2,738 research outputs found

    Absolute Calibration of the European Sentinel-3A Surface Topography Mission over the Permanent Facility for Altimetry Calibration in west Crete, Greece

    Get PDF
    This work presents calibration results for the altimeter of Sentinel-3A Surface Topography Mission as determined at the Permanent Facility for Altimetry Calibration in west Crete, Greece. The facility has been providing calibration services for more than 15 years for all past (i.e., Envisat, Jason-1, Jason-2, SARAL/AltiKa, HY-2A) and current (i.e., Sentinel-3A, Sentinel-3B, Jason-3) satellite altimeters. The groundtrack of the Pass No.14 of Sentinel-3A ascends west of the Gavdos island and continues north to the transponder site on the mountains of west Crete. This pass has been calibrated using three independent techniques activated at various sites in the region: (1) the transponder approach for its range bias, (2) the sea-surface method for the estimation of altimeter bias for its sea-surface heights, and (c) the cross-over analysis for inspecting height observations with respect to Jason-3. The other Pass No.335 of Sentinel-3A descends from southwest of Crete to south and intersects the Gavdos calibration site. Additionally, calibration values for this descending pass are presented, applying sea-surface calibration and crossover analysis. An uncertainty analysis for the altimeter biases derived by the transponder and by sea-surface calibrations is also introduced following the new standard of Fiducial Reference Measurements

    Fiducial Reference Measurements for Satellite Ocean Colour (FRM4SOC)

    Get PDF
    Earth observation data can help us understand and address some of the grand challenges and threats facing us today as a species and as a planet, for example climate change and its impacts and sustainable use of the Earth’s resources. However, in order to have confidence in earth observation data, measurements made at the surface of the Earth, with the intention of providing verification or validation of satellite-mounted sensor measurements, should be trustworthy and at least of the same high quality as those taken with the satellite sensors themselves. Metrology tells us that in order to be trustworthy, measurements should include an unbroken chain of SI-traceable calibrations and comparisons and full uncertainty budgets for each of the in situ sensors. Until now, this has not been the case for most satellite validation measurements. Therefore, within this context, the European Space Agency (ESA) funded a series of Fiducial Reference Measurements (FRM) projects targeting the validation of satellite data products of the atmosphere, land, and ocean, and setting the framework, standards, and protocols for future satellite validation efforts. The FRM4SOC project was structured to provide this support for evaluating and improving the state of the art in ocean colour radiometry (OCR) and satellite ocean colour validation through a series of comparisons under the auspices of the Committee on Earth Observation Satellites (CEOS). This followed the recommendations from the International Ocean Colour Coordinating Group’s white paper and supports the CEOS ocean colour virtual constellation. The main objective was to establish and maintain SI traceable ground-based FRM for satellite ocean colour and thus make a fundamental contribution to the European system for monitoring the Earth (Copernicus). This paper outlines the FRM4SOC project structure, objectives and methodology and highlights the main results and achievements of the project: (1) An international SI-traceable comparison of irradiance and radiance sources used for OCR calibration that set measurement, calibration and uncertainty estimation protocols and indicated good agreement between the participating calibration laboratories from around the world; (2) An international SI-traceable laboratory and outdoor comparison of radiometers used for satellite ocean colour validation that set OCR calibration and comparison protocols; (3) A major review and update to the protocols for taking irradiance and radiance field measurements for satellite ocean colour validation, with particular focus on aspects of data acquisition and processing that must be considered in the estimation of measurement uncertainty and guidelines for good practice; (4) A technical comparison of the main radiometers used globally for satellite ocean colour validation bringing radiometer manufacturers together around the same table for the first time to discuss instrument characterisation and its documentation, as needed for measurement uncertainty estimation; (5) Two major international side-by-side field intercomparisons of multiple ocean colour radiometers, one on the Atlantic Meridional Transect (AMT) oceanographic cruise, and the other on the Acqua Alta oceanographic tower in the Gulf of Venice; (6) Impact and promotion of FRM within the ocean colour community, including a scientific road map for the FRM-based future of satellite ocean colour validation and vicarious calibration (based on the findings of the FRM4SOC project, the consensus from two major international FRM4SOC workshops and previous literature, including the IOCCG white paper on in situ ocean colour radiometry)

    Investigating the potential of Sentinel-2 configuration to predict the quality of Mediterranean permanent grasslands in open woodlands

    Get PDF
    The assessment of pasture quality in permanent grasslands is essential for their conservation and management, as it can contribute to making real-time decisions for livestock management. In this study, we assessed the potential of Sentinel-2 configuration to predict forage quality in high diverse Mediterranean permanent grasslands of open woodlands. We evaluated the performance of Partial Least Squares Regression (PLS) models to predict crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF) and enzyme digestibility of organic matter (EDOM) by using three different reflectance datasets: (i) laboratory measurements of reflectance of dry and ground pasture samples re-sampled to Sentinel-2 configuration (Spec-lab) (ii) field in-situ measurements of grasslands canopy reflectance resampled to Sentinel-2 configuration (Spec-field); (iii) and Bottom Of Atmosphere Sentinel-2 imagery. For the three reflectance datasets, the models to predict CP content showed moderate performance and predictive ability. Mean R2test = 0.68 were obtained using Spec-lab data, mean R2test decreased by 0.11 with Spec-field and by 0.18 when Sentinel-2 reflectance was used. Statistics for NDF showed worse predictions than those obtained for CP: predictions produced with Spec-lab showed mean R2test = 0.64 and mean RPDtest = 1.73. The mean values of R2test = 0.50 and RPDtest = 1.54 using Sentinel-2 BOA reflectance were marginally better than the values obtained with Spec-field (mean R2test = 0.48, mean RPDtest = 1.43). For ADF and EDOM, only predictions made with Spec-lab produced acceptable results. Bands from the red-edge region, especially band 5, and the SWIR regions showed the highest contribution to estimating CP and NDF. Bands 2, blue and 4, red also seem to be important. The implementation of field spectroscopy in combination with Sentinel-2 imagery proved to be feasible to produce forage quality maps and to develop larger datasets. This study contributes to increasing knowledge of the potential and applicability of Sentinel-2 to predict the quality of Mediterranean permanent grasslands in open woodlands

    The EnMAP imaging spectroscopy mission towards operations

    Get PDF
    EnMAP (Environmental Mapping and Analysis Program) is a high-resolution imaging spectroscopy remote sensing mission that was successfully launched on April 1st, 2022. Equipped with a prism-based dual-spectrometer, EnMAP performs observations in the spectral range between 418.2nm and 2445.5nm with 224 bands and a high radiometric and spectral accuracy and stability. EnMAP products, with a ground instantaneous field-of-view of 30mĂ—30m at a swath width of 30km, allow for the qualitative and quantitative analysis of surface variables from frequently and consistently acquired observations on a global scale. This article presents the EnMAP mission and details the activities and results of the Launch and Early Orbit and Commissioning Phases until November 1st, 2022. The mission capabilities and expected performances for the operational Routine Phase are provided for existing and future EnMAP users

    Comparison of sea-ice freeboard distributions from aircraft data and cryosat-2

    Get PDF
    The only remote sensing technique capable of obtain- ing sea-ice thickness on basin-scale are satellite altime- ter missions, such as the 2010 launched CryoSat-2. It is equipped with a Ku-Band radar altimeter, which mea- sures the height of the ice surface above the sea level. This method requires highly accurate range measure- ments. During the CryoSat Validation Experiment (Cry- oVEx) 2011 in the Lincoln Sea, Cryosat-2 underpasses were accomplished with two aircraft, which carried an airborne laser-scanner, a radar altimeter and an electro- magnetic induction device for direct sea-ice thickness re- trieval. Both aircraft flew in close formation at the same time of a CryoSat-2 overpass. This is a study about the comparison of the sea-ice freeboard and thickness dis- tribution of airborne validation and CryoSat-2 measure- ments within the multi-year sea-ice region of the Lincoln Sea in spring, with respect to the penetration of the Ku- Band signal into the snow
    • …
    corecore