9,805 research outputs found

    Decentralized sequential change detection using physical layer fusion

    Full text link
    The problem of decentralized sequential detection with conditionally independent observations is studied. The sensors form a star topology with a central node called fusion center as the hub. The sensors make noisy observations of a parameter that changes from an initial state to a final state at a random time where the random change time has a geometric distribution. The sensors amplify and forward the observations over a wireless Gaussian multiple access channel and operate under either a power constraint or an energy constraint. The optimal transmission strategy at each stage is shown to be the one that maximizes a certain Ali-Silvey distance between the distributions for the hypotheses before and after the change. Simulations demonstrate that the proposed analog technique has lower detection delays when compared with existing schemes. Simulations further demonstrate that the energy-constrained formulation enables better use of the total available energy than the power-constrained formulation in the change detection problem.Comment: 10 pages, two-column, 10 figures, revised based on feedback from reviewers, accepted for publication in IEEE Trans. on Wireless Communication

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs
    corecore