1,306 research outputs found

    The Many Moods of Emotion

    Full text link
    This paper presents a novel approach to the facial expression generation problem. Building upon the assumption of the psychological community that emotion is intrinsically continuous, we first design our own continuous emotion representation with a 3-dimensional latent space issued from a neural network trained on discrete emotion classification. The so-obtained representation can be used to annotate large in the wild datasets and later used to trained a Generative Adversarial Network. We first show that our model is able to map back to discrete emotion classes with a objectively and subjectively better quality of the images than usual discrete approaches. But also that we are able to pave the larger space of possible facial expressions, generating the many moods of emotion. Moreover, two axis in this space may be found to generate similar expression changes as in traditional continuous representations such as arousal-valence. Finally we show from visual interpretation, that the third remaining dimension is highly related to the well-known dominance dimension from psychology

    Ordinal HyperPlane Loss

    Get PDF
    This research presents the development of a new framework for analyzing ordered class data, commonly called “ordinal class” data. The focus of the work is the development of classifiers (predictive models) that predict classes from available data. Ratings scales, medical classification scales, socio-economic scales, meaningful groupings of continuous data, facial emotional intensity and facial age estimation are examples of ordinal data for which data scientists may be asked to develop predictive classifiers. It is possible to treat ordinal classification like any other classification problem that has more than two classes. Specifying a model with this strategy does not fully utilize the ordering information of classes. Alternatively, the researcher may choose to treat the ordered classes as though they are continuous values. This strategy imposes a strong assumption that the real “distance” between two adjacent classes is equal to the distance between two other adjacent classes (e.g., a rating of ‘0’ versus ‘1,’ on an 11-point scale is the same distance as a ‘9’ versus a ‘10’). For Deep Neural Networks (DNNs), the problem of predicting k ordinal classes is typically addressed by performing k-1 binary classifications. These models may be estimated within a single DNN and require an evaluation strategy to determine the class prediction. Another common option is to treat ordinal classes as continuous values for regression and then adjust the cutoff points that represent class boundaries that differentiate one class from another. This research reviews a novel loss function called Ordinal Hyperplane Loss (OHPL) that is particularly designed for data with ordinal classes. OHPLnet has been demonstrated to be a significant advancement in predicting ordinal classes for industry standard structured datasets. The loss function also enables deep learning techniques to be applied to the ordinal classification problem of unstructured data. By minimizing OHPL, a deep neural network learns to map data to an optimal space in which the distance between points and their class centroids are minimized while a nontrivial ordering relationship among classes are maintained. The research reported in this document advances OHPL loss, from a minimally viable loss function, to a more complete deep learning methodology. New analysis strategies were developed and tested that improve model performance as well as algorithm consistency in developing classification models. In the applications chapters, a new algorithm variant is introduced that enables OHPLall to be used when large data records cause a severe limitation on batch size when developing a related Deep Neural Network

    Soft-Label Dataset Distillation and Text Dataset Distillation

    Full text link
    Dataset distillation is a method for reducing dataset sizes by learning a small number of synthetic samples containing all the information of a large dataset. This has several benefits like speeding up model training, reducing energy consumption, and reducing required storage space. Currently, each synthetic sample is assigned a single `hard' label, and also, dataset distillation can currently only be used with image data. We propose to simultaneously distill both images and their labels, thus assigning each synthetic sample a `soft' label (a distribution of labels). Our algorithm increases accuracy by 2-4% over the original algorithm for several image classification tasks. Using `soft' labels also enables distilled datasets to consist of fewer samples than there are classes as each sample can encode information for multiple classes. For example, training a LeNet model with 10 distilled images (one per class) results in over 96% accuracy on MNIST, and almost 92% accuracy when trained on just 5 distilled images. We also extend the dataset distillation algorithm to distill sequential datasets including texts. We demonstrate that text distillation outperforms other methods across multiple datasets. For example, models attain almost their original accuracy on the IMDB sentiment analysis task using just 20 distilled sentences. Our code can be found at \href\href{https://github.com/ilia10000/dataset-distillation}{\text{https://github.com/ilia10000/dataset-distillation}}
    • 

    corecore