92 research outputs found

    On the Correspondence between Display Postulates and Deep Inference in Nested Sequent Calculi for Tense Logics

    Full text link
    We consider two styles of proof calculi for a family of tense logics, presented in a formalism based on nested sequents. A nested sequent can be seen as a tree of traditional single-sided sequents. Our first style of calculi is what we call "shallow calculi", where inference rules are only applied at the root node in a nested sequent. Our shallow calculi are extensions of Kashima's calculus for tense logic and share an essential characteristic with display calculi, namely, the presence of structural rules called "display postulates". Shallow calculi enjoy a simple cut elimination procedure, but are unsuitable for proof search due to the presence of display postulates and other structural rules. The second style of calculi uses deep-inference, whereby inference rules can be applied at any node in a nested sequent. We show that, for a range of extensions of tense logic, the two styles of calculi are equivalent, and there is a natural proof theoretic correspondence between display postulates and deep inference. The deep inference calculi enjoy the subformula property and have no display postulates or other structural rules, making them a better framework for proof search

    A Cut-Free Simple Sequent Calculus for Modal Logic S5

    Get PDF
    International audienceIn this paper, we present a simple sequent calculus for the modal propositional logic S5. We prove that this sequent calculus is theoremwise equivalent to the Hilbert-style system S5, that it is contraction-free and cut-free, and finally that it is decidable. All results are proved in a purely syntactic way

    Labelled Modal Sequents

    Get PDF
    In this paper we present a new labelled sequent calculus for modal logic. The proof method works with a more ``liberal'' modal language which allows inferential steps where different formulas refer to different labels without moving to a particular world and there computing if the consequence holds. World-paths can be composed, decomposed and manipulated through unification algorithms and formulas in different worlds can be compared even if they are sub-formulas which do not depend directly on the main connective. Accordingly, such a sequent system can provide a general definition of modal consequence relation. Finally, we briefly sketch a proof of the soundness and completeness results

    Modular Focused Proof Systems for Intuitionistic Modal Logics

    Get PDF
    Focusing is a general technique for syntactically compartmentalizing the non-deterministic choices in a proof system, which not only improves proof search but also has the representational benefit of distilling sequent proofs into synthetic normal forms. However, since focusing is usually specified as a restriction of the sequent calculus, the technique has not been transferred to logics that lack a (shallow) sequent presentation, as is the case for some of the logics of the modal cube. We have recently extended the focusing technique to classical nested sequents, a generalization of ordinary sequents. In this work we further extend focusing to intuitionistic nested sequents, which can capture all the logics of the intuitionistic S5 cube in a modular fashion. We present an internal cut-elimination procedure for the focused system which in turn is used to show its completeness

    From Display to Labelled Proofs for Tense Logics

    Get PDF
    We introduce an effective translation from proofs in the display calculus to proofs in the labelled calculus in the context of tense logics. We identify the labelled calculus proofs in the image of this translation as those built from labelled sequents whose underlying directed graph possesses certain properties. For the basic normal tense logic Kt, the image is shown to be the set of all proofs in the labelled calculus G3Kt

    Ecumenical modal logic

    Full text link
    The discussion about how to put together Gentzen's systems for classical and intuitionistic logic in a single unified system is back in fashion. Indeed, recently Prawitz and others have been discussing the so called Ecumenical Systems, where connectives from these logics can co-exist in peace. In Prawitz' system, the classical logician and the intuitionistic logician would share the universal quantifier, conjunction, negation, and the constant for the absurd, but they would each have their own existential quantifier, disjunction, and implication, with different meanings. Prawitz' main idea is that these different meanings are given by a semantical framework that can be accepted by both parties. In a recent work, Ecumenical sequent calculi and a nested system were presented, and some very interesting proof theoretical properties of the systems were established. In this work we extend Prawitz' Ecumenical idea to alethic K-modalities

    Positive Logic with Adjoint Modalities: Proof Theory, Semantics and Reasoning about Information

    Get PDF
    We consider a simple modal logic whose non-modal part has conjunction and disjunction as connectives and whose modalities come in adjoint pairs, but are not in general closure operators. Despite absence of negation and implication, and of axioms corresponding to the characteristic axioms of (e.g.) T, S4 and S5, such logics are useful, as shown in previous work by Baltag, Coecke and the first author, for encoding and reasoning about information and misinformation in multi-agent systems. For such a logic we present an algebraic semantics, using lattices with agent-indexed families of adjoint pairs of operators, and a cut-free sequent calculus. The calculus exploits operators on sequents, in the style of "nested" or "tree-sequent" calculi; cut-admissibility is shown by constructive syntactic methods. The applicability of the logic is illustrated by reasoning about the muddy children puzzle, for which the calculus is augmented with extra rules to express the facts of the muddy children scenario.Comment: This paper is the full version of the article that is to appear in the ENTCS proceedings of the 25th conference on the Mathematical Foundations of Programming Semantics (MFPS), April 2009, University of Oxfor
    corecore