The problem of decentralized sequential detection with conditionally
independent observations is studied. The sensors form a star topology with a
central node called fusion center as the hub. The sensors make noisy
observations of a parameter that changes from an initial state to a final state
at a random time where the random change time has a geometric distribution. The
sensors amplify and forward the observations over a wireless Gaussian multiple
access channel and operate under either a power constraint or an energy
constraint. The optimal transmission strategy at each stage is shown to be the
one that maximizes a certain Ali-Silvey distance between the distributions for
the hypotheses before and after the change. Simulations demonstrate that the
proposed analog technique has lower detection delays when compared with
existing schemes. Simulations further demonstrate that the energy-constrained
formulation enables better use of the total available energy than the
power-constrained formulation in the change detection problem.Comment: 10 pages, two-column, 10 figures, revised based on feedback from
reviewers, accepted for publication in IEEE Trans. on Wireless Communication