399 research outputs found

    Linear-Time Algorithms for Geometric Graphs with Sublinearly Many Edge Crossings

    Full text link
    We provide linear-time algorithms for geometric graphs with sublinearly many crossings. That is, we provide algorithms running in O(n) time on connected geometric graphs having n vertices and k crossings, where k is smaller than n by an iterated logarithmic factor. Specific problems we study include Voronoi diagrams and single-source shortest paths. Our algorithms all run in linear time in the standard comparison-based computational model; hence, we make no assumptions about the distribution or bit complexities of edge weights, nor do we utilize unusual bit-level operations on memory words. Instead, our algorithms are based on a planarization method that "zeroes in" on edge crossings, together with methods for extending planar separator decompositions to geometric graphs with sublinearly many crossings. Incidentally, our planarization algorithm also solves an open computational geometry problem of Chazelle for triangulating a self-intersecting polygonal chain having n segments and k crossings in linear time, for the case when k is sublinear in n by an iterated logarithmic factor.Comment: Expanded version of a paper appearing at the 20th ACM-SIAM Symposium on Discrete Algorithms (SODA09

    Optimality program in segment and string graphs

    Full text link
    Planar graphs are known to allow subexponential algorithms running in time 2O(n)2^{O(\sqrt n)} or 2O(nlogn)2^{O(\sqrt n \log n)} for most of the paradigmatic problems, while the brute-force time 2Θ(n)2^{\Theta(n)} is very likely to be asymptotically best on general graphs. Intrigued by an algorithm packing curves in 2O(n2/3logn)2^{O(n^{2/3}\log n)} by Fox and Pach [SODA'11], we investigate which problems have subexponential algorithms on the intersection graphs of curves (string graphs) or segments (segment intersection graphs) and which problems have no such algorithms under the ETH (Exponential Time Hypothesis). Among our results, we show that, quite surprisingly, 3-Coloring can also be solved in time 2O(n2/3logO(1)n)2^{O(n^{2/3}\log^{O(1)}n)} on string graphs while an algorithm running in time 2o(n)2^{o(n)} for 4-Coloring even on axis-parallel segments (of unbounded length) would disprove the ETH. For 4-Coloring of unit segments, we show a weaker ETH lower bound of 2o(n2/3)2^{o(n^{2/3})} which exploits the celebrated Erd\H{o}s-Szekeres theorem. The subexponential running time also carries over to Min Feedback Vertex Set but not to Min Dominating Set and Min Independent Dominating Set.Comment: 19 pages, 15 figure

    Crossing Patterns in Nonplanar Road Networks

    Full text link
    We define the crossing graph of a given embedded graph (such as a road network) to be a graph with a vertex for each edge of the embedding, with two crossing graph vertices adjacent when the corresponding two edges of the embedding cross each other. In this paper, we study the sparsity properties of crossing graphs of real-world road networks. We show that, in large road networks (the Urban Road Network Dataset), the crossing graphs have connected components that are primarily trees, and that the remaining non-tree components are typically sparse (technically, that they have bounded degeneracy). We prove theoretically that when an embedded graph has a sparse crossing graph, it has other desirable properties that lead to fast algorithms for shortest paths and other algorithms important in geographic information systems. Notably, these graphs have polynomial expansion, meaning that they and all their subgraphs have small separators.Comment: 9 pages, 4 figures. To appear at the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems(ACM SIGSPATIAL 2017

    Large-scale Geometric Data Decomposition, Processing and Structured Mesh Generation

    Get PDF
    Mesh generation is a fundamental and critical problem in geometric data modeling and processing. In most scientific and engineering tasks that involve numerical computations and simulations on 2D/3D regions or on curved geometric objects, discretizing or approximating the geometric data using a polygonal or polyhedral meshes is always the first step of the procedure. The quality of this tessellation often dictates the subsequent computation accuracy, efficiency, and numerical stability. When compared with unstructured meshes, the structured meshes are favored in many scientific/engineering tasks due to their good properties. However, generating high-quality structured mesh remains challenging, especially for complex or large-scale geometric data. In industrial Computer-aided Design/Engineering (CAD/CAE) pipelines, the geometry processing to create a desirable structural mesh of the complex model is the most costly step. This step is semi-manual, and often takes up to several weeks to finish. Several technical challenges remains unsolved in existing structured mesh generation techniques. This dissertation studies the effective generation of structural mesh on large and complex geometric data. We study a general geometric computation paradigm to solve this problem via model partitioning and divide-and-conquer. To apply effective divide-and-conquer, we study two key technical components: the shape decomposition in the divide stage, and the structured meshing in the conquer stage. We test our algorithm on vairous data set, the results demonstrate the efficiency and effectiveness of our framework. The comparisons also show our algorithm outperforms existing partitioning methods in final meshing quality. We also show our pipeline scales up efficiently on HPC environment

    An ETH-Tight Exact Algorithm for Euclidean TSP

    Get PDF
    We study exact algorithms for {\sc Euclidean TSP} in Rd\mathbb{R}^d. In the early 1990s algorithms with nO(n)n^{O(\sqrt{n})} running time were presented for the planar case, and some years later an algorithm with nO(n11/d)n^{O(n^{1-1/d})} running time was presented for any d2d\geq 2. Despite significant interest in subexponential exact algorithms over the past decade, there has been no progress on {\sc Euclidean TSP}, except for a lower bound stating that the problem admits no 2O(n11/dϵ)2^{O(n^{1-1/d-\epsilon})} algorithm unless ETH fails. Up to constant factors in the exponent, we settle the complexity of {\sc Euclidean TSP} by giving a 2O(n11/d)2^{O(n^{1-1/d})} algorithm and by showing that a 2o(n11/d)2^{o(n^{1-1/d})} algorithm does not exist unless ETH fails.Comment: To appear in FOCS 201

    A Parallel Two Dimensional Delaunay Decoupling Method

    Get PDF

    Querying for the Largest Empty Geometric Object in a Desired Location

    Full text link
    We study new types of geometric query problems defined as follows: given a geometric set PP, preprocess it such that given a query point qq, the location of the largest circle that does not contain any member of PP, but contains qq can be reported efficiently. The geometric sets we consider for PP are boundaries of convex and simple polygons, and point sets. While we primarily focus on circles as the desired shape, we also briefly discuss empty rectangles in the context of point sets.Comment: This version is a significant update of our earlier submission arXiv:1004.0558v1. Apart from new variants studied in Sections 3 and 4, the results have been improved in Section 5.Please note that the change in title and abstract indicate that we have expanded the scope of the problems we stud

    Halving Balls in Deterministic Linear Time

    Full text link
    Let \D be a set of nn pairwise disjoint unit balls in Rd\R^d and PP the set of their center points. A hyperplane \Hy is an \emph{mm-separator} for \D if each closed halfspace bounded by \Hy contains at least mm points from PP. This generalizes the notion of halving hyperplanes, which correspond to n/2n/2-separators. The analogous notion for point sets has been well studied. Separators have various applications, for instance, in divide-and-conquer schemes. In such a scheme any ball that is intersected by the separating hyperplane may still interact with both sides of the partition. Therefore it is desirable that the separating hyperplane intersects a small number of balls only. We present three deterministic algorithms to bisect or approximately bisect a given set of disjoint unit balls by a hyperplane: Firstly, we present a simple linear-time algorithm to construct an αn\alpha n-separator for balls in Rd\R^d, for any 0<α<1/20<\alpha<1/2, that intersects at most cn(d1)/dcn^{(d-1)/d} balls, for some constant cc that depends on dd and α\alpha. The number of intersected balls is best possible up to the constant cc. Secondly, we present a near-linear time algorithm to construct an (n/2o(n))(n/2-o(n))-separator in Rd\R^d that intersects o(n)o(n) balls. Finally, we give a linear-time algorithm to construct a halving line in R2\R^2 that intersects O(n(5/6)+ϵ)O(n^{(5/6)+\epsilon}) disks. Our results improve the runtime of a disk sliding algorithm by Bereg, Dumitrescu and Pach. In addition, our results improve and derandomize an algorithm to construct a space decomposition used by L{\"o}ffler and Mulzer to construct an onion (convex layer) decomposition for imprecise points (any point resides at an unknown location within a given disk)

    Join-Reachability Problems in Directed Graphs

    Full text link
    For a given collection G of directed graphs we define the join-reachability graph of G, denoted by J(G), as the directed graph that, for any pair of vertices a and b, contains a path from a to b if and only if such a path exists in all graphs of G. Our goal is to compute an efficient representation of J(G). In particular, we consider two versions of this problem. In the explicit version we wish to construct the smallest join-reachability graph for G. In the implicit version we wish to build an efficient data structure (in terms of space and query time) such that we can report fast the set of vertices that reach a query vertex in all graphs of G. This problem is related to the well-studied reachability problem and is motivated by emerging applications of graph-structured databases and graph algorithms. We consider the construction of join-reachability structures for two graphs and develop techniques that can be applied to both the explicit and the implicit problem. First we present optimal and near-optimal structures for paths and trees. Then, based on these results, we provide efficient structures for planar graphs and general directed graphs

    An Optimal Algorithm for Higher-Order Voronoi Diagrams in the Plane: The Usefulness of Nondeterminism

    Full text link
    We present the first optimal randomized algorithm for constructing the order-kk Voronoi diagram of nn points in two dimensions. The expected running time is O(nlogn+nk)O(n\log n + nk), which improves the previous, two-decades-old result of Ramos (SoCG'99) by a 2O(logk)2^{O(\log^*k)} factor. To obtain our result, we (i) use a recent decision-tree technique of Chan and Zheng (SODA'22) in combination with Ramos's cutting construction, to reduce the problem to verifying an order-kk Voronoi diagram, and (ii) solve the verification problem by a new divide-and-conquer algorithm using planar-graph separators. We also describe a deterministic algorithm for constructing the kk-level of nn lines in two dimensions in O(nlogn+nk1/3)O(n\log n + nk^{1/3}) time, and constructing the kk-level of nn planes in three dimensions in O(nlogn+nk3/2)O(n\log n + nk^{3/2}) time. These time bounds (ignoring the nlognn\log n term) match the current best upper bounds on the combinatorial complexity of the kk-level. Previously, the same time bound in two dimensions was obtained by Chan (1999) but with randomization.Comment: To appear in SODA 2024. 16 pages, 1 figur
    corecore