary equations for parameter adaptation. 

Also to be discussed in this section is the estimator in order to 

obtain the best estimate of the state x(t). This estimate is necessary 

since the measurement subsystems of each player do not necessarily ob-

~erve each state component directly but through a linear transformation 

which is also dr~ven by additive white noise. 

Theorem ~.J: (Lainiotis Partition Theorem). The minimum variance 

estimate of the state of the system 

x(t) = F(t,9)x(t) + ~(t)w(t) 

where 

x(t) is an n-vector denoting the state of the system, 

8 is an p-vector of unknown time-invariant parameters 

with a priori probability density P(8), 

F(t, 9) is an nxn system matrix parameterized by 9, 

w( t) is an m-vecto:r of white noise inputs with zero mean 

and variance, 

E[w(t)wT(r)} = W(t)5(t-r) 

which is observed by the measurement process 

where 

y( t) 

H( t) 

ri( t) 

is given by 

y(t) = H(t)x(t) + ri(t) 

is an q-vector of measurements, 

is an q X n measurement matrix, 

is an q vector of white noise inputs with zero mean 

and variance, 

E(ri(t)riT(r)} = R(t)6(t-r) 

j(tlot) = J ICtlo,, 9)p(elot)d9 

(52) 

(53) 

(5~) 

(55) 



where 

Ot represents the measurement functional, i.e., 

O t = [ y ( T) , Te L to , ~) } 

~(tlot, 9) is the minimum variance estimate of the state 

given the parameter vector 9 and the measurement 

functional, 

p(@lot) is the probability density ot the parameter vector 

9 conditioned on the measurement functional. 

The conditional state error covariance matrix is given as 

where 

P(tle) is the error variance for the Kalman filter conditioned 

on knowledge of 9. 

Proof: The minimum variance estimate x(t O) may be written as 

The use of the smoothing properties of expectations allows one to 

write ;(tlot) as 

where 

;<tlot) = E[E[x(t) lot, e} lot} 
e. 

J~<t lot, S)p <elot)d9 

E{x(t)jot, 9} 
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(57) 

( ,58) 

(59) 
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which is the well known Kalman filter estimate of a linear system. 

This will be discussed later. The probability density function p(elot) 

is required. This will now be derived by use of Bucy 1 s Representation 

'l'heorem (Lemma A.:1 · in Appendix A). 

One may apply Baye•s ;rule to obtain 

p(x(t), elot) 

p(Sjot) :=p(x(t)lot, 9)' 

Now, one may define a new state vector Xa by augmenting the state 

vector x with 9, i.e., 

[ 
x(t)J 

xa ( t) ;,:: .. e '"". . 

Bucy's Representation Theorem (see Appendix A) may now be µsed to 

obtain 

E0 t[exp f10 lxa(t)}Pfxa(t)} 

E?t [exp H°} 

where p[x~(t)} = P[x(t) j9}P(9) 

and 

I t ' 
H° = x'r (cr)Ht (cr)Ir 1 (cr)y(cr)dcr-

to 

t 
= J xT( GT)HT ( cr)R"" 1 ( (J')Y ( t:r)dcr -

to 
t. . 

~ J J jH( cr>:x:( a> I ~1 (a) dcr • 
to 

(60) 

(61) 

(62) 

(63) 



Th~ Representation Theorem may be applied ~gain to obtain 

p(x(t)!Ot, 9), i.e., 

p(:x:(t) lot, 9) = p(;x:,(t) I Ot, 9) 

= 

Th~s, Equation (60) may be rewritten as 

where 

Thus, 

E0 t [ exp I-P I e} p ( e) 
p(S Ot) = ---·----­

E0 t( exp If'} 

E0 ~[exp H0 j9}p·{9) 
= JE0 tf?XP If' l9}p(9)d9 

t ' 
exp [ J ~T ( O' j O. , 9) HT (er) R'" 1 ( O' )y ( O') dO') -

to O' 

I 1: A 
% 11 H < er >x < er I o , e:) 11 2 _ 1 do-}p < e) 

to er R ( cr) 

•t J exp [ I ~T ( O' I 00' , 9) HT (er) Ir 1 (er) y( er) dcr -
- to 

the required result. 
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(64) 

(65) 

(66) 

(67) 
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Theorem4.4: (Lainiotis Partition Theorem over a discrete parameter 

range.) 

If the parameters are defined over a discrete range, then the con-

ditional probability Pr(91 lot) for every parameter index i is given as 

(68) 

Proof: Theorem 4.J is used with the following sub st i tut ion and 

performing the required integrations 

(69) 

Lemma 4o5: (Kalman Filter) 

The minimum variance estimate of the state o:f the system 

x(t) = F(t, S)x(t) + G(t)w(t) (70) 

where 

x(t) is an n~vector denoting the state o:f the system, 

9 is an P=vector of known, deterministic parameters, 

F( t, 9) is an n X n system matrix, 

w(t) is an m=vector of white noise inputs with zero-mean 

and variance 



E(w(t)wT (T)} = Q(t)5(t- r) 

which is observed by the measurement process 

Y(t) = H(t)x(t) + v(t) 

wnere 

y(t) is an q-vector of measurements, 

H(t) is an q Xn measurement matrix, 

v(t) is an q-vector of white noise inputs with zero mean and 

variance 

E(v(t)vT(r)} = R(t)·5(t- ·T) 

is given as the solution to the Differential equation 

where 

K(t) is given by 

K(t) = P(t)HT(t)R"" 1 (t) 

and 

P ( t ) = F ( t ) P ( t ) + P ( t ) FT ( t ) = P ( t ) HT ( t ) Ir 1 ( t ) H ( t ) P ( t ) + 

G(t)Q(t)GT(t) 

where 

P(t0 ) = P0 

~(to)= E(x(to)I@}. 
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(71) 

(73) 

(75) 

(76) 
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Proof: This is the well known Kalman filter and the proof may be 

found in several references (68) (52) (21). 

Example 

The e~ample problem in Chapter III will be studied again except 

that instead of the evader having a measurement subsystem capable of 

obtaining perfect measurements of the system state, the measurement 

subsystem is noisy, i.e., 

y x + v (77) 

where 

vis white noise with zero mean and variance 

cov(v) :;:: 10.Q • (78) 

The pursuer has perfect information of the state. Each player plays a 

measurement security, system security, opponent security strategy. The 

pursuer's strategy is as shown in Equations (175) and ( 176)" in Chapter 

Chapter III. · The evader's strategy is 

v (79) 

where P~(t, 91 ) is as in Equations (178) and (179), Pr(9~lon_1) may be 

d,etermined by using the Turtition Theoran. Tne variable ~( t I 91 ) is the 

Kalman filter best estimate conditioned on the parameter 91 • 

The results of the research are compared with the strategies ob-

tained by using the derivation method in the work in (58) (60) and 

extended to the differential game, i.e., 
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(80) 

,fc 
where P! is the solution to Equation (186) in Chapter III. 

The perfonQance index using the results of research yielded a 

performance index average over 200 runs of.1-77:'.wnile .the results 

using Equation (80) yielded an average of 1.~7. The results of this 

research lead to improved performance index. 

Again, reference (60) did not claim optimal results. However, 

again it leads to an appealing engineering solution. 

A typical optimal sample run is shown in Figures 1~~. In Figure 1 

the state trajectory is plotted versus time. Figure 2 shows the 

evader's control law and Figure J shows the pursuer's control law. 

Figure~ contains a pl9t of the parameter pro~abilities versus time. 

One may note that the adaptation talces place in ....0.5 sec. 
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Figure 1. State Trajectory of System 
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Figure 2. Evader's Control Trajectory 
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Figure J. Pursuer's Control Trajectory 
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Figure 4... Parameter Probabilities 



CHAPTER V 

APPLICATIONS 

Intro duct ;ion 

This chapter will address itself to the use o:f the methodology o:f 

solution for di:f:ferential games under uncertainty to investigate an 

area o:f proven and potential application. The area is that of target 

i:\'ltercepti.on. The uses o:f target interception theory include that o:f 

missil,e guidance, ai:r,-to-air combat with aircra:ft, and the uncooperative 

interception o:f vehicles in space. The problem o:f precision pointing 

o:f a laser beam while tracking a target might be considered that o:f 

target int~:rception. In t):le previous problems, it is necessary to :find 

control laws :for a vehicl~ to insure that the vehicle will be as close 

as possible to the target at some ~ime. In the pointing and tracking 

problem, one needs to :find control laws :for the pointing and tracking 

control system to insure that the beam illuminates the specified point 

on the accelerating target :for a length o:f time. 

In the development o:f guidance laws :for target intercept as above, 

one is faced with the fact that if the models o:f the interceptor and 

the target were depicted as the full six degree o:f :freedom equations, 

then the equations would be both extremely dif:ficult to work with and 

it would be impossible to find feedback. :forms :for the guidance laws. 

Thus, in the past, very simple engagement models were used in order to 
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depict the kinematics of the interceptor~target geometry. Several 

references for this area are (1), (2), (39), (25), and (31). 

121:i: 

In the engagement models, it was assumed, except for reference (25), 

that the interceptor control acceleration did not lag behind the com­

manded acceleration. !his is, of course, erroneous due to the fact that 

one has lags due to computation time, actuator lags, vehicle responsive­

ness, and smoothing time of measurements of the target motion. In the 

development of new intercept laws in this chapter, the following assump~ 

tions will be made. First, the control acceleration lags the commanded 

acceleration by a first-order lag. This applies to both interceptor 

and target. Secondly, neither player knows the time constants of the 

lags associated with his opponent. Thirdly, it is assumed that each 

player has a direct measurement of the relative range vector and 

velocity vector corr~pted with noise. It will also be assumed that the 

pertinent dynamics of the two vehicles be described by linear equations. 

The interceptor will play measurement security, system security, oppo­

nent security strategies, and the target will play measurement security, 

system sec;:urity, opponent security strategies. 

Statement of the Problem 

A general problem of interception will be stated and a solution 

propos~d in this section. In the next section, the results will be used 

more explicitly in the examples. The states of the pursuer and the 

evader are assumed to be described by the following differential equations 

Xp ( t ) = F '.P ( t , 9p ) Xp ( t ) + GP ( t ) u ( t ) 

( 1) 

~ (t) FE ( t , 9E ) ~ ( t ) + GE ( t ) v ( t ) 
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where the definitions of the variables are as in the previous chapters 

and dim ~ = dim ~ • 

!he performance index is the terminal miss 

(2) 

where the, matrix A is of the foi;-m [I : o]. In order to limit the control 

the following inequality constraints will be used (it is evident that 

each player will use all control available to him-~ thus, the equality 

will be used), i.e., 

(J) 

= Ee: • 

The constraints may be adjoined to the performance index. Thus, 

Except for tpe consideration of the parameter sets Sp and 9e: at this 

point the problem formulation follows that of reference (~O). A new 

state vector will be defined, :i,.e., 

,. 
= A[qi:p(tr, t, 9p)~(t).,.q>E(tf, t, 9~):x:r;(t)} (5) 

where qi'.P(tf', t, 9:p) is the transition matrix for the pursuer's dynamics 

and q;E (tr, t, 9E) is the transition matrix for the evader's dynamics. 

It may be shown that the new state equations become 

. 
z ( t , 9:p , 9r ) = G'.P ( t ~ 9:p ) u ( t ) + GE ( t , eE' ) v ( t) (6) 

where 



and 

The performance index may be rewritten as 

The pursuer has the information set 

I'P (t) ::,; P9E (SE) U Sp U Ypl (T), 

TE([t0, t]) U (yE 1 (T), TE:[to, t]). 

where Yp , YE are linear measurements of Xp ( t) and ~ ( t) assumed 
2 2 

corrupted by additive noise. 

The evader has the information set 

'T°E ( [ to , t J ) L,J YE l3 ( T) ! TE: [ to , t J ) • 

where Yp , yE are a linear measurements of x...(t) and xE (t) assumed 
1 1 --., 

corrupted by additive noise. 

The Hamilton-Jacobi equations may be written as 

ov'P ov'Pr _ 
min . E [ ~ + -0- ( Gp ( t , ®p ) u ( t ) + GE ( t , SE ) v ( t ) ) + 
uE:U e'P , SE I Ip ( t) z 

%(uT (t)~ (t)u(t) + v*T (t)~ (t)v*(t) )} = O 

ov av r 
max E E 
ve:V E [~ + oz (Gl>(t, 8p)u(t) + GE (t, e. )v(t)) + 

8 p , SE I IE ( t ) 

%(u*T(t)~(t)u*(t) + vT(t)~ (t)v(t))} = O. 
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(7) 

( 10) 

(11) 

(12) 

(13) 



Extremization yields 

or 

u*(t) 

' 
. avE 

v*(t) = ..-Ri 1 (t) ,E [GE (t, 9e:) a.z} 
9i:,, 9r I IE c t ) 

a VE 
v*(t) = -~ 1 (t)G~ (t, eE) E -r Oz} · 

9p,9E I IE c t) 

The solution will be taken in the form 

T 
v p ( t ) = 'V2 E f z < t , ep , eE ) } Pp < t ) E f z < t , ep , eE ) } + 

~,~ ,,~ 
T 

VE (t) == 'V2 E [z(t, 91P eE )} PE (t) E .{Z(t, Si:,' eE )} + 
· 9p I I.: 9i:, 1-.rE 

Thus, 

u * ( t) -R; 1 ( t) ~ ( t, 9p ) E [ P !l ( t)} . E { Z ( t, 8p , 9E ) } 
ep,eE I Ip ct) eE I Ip 

v*(t) = -~ 1 (t)G~ (t, e~) E [P~-(t)} .E fz(t, 9p' e~)} 
ep,eE I IE c t) ep I rt 

The above may be rewritten as 

u*(t) = -:-R; 1 (t)Gp (t, 9p). ,E {Pp (t)}zp (t) 
ep,ee. I rp c t ) 
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( 14c) 

( 15) 

(17) 

(18) 



where 

~'P(t) = E [z(t, 9p;.9r)} 
9E b:~ 

~(t)"' E [Z(t, Sp, E\)} 
e'P I xE 

The Hamilton-Jacobi equations may be written as in Chapter IV. This 
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( 19) 

yields the following equations foJ" the gaiJ:ls. The gains for tl;le pursuer 

are 

and 

• ~(t)GE (t)R; 1 (t)G/(t)P'P (t) - E [P'P (t)}Gi, (t)Rj;1 (t) 

e'P,eE Ir 'P c t ) 

G:(t) ,E [P'P (t)}-·TE (t}GE (t)~ 1 (t)G/(t)TE (t) 

e'P,eE Ir 'P c t ) .. 

The ga"ins for the evader a;i;e 

oPE ( t) T 

at ==PE(t)GE(t)~ 1 <t)GE(t) E [PE(t)}+ E [PE(t)}GE(t) 

9'P,9E lrE ct) Si,,9E lrE ct) 

(20) 

(21) 

(22) 
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and 

(23) 

The boundary conditions are 

Interception Problem 

The problem to be considered is an interception problem in space. 

This problem was first treated by reference (20). However, the assump-

tion was made that the control acceleration equaled the commanded 

acceleration. This , is · not true, in ·general:, due to actuator· lags 

and engine lags. Thus, the assumption that the control acceleration 

lags the commanded acceleration by a first order lag will be made. It 

is assumed that each player is observing the relative range and the 

relative velocities between the two vehicles. The state equations are 

as follows 

. 
r;, ::: v'P 

. 
a:P . v'P ::: 

. 
F'P ~ ::: ~+ u 

( ~"") . 
rE ::: VE 

• VE aE 

. 
aE ::: FE ~+ v 
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where 

r 1 , i = P, E, is the position vector of a body in three 

dimensions, 

P, E, is the velocity vector of a body in three 

dimensions, 

P, E, is the control acceleration, 

P, E, is the gravitational force per unit mass, 

P, E, is a diagonal matrix of time constants represE!ntfng 

the first order lag model. 

It will be assumed that f:P ~ fE. That is, the positions in space are 

near enough such that the differences between the! two gravitational 

forces are negligible. The performance index to be considered is 

J = ; 1 lr:ii ( tr ) - 1:'e ( tr ) 11 2 + 72 J t, ( ep 1 uT u + Ci 1 vT v) dt. 
to 

(25) 

The state equations for the pursuer may be written in matrix form 

as 

rP 0 I 0 rp 0 

. 
VP 0 0 I VJ) + 0 u (26) 

. 
0 0 FP I a ~ 

where I is a 3 x 3 identity matrix and 

-1 A-1 
0 0 

FP 0 -1A 
.· 2 0 (27) 

0 0 
-1 

tf3 
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The state equat;ions for the evaqer may be written in matrix form as 

. 
0 I 0 0 rE rE 

. 
VE -- 0 0 r VE + 0 v (28) 

<le: 0 0 Fr ~ I 

wherE;l 

~y 
i-:1 0 0 

-1. 
FE = 0 /Ti 0 (29) 

0 0 
-1 /-'ft 

The transition matrix for each playe~ may be written as 

cpp(t, tc, ) = exp(Ap ( t .. to)} (30) 

and 

ipE ( t, ti;, ) exp(AE (t - to)} (31) 

where 

0 I 0 

AP = 0 0 I 

0 0 Fi:, 

(32) 

0 I 0 

AE = 0 0 I 

0 0 F 

Thus, since 

(33) 



and 

(J/,i,) 

then 

(35) 

or 

(J6) 

le: (t,, t) ~ exp[Ae: (t, - t)J • 

Thus, the matrices necessary to solve the auxiliary problem are as 

follows 

A [I: o] where I is a 3 X 3 identity matrix and O is a 

3 X 6 null matrix, (37) 

The transition matrix for the pursuer may be found a.s 

I I Bi 

e:x;p[~ 'T"};:: 0 I Ba (38) 

0 0 B 

where 



0 

0 ~b 1 [exp(b22'T') - b22T- 1} 
22 · 

0 

b.t '[exp(bn.T)-1} 
11 

0 

0 bt · [e:xp(b22T) - ;1} 
22 

0 

0 

0 

0 

0 O b 1 [exp(b ,-) .. 1} 
33 33 

.....,.__ 
exp bn T 0 0 

% = 0 exp b22! 0 

0 0 exp lha 'T' 
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(39) 

< 4:o) 

d th .b th .. th 1 t' f F an · e 1 1 are e ii - ~ emen . o P • The transition matri~ for the 

evader may be found as 

.E 
I I I\, 

AE '1" I 
£ .. 

exp :,:; 0 B" 
~· 

0 0 
£ I;3s 

r, 

E. 
matrices tl;le B1 matrices except where the Bi are of the same·form as 

that the elements b11 the .. th element of F£. are ]. ]. 

The pseudo control gains Gi, and GE may be written as 

GP ( tr , t) = Bi (t:t' t) 

(4:J) 

GE ( tr ' t) 
. ! . 

t). = B1 ( t 11 , 
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The new pseudo state vector may be written as 

Z( t) = [I I Bi] r, - [I I Bi] 

Vi, 

(44) 

Thus, t~e control law for the pursuer is 

u(t) = -c,B:i.T E fP,(t)} E [Z(t)} 
e,,ee: Ir , < t ) Se: IY, 

and the control law for the evader is 

v(t) = =ee:BiT .. ET fPe: (t)} .E fz(t)} • 
e,lJE' Ir! ct) e, lt·r; 

(46) 

The gain equations may be written as 

oPp T T 

ot = P,Bi c,Bi E[Pp} + Ef P'P }Bi cpBl Pi, + 

· e: e:T e: 1:T } . T } 
P'.PB1ee:B1 Te: +Tr;J3iei;B1 Pi, ... ~(P11 Bici,Bi E[Pi, 

where 

(48) 

and 
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T T 
P0 Bi c'P Bi T'P + T'.P B1 c'P Bi PE' - T'.P Bi C:p B1 T Tp ·:: 

where 

(50) 

with boundary conditions 

The gain equations may be rewritten as 

(51) 

where 

and 

( 5.3) 

where 

(54) 



with 

0 

0 

and 

0 

0 

and boundary conditions 

(tr-t) 
'T f exp(=--­

'T 

' 
( tf -.t) 
----1}2 r 

0 

0 

0 

. . 
( t, -t) ( tf' -t) 

0 'T [ exp(- )- - 1}2 
'T 'T 

One may note that each player requires knowledge of the other 

player 1 s control acceleration. This may be obtained by obtaining an 
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(55) 

estimate of the opponent 1 s acceleration. Several references that treat 

the problem include Asher (6), Singer (89), and Fitzgerald (35 (36). 

Also, one needs knowledge of the time to go, .i.-e~, tr--':".:t •... This. may b~.--· 

approximated.by'dividing·the range by: the range rate. 

Thus, it is shown that the problem of differential games under 

uncertainty does arise in a missile guidance problem. 

The results shown in this chapter may be applied to a realistic 

guidance problem. 



CHAP1ER VI 

CONCLUSIONS AND RECOMMENDATIONS 

The problem of differential games under uncertainty has been con­

sidered in this research. The state equations are assumea modeled.by 

differential equations in which the equations are parameterized by a 

time invariant parameter vector. The parameter vector contains elements 

both known and unknown to each player. It has been shown that each 

player's strategies depend on the information contained in his informa­

tion set. That is, the level of intelligence will dictate whether the 

play~r has to play certain security strategies or risk strategies. The 

types of strategies that may occur in differential games under uncer­

tainty and imperfect information are developed in several structure 

definitions. Past work in differ.ential games with imperfect information 

is shown to be imbedded in the structure definitions. The definitions 

classify the. type strategi·es that may :;occµr and:, thus., ::clal:jls.ify. the: · 

type strategies found in this research. Also, one may use the defini~· 

tions to indicate future work necessary in differential games under 

uncertainty. 

An optimality condition has been developed and proved to be suf­

ficient for the general nonlinear dynamics problem. The condition uses 

an expectation conditioned on an information set for each player. It 

is shown that only a third player with an information set that contains 

both the pursuer's and the.evader's information sets can solve the game 
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without including the assumption as to the type strategy that his 

opponent will play. One may includ~ this assumption in his information 

set. 

The linear, quadratic problem for both perfect and imperfect 

measurements is treated and solved for the optimal open-loop feedback 

strategies. A separation between control and state estimation occurs. 

The stochastic control analog to this problem is solved and shown in 

Appendix C. This extends previous work by several authors in that this 

appendix gives the optimal open=loop feedback controls whereas the other 

authors only have suboptimal controls. 

An example problem of target intercept originally treated py refer-

ence (20) is extended and shown to fall within the theory developed in 

this research. The optimal results are obtained. 

One of the pertinent aspects of the solution to differential game 

under uncertainty is that each player must adapt and learn the parame-

ters unknown to him. If he does not, then he stands to lose some aspect 

of his goal. 

There are several areas to be explored in differential games under 

uncertalnty, i.e., 

(a) the problem of unknown parameters in the performance 

index (may be solved by state augmentation if the 

parameters are identifiable), 

(b) extensions to non-zero sum differential games, 

(c) treatment of the problem whereby the parameters are 

true-varying, 
i 

(d) finding the dual control strategies 

(1) optimal strategies 



(2) implementation schemes that are suboptimal, 

(e) study of the matrix differential equations for the 

control gains to determine separability conditions, 

(f) determining for several classical differential game 

problems the effect of an unknown parameter on the 

location of various surfaces such as barriers, 

(g) application of the theory in order to gain insight into 

several problem areas such as aircraft performance, and 

(h) study of the relative effec't of parameter identifi­

ability on the solution results. 
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Bucy's Representation Theorem 

The following theorem is the basis for work in filtering theory. 

The solution to the conditional probability density yields all. informa-

tion necessary for the nonlinear estimation problem. 

Lemma A.1: (Bucy's Representation Theorem (21)) Cons~der the 

nonlinear system 

with 

and 

dx= f(x, t)dt + cr(x, t)dS(t) 

E[ ( S ( t) - S ( to )) ( S ( s) - ~ ( to ) ) T} = J min ( t, s) Q ( T) d'l' 

to 

x( t 0 ) - c, 

and where the system is observed through 

where 

dz = h(x, t)dt + dv(t) 

t 
E(v(t)vr (t)} = J R(s)ds. 

to 

( 1) 

(2) 

Suppose there exists on the interval (t0 , t) a unique continuous sample 

function Markov process x(t), a solution of Equation 11) having all 

its joint probability distributions absolutely continuous with respect 

to Lebesgue measure. Further, assume that 

E[exp [ sup llh(x(s), s)l1~1(t-t0 )]} < =· 
s€(to,t) , s 
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Then the conditional distribution of x(t) given Ot(where Ot is the 

minimal r:J - field determined by z(s) for se:<t0 , t)) has a density 

P(xlot) which satisfies 

P(xlot) 
0 

E t[e } 

where 

t t . 

H0 = - 72 J 11 h ( x ( s) , s) 11 ~-1 ds + J hr ( x ( s) , s) R; 1 c;l z ( s) 
t9 s to 

and µt(x) is the density function of x(t). 

Proof: See reference (21). 
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Solution of the Perfect Information Linear 

Quadratic Differential Game 

The solution to the linear quadratic differential game with perfect 

information will be shown in this appendix. The system equations are 

i:(t) = F(t)x(t) + G, (t)u(t) + GE (t)v(t) 

where 

xe::i:in is the state vector, 
m 

ueR. 1 is the pursuer's control vector, 
m 

ve:R 2 is the evader's control vector. 

The performance index is 

where 

uT (t)Rp (t)u(t) + vT (t)RE (t)v(t)}dt 

Q and Sare n X n synunetric, positive semi ... definite matrices, 

Rp is a ~ x II\ synunetric, positive definite matrix, 

~ is a ma X ma synunetric, negative definite matrix. 

The Hamilton-Jacobi equation may be written as 

min max 
ue:U ve:V 

oV* av*,. · -
[ 0t + 0~ [Fx + Gp u + ~ v] + 

Extremization over u and v yields 

u(t) = ... 8;i (t)~ (t).o~t) 

( 1) 

(2) 

(3) 



v(t) == -R;l (t)GE'I' (t) oV*(t) 
0 9x 

Substitution of u and v into the Hamilton-Jacobi equation yields 

or 

oV* 
- + 
ot 

The solution to the Hamilton-Jacobi equation will be taken to be 

V*(t) = ;1JxTP (t)x. 
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( 1±) 

' ( 6) 

(7) 

This may be substituted into the Hamilton-Jacobi equation. This yields 

Since xis arbitrary 

( 10) 

Thus, the boundary condition for the matrix differential equation is 

P(tf) S. 



The control strategies may be written as 

u(t) = -Ir; 1 (t)~(t).P(t)x(t) 

. ,. 
v ( t) = -~ l GE ( t) J? ( t) X ( t) • 
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Systems With Uncertainty 
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In this appendix, the problem of the optimal control of systems 

with parameter uncertainty will be considered. In particular, a spe~ 

cialization of the results given in the dissertation will be shown for 

the stochastic control (one sided differential game) problem. rhese 

results extend previous results found by Lainiotis (56) and Lee (60). 

where 

The system dynamics are 

x(t) :;:; F(t, 9) x(t) + G(t) u(t) + w(t) 

xeRl'1 is the state of the system, 

ue:UcRm is the control input, 

weRn is a vector of white noise inputs with zero-mean and 

variance 

E[w(t)wT (,r)} ;:: W(t)S(t .. T), 

9eR is a time invariant upknown parameter vector. 

The system is observed through 

where 

y(t) H(t)x(t) + v(t) 

YeRq is the measurement vector, 

veRq is a vector of white noise inputs corrupting the 

measurements with zero~mean and variance 

E[v(t)vT (-r)} "'R(t)S(t-T). 

(3) 

(4) 
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The control, µE:LE[I, Rm} where I= [t0 , tf), is required to [llinimize 

the performance index 

. t 
J,-:Ef'UzxT(tr)Sx(tf) +% Jtof (xT(t)A(t)x(t) +uT(t)B(t)u(t))dt}. (5) 

One may write the Hamtlton-Jacobi equation as 

min oV oVT[ E{-+-- F(t 8)x+Gu]+ 
ue:U ot · ax ' 

n n 
Yz(xTAx+uTBu) +% r r 

i=l j:l 

where Y is the observation functional Y = [y(r), TE[t0 , t)} and 

miJ [Q}iJ • 

Sufficient "stat:Lstics:.·for ':l are ~(tie) and p(9!cr). These can 

also be written as ~(t) and p(e!t) where 

~<t) = J ~(t!e).p(SIY)dt. 

Thus, the Hamilton-Jacobi equation may be written a,s 

min EfoV a VT [ ( ) ] 
ue:U -ot + ax F t, 8 x + G u + 

Minimization over ue:U yields 

(6) 

Cl ' A 
u(t) = -B- 1 (t)AT (t) E[a~ I x(t), p(9!Y}. (8) 

This equation may be substituted for u in Equation (7). This yields 

E[ av+~ [F(t ··a )x :- G!r,·1-Gi,,E[~I !,p( el Y)j] 1 :t '_%:xT Ax:-+"%E[ 2tt I ~,p( €) I Y)} at ox , . . -- ux --- • ux 

oV I . 'i'. . n n 02\[ . . . 
~B'" 1 GTFl0x ~;p(8!Y)}+'~,- ~-,·~_. 10:kaxr[Q~1{l~1p(91,t)}'= O. 

----- 1-1 J-1 1 J -



The use of Lemma 2 in Chapter IV and the properties of conditional 

e:xpectations allows one to write this equation as 

p(9IY)} = o. (10) 

The solution to the Hamilton-Jacobi equation will be taken as 

V = 72. E [~1 (ti @)}P(t) E (~(ti 9)} + A(t) 
elY @IY 

= ~T p ( t) ! + c Ct) • (11) 

Substitution into Equation (10) yields 

E(J4T(P+PF+FTP-PG:S- 1 GT E (P} +A- E (P}GB'" 1 G1 P 
@IY elY 

where P1 J is the i /h element of P. 

This implies 

p ( t ) = -P ( t ) F ( t ) - F ( t ) T p ( t ) + p Ct ) G ( t ) Erl ( t ) 

•GT(t) E (P(t)} - E (P(t)}G,(t)H" 1 (t)GT (t) 
@IY @IY 

• E (P(t)} - A(t) + E (P(t)}G(t)B"" 1 (t)GT (t)P(t) 
@IY . @IY 



with boundary condition 

The control law is 

p ( t, ) = s. 

u(t) -B- 1 (t)GT(t) E[P(t)}~(t). 
e I w 
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