4,295 research outputs found

    EasyFJP: Providing Hybrid Parallelism as a Concern for Divide and Conquer Java Applications

    Get PDF
    Because of the increasing availability of multi-core machines, clus- ters, Grids, and combinations of these there is now plenty of computational power,but today's programmers are not fully prepared to exploit parallelism. In particular, Java has helped in handling the heterogeneity of such environments. However, there is a lot of ground to cover regarding facilities to easily and elegantly parallelizing applications. One path to this end seems to be the synthesis of semi- automatic parallelism and Parallelism as a Concern (PaaC). The former allows users to be mostly unaware of parallel exploitation problems and at the same time manually optimize parallelized applications whenever necessary, while the latter allows applications to be separated from parallel-related code. In this paper, we present EasyFJP, an approach that implicitly exploits parallelism in Java applications based on the concept of fork-join synchronization pattern, a simple but effective abstraction for creating and coordinating parallel tasks. In addition, EasyFJP lets users to explicitly optimize applications through policies, or user-provided rules to dynamically regulate task granularity. Finally, EasyFJP relies on PaaC by means of source code generation techniques to wire applications and parallel-specific code together. Experiments with real-world applications on an emulated Grid and a cluster evidence that EasyFJP delivers competitive performance compared to state-of-the-art Java parallel programming tools.Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Tandil. Instituto Superior de Ingenieria del Software; Argentina;Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Tandil. Instituto Superior de Ingenieria del Software; Argentina;Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Tandil. Instituto Superior de Ingenieria del Software; Argentina

    Enforcing Behavioral Constraints in Evolving Aspect-Oriented Programs

    Full text link
    Reasoning, specification, and verification of Aspect-Oriented (AO) programs presents unique challenges especially as such programs evolve over time. Components, base-code and aspects alike, may be easily added, removed, interchanged, or presently unavailable at unpredictable frequencies. Consequently, modular reasoning of such programs is highly attractive as it enables tractable evolution, otherwise necessitating that the entire program be reexamined each time a component is changed. It is well known, however, that modular reasoning about AO programs is difficult. In this paper, we present our ongoing work in constructing a rely-guarantee style reasoning system for the Aspect-Oriented Programming (AOP) paradigm, adopting a trace-based approach to deal with the plug-n-play nature inherent to these programs, thus easing AOP evolution

    A semi-automatic parallelization tool for Java based on fork-join synchronization patterns

    Get PDF
    Because of the increasing availability of multi-core machines, clusters, Grids, and combinations of these environments, there is now plenty of computational power available for executing compute intensive applications. However, because of the overwhelming and rapid advances in distributed and parallel hardware and environments, today?s programmers are not fully prepared to exploit distribution and parallelism. In this sense, the Java language has helped in handling the heterogeneity of such environments, but there is a lack of facilities and tools to easily distributing and parallelizing applications. One solution to mitigate this problem and make some progress towards producing general tools seems to be the synthesis of semi-automatic parallelism and Parallelism as a Concern (PaaC), which allows parallelizing applications along with as little modifications on sequential codes as possible. In this paper, we discuss a new approach that aims at overcoming the drawbacks of current Java-based parallel and distributed development tools, which precisely exploit these new conceptsFil: Hirsch, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Tandil. Instituto Superior de Ingenieria del Software; Argentina;Fil: Zunino, Alejandro. Consejo Nacional de Invest.cientif.y Tecnicas. Ctro Cientifico Tecnologico Conicet - Tandil. Instituto Superior de Ingenieria del Software;Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Tandil. Instituto Superior de Ingenieria del Software

    Architectural support for task dependence management with flexible software scheduling

    Get PDF
    The growing complexity of multi-core architectures has motivated a wide range of software mechanisms to improve the orchestration of parallel executions. Task parallelism has become a very attractive approach thanks to its programmability, portability and potential for optimizations. However, with the expected increase in core counts, finer-grained tasking will be required to exploit the available parallelism, which will increase the overheads introduced by the runtime system. This work presents Task Dependence Manager (TDM), a hardware/software co-designed mechanism to mitigate runtime system overheads. TDM introduces a hardware unit, denoted Dependence Management Unit (DMU), and minimal ISA extensions that allow the runtime system to offload costly dependence tracking operations to the DMU and to still perform task scheduling in software. With lower hardware cost, TDM outperforms hardware-based solutions and enhances the flexibility, adaptability and composability of the system. Results show that TDM improves performance by 12.3% and reduces EDP by 20.4% on average with respect to a software runtime system. Compared to a runtime system fully implemented in hardware, TDM achieves an average speedup of 4.2% with 7.3x less area requirements and significant EDP reductions. In addition, five different software schedulers are evaluated with TDM, illustrating its flexibility and performance gains.This work has been supported by the RoMoL ERC Advanced Grant (GA 321253), by the European HiPEAC Network of Excellence, by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P, TIN2016-76635-C2-2-R and TIN2016-81840-REDT), by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), and by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 671697 and No. 671610. M. Moretó has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship number JCI-2012-15047.Peer ReviewedPostprint (author's final draft

    Formal Analysis of Concurrent Programs

    Get PDF
    In this thesis, extensions of Kleene algebras are used to develop algebras for rely-guarantee style reasoning about concurrent programs. In addition to these algebras, detailed denotational models are implemented in the interactive theorem prover Isabelle/HOL. Formal soundness proofs link the algebras to their models. This follows a general algebraic approach for developing correct by construction verification tools within Isabelle. In this approach, algebras provide inference rules and abstract principles for reasoning about the control flow of programs, while the concrete models provide laws for reasoning about data flow. This yields a rapid, lightweight approach for the construction of verification and refinement tools. These tools are used to construct a popular example from the literature, via refinement, within the context of a general-purpose interactive theorem proving environment
    corecore