211,376 research outputs found

    Sequence mixed graphs

    Get PDF
    A mixed graph can be seen as a type of digraph containing some edges (or two opposite arcs). Here we introduce the concept of sequence mixed graphs, which is a generalization of both sequence graphs and literated line digraphs. These structures are proven to be useful in the problem of constructing dense graphs or digraphs, and this is related to the degree/diameter problem. Thus, our generalized approach gives rise to graphs that have also good ratio order/diameter. Moreover, we propose a general method for obtaining a sequence mixed diagraph by identifying some vertices of certain iterated line digraph. As a consequence, some results about distance-related parameters (mainly, the diameter and the average distance) of sequence mixed graphs are presented.Postprint (author's final draft

    Consensus Strategies for Signed Profiles on Graphs

    Get PDF
    The median problem is a classical problem in Location Theory: one searches for a location that minimizes the average distance to the sites of the clients. This is for desired facilities as a distribution center for a set of warehouses. More recently, for obnoxious facilities, the antimedian was studied. Here one maximizes the average distance to the clients. In this paper the mixed case is studied. Clients are represented by a profile, which is a sequence of vertices with repetitions allowed. In a signed profile each element is provided with a sign from {+,-}. Thus one can take into account whether the client prefers the facility (with a + sign) or rejects it (with a - sign). The graphs for which all median sets, or all antimedian sets, are connected are characterized. Various consensus strategies for signed profiles are studied, amongst which Majority, Plurality and Scarcity. Hypercubes are the only graphs on which Majority produces the median set for all signed profiles. Finally, the antimedian sets are found by the Scarcity Strategy on e.g. Hamming graphs, Johnson graphs and halfcubes.median;consensus function;median graph;majority rule;plurality strategy;Graph theory;Hamming graph;Johnson graph;halfcube;scarcity strategy;Discrete location and assignment;Distance in graphs

    Spectrum of mixed bi-uniform hypergraphs

    Full text link
    A mixed hypergraph is a triple H=(V,C,D)H=(V,\mathcal{C},\mathcal{D}), where VV is a set of vertices, C\mathcal{C} and D\mathcal{D} are sets of hyperedges. A vertex-coloring of HH is proper if CC-edges are not totally multicolored and DD-edges are not monochromatic. The feasible set S(H)S(H) of HH is the set of all integers, ss, such that HH has a proper coloring with ss colors. Bujt\'as and Tuza [Graphs and Combinatorics 24 (2008), 1--12] gave a characterization of feasible sets for mixed hypergraphs with all CC- and DD-edges of the same size rr, r3r\geq 3. In this note, we give a short proof of a complete characterization of all possible feasible sets for mixed hypergraphs with all CC-edges of size \ell and all DD-edges of size mm, where ,m2\ell, m \geq 2. Moreover, we show that for every sequence (r(s))s=n(r(s))_{s=\ell}^n, nn \geq \ell, of natural numbers there exists such a hypergraph with exactly r(s)r(s) proper colorings using ss colors, s=,,ns = \ell,\ldots,n, and no proper coloring with more than nn colors. Choosing =m=r\ell = m=r this answers a question of Bujt\'as and Tuza, and generalizes their result with a shorter proof.Comment: 9 pages, 5 figure

    Consensus strategies for signed profiles on graphs

    Get PDF
    The median problem is a classical problem in Location Theory: one searches for a location that minimizes the average distance to the sites of the clients. This is for desired facilities as a distribution center for a set of warehouses. More recently, for obnoxious facilities, the antimedian was studied. Here one maximizes the average distance to the clients. In this paper the mixed case is studied. Clients are represented by a profile, which is a sequence of vertices with repetitions allowed. In a signed profile each element is provided with a sign from (+,-). Thus one can take into account whether the client prefers the facility (with a + sign) or rejects it (with a - sign). The graphs for which all median sets, or all antimedian sets, are connected are characterized. Various consensus strategies for signed profiles are studied, amongst which Majority, Plurality and Scarcity. Hypercubes are the only graphs on which Majority produces the median set for all signed profiles. Finally, the antimedian sets are found by the Scarcity Strategy on e.g. Hamming graphs, Johnson graphs and halfcubes

    Consensus Strategies for Signed Profiles on Graphs

    Get PDF
    The median problem is a classical problem in Location Theory: one searches for a location that minimizes the average distance to the sites of the clients. This is for desired facilities as a distribution center for a set of warehouses. More recently, for obnoxious facilities, the antimedian was studied. Here one maximizes the average distance to the clients. In this paper the mixed case is studied. Clients are represented by a profile, which is a sequence of vertices with repetitions allowed. In a signed profile each element is provided with a sign from {+,-}. Thus one can take into account whether the client prefers the facility (with a + sign) or rejects it (with a - sign). The graphs for which all median sets, or all antimedian sets, are connected are characterized. Various consensus strategies for signed profiles are studied, amongst which Majority, Plurality and Scarcity. Hypercubes are the only graphs on which Majority produces the median set for all signed profiles. Finally, the antimedian sets are found by the Scarcity Strategy on e.g. Hamming graphs, Johnson graphs and halfcubes

    Sparse Maximum-Entropy Random Graphs with a Given Power-Law Degree Distribution

    Full text link
    Even though power-law or close-to-power-law degree distributions are ubiquitously observed in a great variety of large real networks, the mathematically satisfactory treatment of random power-law graphs satisfying basic statistical requirements of realism is still lacking. These requirements are: sparsity, exchangeability, projectivity, and unbiasedness. The last requirement states that entropy of the graph ensemble must be maximized under the degree distribution constraints. Here we prove that the hypersoft configuration model (HSCM), belonging to the class of random graphs with latent hyperparameters, also known as inhomogeneous random graphs or WW-random graphs, is an ensemble of random power-law graphs that are sparse, unbiased, and either exchangeable or projective. The proof of their unbiasedness relies on generalized graphons, and on mapping the problem of maximization of the normalized Gibbs entropy of a random graph ensemble, to the graphon entropy maximization problem, showing that the two entropies converge to each other in the large-graph limit
    corecore