67,670 research outputs found

    Contact Representations of Graphs in 3D

    Full text link
    We study contact representations of graphs in which vertices are represented by axis-aligned polyhedra in 3D and edges are realized by non-zero area common boundaries between corresponding polyhedra. We show that for every 3-connected planar graph, there exists a simultaneous representation of the graph and its dual with 3D boxes. We give a linear-time algorithm for constructing such a representation. This result extends the existing primal-dual contact representations of planar graphs in 2D using circles and triangles. While contact graphs in 2D directly correspond to planar graphs, we next study representations of non-planar graphs in 3D. In particular we consider representations of optimal 1-planar graphs. A graph is 1-planar if there exists a drawing in the plane where each edge is crossed at most once, and an optimal n-vertex 1-planar graph has the maximum (4n - 8) number of edges. We describe a linear-time algorithm for representing optimal 1-planar graphs without separating 4-cycles with 3D boxes. However, not every optimal 1-planar graph admits a representation with boxes. Hence, we consider contact representations with the next simplest axis-aligned 3D object, L-shaped polyhedra. We provide a quadratic-time algorithm for representing optimal 1-planar graph with L-shaped polyhedra

    Ensemble Inequivalence in Mean-field Models of Magnetism

    Full text link
    Mean-field models, while they can be cast into an {\it extensive} thermodynamic formalism, are inherently {\it non additive}. This is the basic feature which leads to {\it ensemble inequivalence} in these models. In this paper we study the global phase diagram of the infinite range Blume-Emery-Griffiths model both in the {\it canonical} and in the {\it microcanonical} ensembles. The microcanonical solution is obtained both by direct state counting and by the application of large deviation theory. The canonical phase diagram has first order and continuous transition lines separated by a tricritical point. We find that below the tricritical point, when the canonical transition is first order, the phase diagrams of the two ensembles disagree. In this region the microcanonical ensemble exhibits energy ranges with negative specific heat and temperature jumps at transition energies. These two features are discussed in a general context and the appropriate Maxwell constructions are introduced. Some preliminary extensions of these results to weakly decaying nonintegrable interactions are presented.Comment: Chapter of the forthcoming "Lecture Notes in Physics" volume: ``Dynamics and Thermodynamics of Systems with Long Range Interactions'', T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens Eds., Lecture Notes in Physics Vol. 602, Springer (2002). (see http://link.springer.de/series/lnpp/

    A random tunnel number one 3-manifold does not fiber over the circle

    Get PDF
    We address the question: how common is it for a 3-manifold to fiber over the circle? One motivation for considering this is to give insight into the fairly inscrutable Virtual Fibration Conjecture. For the special class of 3-manifolds with tunnel number one, we provide compelling theoretical and experimental evidence that fibering is a very rare property. Indeed, in various precise senses it happens with probability 0. Our main theorem is that this is true for a measured lamination model of random tunnel number one 3-manifolds. The first ingredient is an algorithm of K Brown which can decide if a given tunnel number one 3-manifold fibers over the circle. Following the lead of Agol, Hass and W Thurston, we implement Brown's algorithm very efficiently by working in the context of train tracks/interval exchanges. To analyze the resulting algorithm, we generalize work of Kerckhoff to understand the dynamics of splitting sequences of complete genus 2 interval exchanges. Combining all of this with a "magic splitting sequence" and work of Mirzakhani proves the main theorem. The 3-manifold situation contrasts markedly with random 2-generator 1-relator groups; in particular, we show that such groups "fiber" with probability strictly between 0 and 1.Comment: This is the version published by Geometry & Topology on 15 December 200

    A theoretical framework for supervised learning from regions

    Get PDF
    Supervised learning is investigated, when the data are represented not only by labeled points but also labeled regions of the input space. In the limit case, such regions degenerate to single points and the proposed approach changes back to the classical learning context. The adopted framework entails the minimization of a functional obtained by introducing a loss function that involves such regions. An additive regularization term is expressed via differential operators that model the smoothness properties of the desired input/output relationship. Representer theorems are given, proving that the optimization problem associated to learning from labeled regions has a unique solution, which takes on the form of a linear combination of kernel functions determined by the differential operators together with the regions themselves. As a relevant situation, the case of regions given by multi-dimensional intervals (i.e., “boxes”) is investigated, which models prior knowledge expressed by logical propositions
    • 

    corecore