6 research outputs found

    Intelligent Design in Wireless System

    Get PDF
    We are living in an era full of data services, and the advancement in statistical learning encourages the development of intelligent system design algorithms based on practical data. In our work, we plan to study two potential applications with intelligent design in wireless systems based on statistical and machine learning techniques. The first application we study is the spectrum sensing problem in energy harvesting based cognitive radio networks, which is a promising solution to address the shortage of both spectrum and energy. Since the spectrum access and power consumption pattern are interdependent, and the power value harvested from certain environmental sources are spatially correlated, the new power dimension could provide additional information to enhance the spectrum sensing accuracy. In our work, the Markovian behavior of the primary users is considered, based on which we adopt a hidden input Markov model to specify the primary vs. secondary dynamics in the system. Accordingly, we propose a 2-D spectrum vs. power (harvested) sensing scheme to improve the primary user detection performance, which is also capable of estimating the primary transmit power level. Theoretical and simulated results demonstrate the effectiveness of the proposed scheme, in terms of the performance gain achieved by considering the new power dimension. To the best of our knowledge, this is the first work to jointly consider the spectrum and power dimensions for the cognitive primary user detection problem. The second work is about spatio-temporal base station traffic prediction with machine learning. Accurate prediction of user traffic in cellular networks is crucial to improve the system performance in terms of energy efficiency and resource utilization. However, existing work mainly considers the temporal traffic correlations within each cell while neglecting the spatial correlation across neighboring cells. In this work, machine learning models that jointly explore the spatio-temporal correlations are proposed, where a multitask learning approach is adopted to explore the commonalities and differences across cells in improving the prediction performance. Base on real data, we demonstrate the benefits of joint learning over spatial and temporal dimensions

    Intelligent Design in Wireless System

    Get PDF
    We are living in an era full of data services, and the advancement in statistical learning encourages the development of intelligent system design algorithms based on practical data. In our work, we plan to study two potential applications with intelligent design in wireless systems based on statistical and machine learning techniques. The first application we study is the spectrum sensing problem in energy harvesting based cognitive radio networks, which is a promising solution to address the shortage of both spectrum and energy. Since the spectrum access and power consumption pattern are interdependent, and the power value harvested from certain environmental sources are spatially correlated, the new power dimension could provide additional information to enhance the spectrum sensing accuracy. In our work, the Markovian behavior of the primary users is considered, based on which we adopt a hidden input Markov model to specify the primary vs. secondary dynamics in the system. Accordingly, we propose a 2-D spectrum vs. power (harvested) sensing scheme to improve the primary user detection performance, which is also capable of estimating the primary transmit power level. Theoretical and simulated results demonstrate the effectiveness of the proposed scheme, in terms of the performance gain achieved by considering the new power dimension. To the best of our knowledge, this is the first work to jointly consider the spectrum and power dimensions for the cognitive primary user detection problem. The second work is about spatio-temporal base station traffic prediction with machine learning. Accurate prediction of user traffic in cellular networks is crucial to improve the system performance in terms of energy efficiency and resource utilization. However, existing work mainly considers the temporal traffic correlations within each cell while neglecting the spatial correlation across neighboring cells. In this work, machine learning models that jointly explore the spatio-temporal correlations are proposed, where a multitask learning approach is adopted to explore the commonalities and differences across cells in improving the prediction performance. Base on real data, we demonstrate the benefits of joint learning over spatial and temporal dimensions

    Enhancing Spectrum Utilization in Dynamic Cognitive Radio Systems

    Get PDF
    Cognitive radio (CR) is regarded as a viable solution to enabling flexible use of the frequency spectrum in future generations of wireless systems by allowing unlicensed secondary users (SU) to access licensed spectrum under the specific condition that no harmful interference be caused to the licensed primary users (PU) of the spectrum. In practical scenarios, the knowledge of PU activity is unknown to CRs and radio environments are mostly imperfect due to various issues such as noise uncertainty and multipath fadings. Therefore, important functionalities of CR systems are to efficiently detect availability of radio spectrum as well as to avoid generating interference to PUs, by missing detection of active PU signals. Typically, CR systems are expected to be equipped with smart capabilities which include sensing, adapting, learning, and awareness concerned with spectrum opportunity access, radio environments, and wireless communications operations, such that SUs equipped with CRs can efficiently utilize spectrum opportunities with high quality of services. Most existing researches working on CR focus on improving spectrum sensing through performance measures such as the probabilities of PU detection and false alarm but none of them explicitly studies the improvement in the actual spectrum utilization. Motivated by this perspective, the main objective of the dissertation is to explore new techniques on the physical layer of dynamic CR systems, that can enhance actual utilization of spectrum opportunities and awareness on the performance of CR systems. Specifically, this dissertation investigates utilization of spectrum opportunities in dynamic scenarios, where a licensed radio spectrum is available for limited time and also analyzes how it is affected by various parameters. The dissertation proposes three new methods for adaptive spectrum sensing which improve dynamic utilization of idle radio spectrum as well as the detection of active PUs in comparison to the conventional method with fixed spectrum sensing size. Moreover, this dissertation presents a new approach for optimizing cooperative spectrum sensing performance and also proposes the use of hidden Markov models (HMMs) to enabling performance awareness for local and cooperative spectrum sensing schemes, leading to improved spectrum utilization. All the contributions are illustrated with numerical results obtained from extensive simulations which confirm their effectiveness for practical applications

    Sequence Detection Algorithms for PHY-Layer Sensing in Dynamic Spectrum Access Networks

    No full text

    Doctor of Philosophy

    Get PDF
    dissertationThis work seeks to improve upon existing methods for device-free localization (DFL) using radio frequency (RF) sensor networks. Device-free localization is the process of determining the location of a target object, typically a person, without the need for a device to be with the object to aid in localization. An RF sensor network measures changes to radio propagation caused by the presence of a person to locate that person. We show how existing methods which use either wideband or narrowband RF channels can be improved in ways including localization accuracy, energy efficiency, and system cost. We also show how wideband and narrowband systems can combine their information to improve localization. A common assumption in ultra-wideband research is that to estimate the bistatic delay or range, "background subtraction" is effective at removing clutter and must first be performed. Another assumption commonly made is that after background subtraction, each individual multipath component caused by a person's presence can be distinguished perfectly. We show that these assumptions are often not true and that ranging can still be performed even when these assumptions are not true. We propose modeling the difference between a current set of channel impulse responses (CIR) and a set of calibration CIRs as a hidden Markov model (HMM) and show the effectiveness of this model over background subtraction. The methods for performing device-free localization by using ultra-wideband (UWB) measurements and by using received signal strength (RSS) measurements are often considered separate topic of research and viewed only in isolation by two different communities of researchers. We consider both of these methods together and propose methods for combining the information obtained from UWB and RSS measurements. We show that using both methods in conjunction is more effective than either method on its own, especially in a setting where radio placement is constrained. It has been shown that for RSS-based DFL, measuring on multiple channels improves localization accuracy. We consider the trade-o s of measuring all radio links on all channels and the energy and latency expense of making the additional measurements required when sampling multiple channels. We also show the benefits of allowing multiple radios to transmit simultaneously, or in parallel, to better measure the available radio links
    corecore