3 research outputs found

    Sentinel-1 and Ground-Based Sensors for Continuous Monitoring of the Corvara Landslide (South Tyrol, Italy)

    No full text
    The Copernicus Sentinel-1 mission provides synthetic aperture radar (SAR) acquisitions over large areas with high temporal and spatial resolution. This new generation of satellites providing open-data products has enhanced the capabilities for continuously studying Earth surface changes. Over the past two decades, several studies have demonstrated the potential of differential synthetic aperture radar interferometry (DInSAR) for detecting and quantifying land surface deformation. DInSAR limitations and challenges are linked to the SAR properties and the field conditions (especially in mountainous environments) leading to spatial and temporal decorrelation of the SAR signal. High temporal decorrelation can be caused by changes in vegetation (particularly in nonurban areas), atmospheric conditions, or high ground surface velocity. In this study, the kinematics of the complex and vegetated Corvara landslide, situated in Val Badia (South Tyrol, Italy), are monitored by a network of three permanent and 13 monthly measured benchmark points measured with the differential global navigation satellite system (DGNSS) technique. The slope displacement rates are found to be highly unsteady and reach several meters a year. This paper focuses firstly on evaluating the performance of DInSAR changing unwrapping and coherence parameters with Sentinel-1 imagery, and secondly, on applying DInSAR with DGNSS measurements to monitor an active and complex landslide. To this end, 41 particular SAR images, coherence thresholds, and 2D and 3D unwrapping processes give various results in terms of reliability and accuracy, supporting the understanding of the landslide velocity field. Evolutions of phase changes are analysed according to the coherence, the changing field conditions, and the monitored ground-based displacements

    Sentinel-1 and Ground-Based Sensors for Continuous Monitoring of the Corvara Landslide (South Tyrol, Italy)

    No full text
    The Copernicus Sentinel-1 mission provides synthetic aperture radar (SAR) acquisitions over large areas with high temporal and spatial resolution. This new generation of satellites providing open-data products has enhanced the capabilities for continuously studying Earth surface changes. Over the past two decades, several studies have demonstrated the potential of differential synthetic aperture radar interferometry (DInSAR) for detecting and quantifying land surface deformation. DInSAR limitations and challenges are linked to the SAR properties and the field conditions (especially in mountainous environments) leading to spatial and temporal decorrelation of the SAR signal. High temporal decorrelation can be caused by changes in vegetation (particularly in nonurban areas), atmospheric conditions, or high ground surface velocity. In this study, the kinematics of the complex and vegetated Corvara landslide, situated in Val Badia (South Tyrol, Italy), are monitored by a network of three permanent and 13 monthly measured benchmark points measured with the differential global navigation satellite system (DGNSS) technique. The slope displacement rates are found to be highly unsteady and reach several meters a year. This paper focuses firstly on evaluating the performance of DInSAR changing unwrapping and coherence parameters with Sentinel-1 imagery, and secondly, on applying DInSAR with DGNSS measurements to monitor an active and complex landslide. To this end, 41 particular SAR images, coherence thresholds, and 2D and 3D unwrapping processes give various results in terms of reliability and accuracy, supporting the understanding of the landslide velocity field. Evolutions of phase changes are analysed according to the coherence, the changing field conditions, and the monitored ground-based displacements

    An overview of monitoring methods for assessing the performance of nature-based solutions against natural hazards

    Get PDF
    To bring to fruition the capability of nature-based solutions (NBS) in mitigating hydro-meteorological risks (HMRs) and facilitate their widespread uptake require a consolidated knowledge-base related to their monitoring methods, efficiency, functioning and the ecosystem services they provide. We attempt to fill this knowledge gap by reviewing and compiling the existing scientific literature on methods, including ground-based measurements (e.g. gauging stations, wireless sensor network) and remote sensing observations (e.g. from topographic LiDAR, multispectral and radar sensors) that have been used and/or can be relevant to monitor the performance of NBS against five HMRs: floods, droughts, heatwaves, landslides, and storm surges and coastal erosion. These can allow the mapping of the risks and impacts of the specific hydro-meteorological events. We found that the selection and application of monitoring methods mostly rely on the particular NBS being monitored, resource availability (e.g. time, budget, space) and type of HMRs. No standalone method currently exists that can allow monitoring the performance of NBS in its broadest view. However, equipments, tools and technologies developed for other purposes, such as for ground-based measurements and atmospheric observations, can be applied to accurately monitor the performance of NBS to mitigate HMRs. We also focused on the capabilities of passive and active remote sensing, pointing out their associated opportunities and difficulties for NBS monitoring application. We conclude that the advancement in airborne and satellite-based remote sensing technology has signified a leap in the systematic monitoring of NBS performance, as well as provided a robust way for the spatial and temporal comparison of NBS intervention versus its absence. This improved performance measurement can support the evaluation of existing uncertainty and scepticism in selecting NBS over the artificially built concrete structures or grey approaches by addressing the questions of performance precariousness. Remote sensing technical developments, however, take time to shift toward a state of operational readiness for monitoring the progress of NBS in place (e.g. green NBS growth rate, their changes and effectiveness through time). More research is required to develop a holistic approach, which could routinely and continually monitor the performance of NBS over a large scale of intervention. This performance evaluation could increase the ecological and socio-economic benefits of NBS, and also create high levels of their acceptance and confidence by overcoming potential scepticism of NBS implementations
    corecore