
Kennesaw State University Kennesaw State University

DigitalCommons@Kennesaw State University DigitalCommons@Kennesaw State University

Analytics and Data Science Dissertations Ph.D. in Analytics and Data Science Research
Collections

Fall 12-16-2019

Ordinal HyperPlane Loss Ordinal HyperPlane Loss

Bob Vanderheyden

Follow this and additional works at: https://digitalcommons.kennesaw.edu/dataphd_etd

 Part of the Artificial Intelligence and Robotics Commons, Numerical Analysis and Scientific

Computing Commons, Other Computer Sciences Commons, Other Statistics and Probability Commons,

and the Statistical Models Commons

Recommended Citation Recommended Citation
Vanderheyden, Bob, "Ordinal HyperPlane Loss" (2019). Analytics and Data Science Dissertations. 4.
https://digitalcommons.kennesaw.edu/dataphd_etd/4

This Dissertation is brought to you for free and open access by the Ph.D. in Analytics and Data Science Research
Collections at DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Analytics and Data
Science Dissertations by an authorized administrator of DigitalCommons@Kennesaw State University. For more
information, please contact digitalcommons@kennesaw.edu.

https://digitalcommons.kennesaw.edu/
https://digitalcommons.kennesaw.edu/dataphd_etd
https://digitalcommons.kennesaw.edu/bigdataphd
https://digitalcommons.kennesaw.edu/bigdataphd
https://digitalcommons.kennesaw.edu/dataphd_etd?utm_source=digitalcommons.kennesaw.edu%2Fdataphd_etd%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.kennesaw.edu%2Fdataphd_etd%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.kennesaw.edu%2Fdataphd_etd%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.kennesaw.edu%2Fdataphd_etd%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.kennesaw.edu%2Fdataphd_etd%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/215?utm_source=digitalcommons.kennesaw.edu%2Fdataphd_etd%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/827?utm_source=digitalcommons.kennesaw.edu%2Fdataphd_etd%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/dataphd_etd/4?utm_source=digitalcommons.kennesaw.edu%2Fdataphd_etd%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

[Type here]

KENNESAW STATE UNIVERSITY

DOCTORAL DISSERTATION

Ordinal Hyperplane Loss

Author: Supervisor:

Bob Vanderheyden Dr. Ying Xie

A thesis submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in the

Institute of Analytics and Data Science

The Graduate College

October 1, 2019

[Type here]

[Type here]

iii

Declaration of Authorship

I, Robert Vanderheyden, declare that this thesis titled, “Ordinal Hyperplane Loss” and the work

presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this

University.

• Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Date: 10/24/2019

iv

v

Abstract

This research presents the development of a new framework for analyzing ordered class data,

commonly called “ordinal class” data. The focus of the work is the development of classifiers

(predictive models) that predict classes from available data. Ratings scales, medical classification

scales, socio-economic scales, meaningful groupings of continuous data, facial emotional

intensity and facial age estimation are examples of ordinal data for which data scientists may be

asked to develop predictive classifiers. It is possible to treat ordinal classification like any other

classification problem that has more than two classes. Specifying a model with this strategy does

not fully utilize the ordering information of classes. Alternatively, the researcher may choose to

treat the ordered classes as though they are continuous values. This strategy imposes a strong

assumption that the real “distance” between two adjacent classes is equal to the distance

between two other adjacent classes (e.g., a rating of ‘0’ versus ‘1,’ on an 11-point scale is the

same distance as a ‘9’ versus a ‘10’). For Deep Neural Networks (DNNs), the problem of predicting

k ordinal classes is typically addressed by performing k-1 binary classifications. These models may

be estimated within a single DNN and require an evaluation strategy to determine the class

prediction. Another common option is to treat ordinal classes as continuous values for regression

and then adjust the cutoff points that represent class boundaries that differentiate one class from

another. This research reviews a novel loss function called Ordinal Hyperplane Loss (OHPL) that

is particularly designed for data with ordinal classes. OHPLnet has been demonstrated to be a

significant advancement in predicting ordinal classes for industry standard structured datasets.

The loss function also enables deep learning techniques to be applied to the ordinal classification

problem of unstructured data. By minimizing OHPL, a deep neural network learns to map data

vi

to an optimal space in which the distance between points and their class centroids are minimized

while a nontrivial ordering relationship among classes are maintained. The research reported in

this document advances OHPL loss, from a minimally viable loss function, to a more complete

deep learning methodology. New analysis strategies were developed and tested that improve

model performance as well as algorithm consistency in developing classification models. In the

applications chapters, a new algorithm variant is introduced that enables OHPLall to be used

when large data records cause a severe limitation on batch size when developing a related Deep

Neural Network.

vii

viii

Acknowledgements

First and foremost, I want to thank my wonderful spouse, Susan. Through 30+ years of

marriage, she’s stood by me through three different attempts to complete my PhD and has

always been my biggest supporter. Even when dealing with her own life struggles, she has been

a rock upon which I always find support. Thank you honey.

My children, Alex, Andy and Donna have been huge support of my efforts to complete this life

goal, along with Alex and Andy’s wonderful spouses, Leslie and Taylor. They have been incredible

emotional support. All five will never know how much their encouragement emboldened me to

return to schools after 25 years, to attend classes with students who are their ages. In addition,

four of them have been terrific editors of my papers as well as people with whom I could vet

ideas. Our discussions where we reviewed my research ideas and you shared personal

perspective on my work from your understanding of topics like logic gates, recursion, signal

processing and how data relates to behavior enhanced my perspective on complex processes

that allow me to simplify the concepts, to be able to apply them as needed.

My mother and father, Jutta and Lynn Vanderheyden were the original encouragers in my life.

They always believed in my abilities, even when I deeply questioned them. They were my original

emotional support, both in pursuing a college and completing advanced degrees. I am forever

indebted to them. I love you mom and dad.

I thank my much older sister, Susan, for always being my confidant and encourager. While we

had very different academic areas in which we excelled, you set a standard of academic

excellence that I had to work hard to attempt to achieve.

ix

Thank you to my brother, Wesley. We spent a lot of years embroiled in typical sibling rivalries,

but in the long run, we may have been each-others most important supporters over the course

of our lives. You showed me that a with little talent, hard work towards a life goal, would

inevitably result in successful attainment of that goal. I love you both dearly.

To my niece Ashley, thank you for the emotional support, but more importantly thank you for

the motivation. Returning to school while working full time wasn’t easy, but I simply couldn’t

allow myself to fail and permit you to hold your PhD over my head for the rest of my life. I love

you always.

I’m not sure that “thank you” is a sufficient sentiment for how Dr. Ying Xie has influenced my

life and studies. With so many young, talented students who want to work with you, I find myself

constantly wondering why you agreed to let me work with you. From the very first course that

you taught, you have been a valuable mentor and teacher. You challenged me to develop ideas

and solutions that I would have never thought possible. Thank you for all of the time and energy

that you put into my research efforts.

Dr. Jennifer Priestley, you were the person who planted the idea of me returning to academic

studies at age 55. With so many young, talented people applying for the program, it would have

been easy for you to ignore the crazy old guy. Instead, you saw, in me, the value of having an

experienced data scientist, as part of the first cohort. You have been a terrific role model for

every student in the program, including me. You are also the reason that this program has

attracted so many highly intelligent, motivated young women. It is a true inspiration to see the

impact that you have on them.

x

Thank you to my committee members. Dr. Ray, I can never fully explain to you the impact that

you’ve had on my studies. I never had the pleasure of taking a course that you taught, but the

one on one conversations that we’ve had, in particular our discussions about my specific life

circumstances, have been invaluable. Dr. Ni, from the courses that you taught, to the two SAS

Shootouts that you lead, to our discussions of draft versions of my dissertation, it is always felt

like you treated me more like a colleague than a student, which sent a not so subtle message that

I’d chosen well when I decided to enroll in the program. Thank you for your support and the time

that you dedicate to your students. Thank you Dr. Moazzez for opening my eyes to an area of

mathematical study that I knew existed but did not realize could provide the powerful

applications that are possible. You’ve inspired me to think deeper into the mathematical

implications of the work that I’m doing. You have also been a terrific encourager and friend. I

think that I may have appreciated our personal conversations even more than our academic

conversations. Dr. Stefanos Manganaris, thank you for taking time from your busy work schedule,

to participate in this endeavor. Our early conversations related to the application of advanced

math concepts to data analysis challenged me and encouraged me to think deeper into the

problem that I was attempting to solve.

Thank you, Dr. Sherrill Hayes, for all of the support and encouragement. While your area of

expertise may not be data science, the discussions that we’ve had regarding philosophical

questions like “what is research” helped me understand how the technical work that I was doing

could be transformed into research.

Thank you to members of Cohort 1: Dr. Jie Hao, Dr. Linh Le, Sergiu Buciumas, Edwin Baidoo

and Dr. Bogdan Gadidov. I was very anxious about returning to school after a 25-year absence.

xi

From the first day, all of you treated me like any other student and were a terrific help in getting

through several of our challenging courses. The opportunity to work and study with you helped

me survive the program. I also want to extend a special thank you to Bogdan. You seemed to

always draw the short straw, sticking you with me as a project partner. Thank you for helping me

survive those projects.

Speaking of project partners, thank you Jessica Rudd, for being my project partner when

Bogdan was not in the class that I was taking. Our conversations outside of course work were

special for me. You will always be a dear friend. I also want to thank Yiyun Zhou and Dr. Linh Le

for all of the help that you provided. From helping me understand some nuances of Tensorflow

and Theano, to helping me work through challenges that I encountered in trying to develop deep

learning models. You both have always been willing and capable collaborators and sounding

boards.

Thank you to the rest of the students, in other cohorts. This program will quickly be recognized

as world class, when you complete your work. Our cohort is the first to finish, but yours may be

the best to finish.

Thank you to all of the professors who “only” taught the courses that I took. Dr. Phillipe Laval,

Dr. Eric Westlund, Dr. Bo Yang and Dr. Bradley Barney all provided interesting, challenging

courses that were very important in laying a solid theoretical foundation for my research.

Possibly most important of all the people associated with this PhD program, thank you to Cara

Reeve for working through all of the administrative challenges that we had to deal with. The

support team is always important, but when you’re the support team for a brand-new program,

xii

the challenges are magnified at least 10-fold. Your help over the years may not have earned

awards, but you are the critical life blood for the program.

In closing, I want to thank IBM, for providing an avenue for me to complete this program,

while also working full time to support my family. I want to say a special thank you to Kathy

McGettrick, Cynthia Wang, Melissa Gray and Mahendran Nagarajan. Without your support, I

could not have even considered enrolling.

xiii

Table of Contents

Chapter 1. Introduction .. 1

Chapter 2. Literature Studies ... 5

Chapter 3. Deep Learning .. 16

3.1. The Multi-Layer Perceptron .. 17

3.2. The Exclusive OR problem (XOR) .. 20

3.3. Deep Neural Networks ... 24

3.4. Mini-Batch Processing .. 29

3.5. Hinge Loss .. 30

Chapter 4. Ordinal Classification Problem Description .. 32

4.1. Fundamental Ordinal Classification Problem .. 32

4.2. Geometric Motivation .. 35

Chapter 5. OHPL – Ordinal Hyperplane Loss ... 39

5.1. Linear Hyperplanes .. 41

5.2. Hyperplane Centroid Loss ... 43

5.3. Hyperplane Point Loss .. 44

5.4. Deep Learning Strategy Based on OHPL ... 49

5.5. Scaling to Large Datasets ... 53

Chapter 6. Experimental Results for OHPLnet ... 55

6.1. Experimentation: Standard Test Datasets .. 55

6.2. Algorithm Assessment .. 56

6.3. Benchmark Algorithms ... 58

6.4. Benchmark Results ... 61

6.5. Application To Large Datasets .. 65

Chapter 7. Evolution of OHPLnet .. 67

7.1. Mini-Batch OHPLnet ... 67

7.2. Two-Stage OHPLnet .. 74

7.3. OHPLall .. 77

7.4. Experimental Results for New Variants of OHPLnet .. 79

Chapter 8. OHPLnet Analysis Strategies ... 82

8.1. Double-Batch Sampling Strategy .. 82

xiv

8.2. Single Stratefied Sampling Strategy .. 83

8.3. Epoch Stratified Sampling Strategy .. 85

8.4. Experimental Results for OHPLnet Variants .. 87

Chapter 9. Application: Classification of Medical Images ... 97

Chapter 10. Application: Multi-Class Sentiment Analyizer ... 114

Chapter 11. Application: OHPLnet for Interprettive Assessment 127

Chapter 12. Conclusions ... 136

Bibliography .. 138

xv

xvi

LIST OF Tables

Table 1 Ordinal Regression Three Class Label Encoding .. 8
Table 2 XOR Data ... 21
Table 3 Test Dataset Key Characteristics ... 56
Table 4 MZE Results for OHPLnet versus Benchmark Algorithms .. 62
Table 5 MAE Results for OHPLnet versus Benchmark Algorithms ... 63
Table 6 MAE/MAE Results for OHPLnet versus Benchmark Algorithms 64
Table 7 MZE Results for New OHPLnet versus other OHPL Base Algorithms 80
Table 8 MAE Results for New OHPLall versus other OHPLnet Base Algorithms 81
Table 9 ERA Dataset Double Batch Results for 5 Algorithm Executions 88
Table 10 MZE Results for OHPL/OHPLall versus Analysis Strategies Using OHPL 90
Table 11 MAE Results for OHPLall versus other OHPLnet Base Algorithms 91
Table 12 Standard Deviations of MZE .. 92
Table 13 Standard Deviations of MAE .. 92
Table 14 Sample Strategy for Double Batch and Stratified Batches .. 94
Table 15 BI-RADS Category Scale [53] .. 97
Table 16 Zero Assessment Patient Key Statistics ... 104
Table 17 Image Counts by BI-RADS Rating ... 105
Table 18 OHPLall vs Ordinal Regression MAE and MZE Results ... 110
Table 19 Rating Level Assessment for a High Performing OHPLall Model 111
Table 20 Detailed Results for a High Performing Ordinal Regression Model 112
Table 21 Results For ‘0’ Rated Cases .. 113
Table 22 Net Promoter Value to Semantic Label Recode .. 114
Table 23 NPS Sentiment Analysis Sample Counts by Response Class .. 119
Table 24 Confusion Matrix: Counts for Actual versus Predicted Classes 120
Table 25 NPS Three Class Counts by Class ... 121
Table 26 NPS Sentiment Analyzer Results For 20 Iterations of Each Algorithm 124
Table 27 NPS Responses That Are Inconsistent with Verbatim Comments 125
Table 28 Net Promoter Response Distribution .. 129
Table 29 IT Company NPS Response Counts and Tested Weighting Scales 131
Table 30 Random Assignment of Classes ... 132
Table 31 NPS Weighted Model Results with Binned Classes ... 134

xvii

xviii

LIST OF FIGURES

Figure 1 Local Neighborhood Ordered Classes vs Nominal Classes ... 15
Figure 2 Simple Multi-Layer Perceptron with weight updates ... 17
Figure 3 Plot of three common activation functions, found in Deep Neural Networks 18
Figure 4 XOR Plot .. 21
Figure 5: Fully Annotated XOR Neural Network Graph .. 22
Figure 6 DNN Representative Graph .. 24
Figure 7: Residual Neural Network Graph .. 25
Figure 8 Basic Convolutional Neural Network Graph ... 26
Figure 9: ResNeXt versus ResNet Architecture Fundamental Differences 27
Figure 10 Recurrent Neural Network Graph .. 28
Figure 11 Simple Autoencoder ... 29
Figure 12 Ordered Separation of Classes ... 34
Figure 13 Separable Mapping 𝜙:ℝ2 → ℝ2. .. 36
Figure 14 Parallel Hyperplanes. .. 38
Figure 15 Hyperplane Point Loss - Increasing Direction. .. 45
Figure 16 Hyperplane Point Loss - Decreasing Direction. ... 46
Figure 17 HPL for Three Ordinal Class Case. ... 47
Figure 26 OHPL as a Deep Neural Network: ... 50
Figure 27 Convolutional Neural Network Graph with OHPLnet Neural Network Layers 51
Figure 28 Recurrent Neural Network Graph with OHPLnet Neural Network Layers 51
Figure 18 Color Coded Confusion Matrix. .. 58
Figure 19 Time to Complete 500 Epochs by Number of Records (K records) 66
Figure 20 SWD Training Dataset: MZE and MAE vs Total Training Error 71
Figure 21 SWD Validation Dataset MZE and MAE vs Total Training Error 72
Figure 22 SWD Validation Dataset MZE and MAE vs Training Dataset MAE 73
Figure 23 SWD Validation Dataset MZE and MAE vs Training Dataset MZE 73
Figure 24 Validation Set MZE and MAE versus Training Set MAE .. 75
Figure 25 SWD Dataset Validation MAE, MZE and MAE + MZE vs Training set MAE + MZE. 95
Figure 29 Distribution of Row Pixel Count for Cropped Calcification Images 101
Figure 30 Distribution of Column Pixel Count for Cropped Calcification Images 101
Figure 31 Distribution of Row Pixel Count for ROI Calcification Images 101
Figure 32 Distribution of Column Pixel Count for ROI Calcification Images 101
Figure 33 Distribution of row pixel count for ROI Calcification Images with row pixel count
between 700 and 1,100. ... 102
Figure 34 Distribution of column pixel count for ROI Calcification Images with column pixel
count between 700 and 1,100. ... 102
Figure 35 Distribution of column pixel count for ROI Calcification Images 102
Figure 36 Sample Mammography Image .. 103
Figure 37 Sample Mammography Image .. 103
Figure 38 Sample Mammography Image .. 103
Figure 39 Sample Mammography Image .. 103

xix

Figure 40 Convolutional Neural Network Architecture .. 109
Figure 41 Training Data Mean Batch Error ... 110
Figure 42 NPS GRNN Network Graph ... 123

xx

1

Chapter 1. INTRODUCTION

The problem of ordinal class data occurs in a large and growing number of areas. Some of the

most common sources and applications of ordinal data are:

• Ratings scales (e.g. Likert scales, star ratings), like customer satisfaction ratings,

“promoter” ratings and quality ratings

• Sentiment scales (negative, neutral and positive)

• Medical classification scales of disease stage/severity/risk (mammogram image BI-RADS)

• Student performance (e.g., letter grades)

• Socio-Economic scale (e.g., high, medium and low)

• Meaningful groupings of continuous data (e.g., generational age groupings, grouping of

noisy sensor data)

• Facial emotional intensity [1]

• Facial age estimation [2]

• Weather (e.g., storm severity classes)

• Performance ratings (e.g., high school prospects in football and basketball)

Historically, due to the high cost of data capture for sources like surveys, medical studies, etc.,

the vast majority of sources for ordinal data generated relatively small datasets (e.g., under 20K

records of structured data or a hundred or less for unstructured data like medical images). In

more recent years, there’s been a dramatic increase in the number of datasets and analysis

problems, with ordinal classes as the primary output/focus, that have hundreds of thousands or

2

even millions of records are being analyzed. In addition, relatively large image and datasets, with

ordinal labels are becoming common place. Many of these large data sets have their genesis in

the explosion of use of digital and text data. Ratings surveys found on sites like Amazon and Yelp,

large corporation Customer Satisfaction/Net Promoter surveys and the aggregation of medical

history and/or imaging records into large data systems are primary examples.

Ordinal classes differ from nominal (unordered) classes by providing additional

information/requirements in the form of a precise ordering of the classes. As a direct

consequence, strategies for predicting nominal classes, tend to under-perform when applied to

ordinal data. The use of sequential integers to represent the ordered classes is natural and

commonly used for labeling the ordered classes. This representation might suggest that the

application of methodologies like regression, that attempt to predict a continuous value would

be effective in developing ordinal classifiers. Strategies like regression assume that equal

“distances” between values have a consistent numerical meaning (e.g., all one-unit differences

having the same meaning), but this assumption is rarely true in ordinal data. Within prediction

algorithms, these fundamental differences in the type of data being predicted may be addressed

in the loss function or by employing potentially complex, multi-model strategies. An ideal loss

metric for ordinal classification would assess the ordering of the data and form discrete

homogeneous class groupings without imposing an equal “distance” assumption between

predicted classes.

The fundamental difference in ordinal and nominal classes also leads to a difference in

assessment for classifier performance. The best classification strategies must not only have a

classification accuracy that is on par with or better than other strategies, but in the best strategies

3

misclassified cases should to be ‘close’ to the correct class (e.g., misclassifying a ‘3’ as a value of

‘4’ is more desirable than misclassifying it as a ‘5’).

Existing strategies to address the unique requirements of classifying ordinal data utilize the

power of methodologies like SVM (Support Vector Machines) [3, 4, 5, 6, 7] and Gaussian

Processes [8]. Others that use Deep Neural Networks employ complex multi-model or repeated-

sampling approaches. As such, any attempts to apply them to the large datasets would require

major alterations to the algorithm or the use of complex sampling or ensemble strategies that

are applied to nonlinear model results.

To address these conditions unique to the ordinal classification problem (also known as the

ordinal “regression”), the Ordinal Hyperplane Loss (OHPL) was developed by addressing the

following algorithm goals for a current ordinal labelled class of the training data:

1) develop a Neural Network to define a nonlinear mapping of the data into a vector valued

output space

2) train the network to establish and maintain the ordering of the classes

3) “drawing” like labelled samples closer together

This formulation maintains the ordering without imposing assumptions regarding the distance

between different classes (e.g., as would be imposed by using ordinary least-squares regression

analysis). At the same time, the algorithms that are developed from this approach can be applied

to very large classification problems.

The remainder of the thesis is organized as follows. Chapter 2 reviews relevant work and

existing algorithms, that attempt to solve the ordinal classification problem. Chapter 3 provides

4

a review of Deep Learning including variants of Artificial Neural Networks and related

considerations in using Deep Learning algorithms to solve classification problems such as Ordinal

Classification. Chapters 4 and 5 cover the geometric and mathematical framework for the

development of Ordinal Hyperplane Loss (OHPL). Chapter 6 documents experimental results for

the original OHPL work. OHPLall is the culmination of work that’s focused on improving upon the

original OHPL methodology for application to very large datasets. These advances are reported

in Chapter 7. A successive series of algorithm strategies that were designed and tested to improve

algorithm performance both in terms of speed and accuracy of predictions are reported in

Chapter 8. Chapters , while Chapters 8 through 10 review three different applications of OHPL

and OHPLall. Chapter 11 contains conclusions from this work.

5

Chapter 2. LITERATURE STUDIES

In January 2016, Gutierrez, et. al. published an extensive examination of solutions to the

Ordinal Classification problem [9], including benchmark performance metrics versus a set of

standard datasets that were included in the work of Chu and Ghahramani [8]. In their review

Gutierrez et. al. grouped the existing top performing methodologies into three categories that

address the Ordinal Classification problem: 1) Naïve Approaches, 2) Ordinal Binary

Decompositions and 3) Threshold Models. While their work attempts to provide a framework for

three distinct classes of models, the team acknowledges that many of the most common

approaches could be classified into more than one category. Unless specifically attributed to a

different researcher, the content of the remainder of this section is attributed to the work of

Gutierrez, et. al. [9].

Naïve approaches use an appropriate simplifying assumption to re-cast the problem in such a

manner that existing methodologies can be applied. If the researcher assumes that the difference

in classes is “close” to uniform they may transform the classes into sequential integers and apply

regression analysis like ordinary least squares, neural networks or SVR (Support Vector

Regression). Cost sensitive methodologies which use different weights for different

misclassification types also fall into this category. Another common naïve approach ignores the

class ordering by applying nominal classification approaches like SoftMax regression or multi-

class SVM, to predict class membership.

Cost sensitive classification is a more advanced naïve approach. In this approach,

misclassification costs will differ between two or more classes, with a goal of maximizing accurate

6

classification of the most desired class. Support Vector Machines with Ordered Partitions

(SVMOP) is a high performing algorithm that falls in this category [10]. The algorithm uses class

differences, as weights, in an effort to not only provide correct classification, but to encourage

misclassifications that are close in class number to the actual class (e.g., for an actual class value

of ‘2’, the algorithm encourages a miss of ‘3’, instead of a ‘5’).

The fundamental basis of binary decomposition is to recast the problem as a set of binary

classification problems. The problem may be posed by comparing pairs of ordinal values with the

higher value being assigned a value of 1 and then using either a single or multiple binary

classification models. In the case of multiple classifiers, the analyst may produce as few as k-1

classifiers for k ordered classes or as many as &𝑘2(=
*
+
𝑘 ∗ (𝑘 − 1) classifiers (i.e., all ordered

pairs). An appropriate decision rule is then applied to the set of classifiers. In the k-1 case, each

adjacent ordered pair is analyzed as a binary problem. One popular process examines the highest

value in a sequence of values that meet a minimum model value threshold. For example, assume

that we have five ordinal classes: ‘1’, ‘2’, ‘3’, ‘4’ and ‘5’. If the first three classifiers (‘1’ vs ‘2’, ‘2’

vs ‘3’ and ‘3’ vs ‘4’) estimate values of 0.5 or higher, but the fourth (‘4’ vs ‘5’) does not, it results

in a classification of the highest of the first three classifiers (or ‘4’, in this example). If the first

binary classifier value does not meet the threshold of 0.5, then the record is classified as the

lowest ordinal value (’1’ in the example). Similarly, the analyst may choose to group classes based

on classes (e.g., ‘1’ vs ‘2’-‘5’, ‘1’ & ‘2’ vs ‘3’–‘5’, ‘1’-‘3’ vs ‘4’ & ‘5’ and ‘1’-‘4’ vs ‘5’).

The earliest ordinal binary decomposition approaches used Ordinal Logistic Regression [11],

employs logistic regression to estimate the binary probabilities for class ordering (e.g., probability

7

that the label for a given record is ‘3’ or higher). More recent binary decomposition strategies

use machine learning approaches like Support Vector Machine (SVM) algorithms to create

individual binary classifiers, combined with classification strategy using the binary classifiers.

Deep Neural Networks allow of the output of multiple estimates. These estimates may be used

to create class probabilities for all classes in a single model. Some approaches endeavored to use

non-parallel hyperplanes, in an SVM framework, but at a high cost of increased model

complexity. Note that SVMOP would fit into the binary decomposition category but is more

appropriately classified as a cost sensitive methodology, within naïve approaches.

A new variant of Ordinal Regression was proposed by Cheng et. al., in 2007. In this approach,

a single Deep Neural Network is used to predict the classes. Their approach is very similar to a

multilabel classification problem using a DNN, where multiple outputs are estimated with all

elements of the output layer being the value from a sigmoid function [12]. To set up the analysis

for k ordinal classes, the label value for each record is recoded into a k-1 length vector. For a

given class value, ‘a,’ all index values of the vector with position value (using the standard 0 index

value for the 1st position in the vector) that are less than ‘a’ minus the minimum ordinal value are

coded with a 1. All other values are coded with a zero [12].

The three ordinal class case, with ordinal values ‘1’, ‘2’ and ‘3’, is illustrated in Table 1. For the

three-class problem, the neural network essentially estimates two binary models. The first output

predicts the likelihood that the label is greater than ‘1’, and the second one predicts the likelihood

that the label is greater than ‘2.’ Once the algorithm converges or reaches a predefined stopping

point, a classification rule, typically whether or not the value is greater than 0.5, converts each

output vector into a binary array that is similar to the one used for training. Ordinal classes are

8

assigned based on which encoded vector matches the binary output. If the first position is zero,

then the record is assigned the value of the minimum label [12].

Table 1 Ordinal Regression Three Class Label Encoding

Label Vector

1 [0, 0]

2 [1, 0]

3 [1, 1]

It should be noted that, while the vast majority of class predictions will conform to one of the

vector values of the encoded ordinal classes, it is possible for vector values that do not conform

to exist. In the three-class problem, it is possible to have a prediction of ‘[0, 1]’ from applying

the resulting model to a data record (either in the training set, a test or validation set or to

completely new data). It is left to the analyst to determine how to classify these nonconforming

results.

Threshold models are comprised of a large number of methodologies including:

1. Cumulative Link Models: Traced to the Proportional Odds Models that were originally

created in the 1980s. Cumulative Link Models map the input data into a one dimensional

(i.e., a number line). This number line is appropriately partitioned, to provide class

predictions.

2. Support Vector Machines: In 1999, Herbrich et. al. developed single model SVM approach

that transformed the input data by calculating the difference between pairs and used the

sign of the ordinal class differences. Other applications involve pointwise approaches that

9

produce k-1 hyperplanes, to classify k ordinal classes. Given the simple ordering

information that is available, with ordinal data, the problem lends itself well to algorithms

that uses distance learning principles. In 2005, Chu & Keerthi developed two SVM

algorithms that specifically address the ordinal classification problem through the

estimated multiple hyperplanes that maintain the sequential ordering of the classes [5].

While successful in application to small datasets, their algorithm converts the original SVM

proposed by Vapnik et. al., that has a unique individual constraint, for every record, in the

dataset, into an optimization problem that has (k-1)*n constraints. Keerthi et. al.’s more

effective algorithm, which they call ’IMC,’ has a problem size of (k-1)*n, while the ‘EXC’

variant scales to a problem size of 2n+k [5]. The most efficient SVM algorithms have a

computational cost of 𝒪(𝑛+). This computational cost tends to make SVMs impractical

with large datasets. Scaling the problem size by a factor of two would quadruple compute

cost. For problems with 10 or more classes, the cost for IMC would increase by a factor of

100 or more.

3. Discriminant Learning: The models maximize between class differences and minimize

within class differences using the variance-covariance matrix and the Rayleigh coefficient.

To adapt discriminant analysis to the ordinal classification problem, an ordering constraint

is applied over the contiguous classes. SVM falls under a broader context of kernel

methods. Cardoso et. al., in 2012, developed a set of three Kernel Discriminant Analysis

(KDA) base ordinal classifiers [13]. One of the classifiers extends the work Frank and Hall,

in 2001, which employs a series of binary classifiers [14]. The second uses the data

replication strategy of Pinto da Costa, et. al., in 2005 [15]. The third strategy involves the

10

development of a modified Kernel Discriminant Analysis which applies an ordering

constraint on the projected means.

4. Augmented Binary Classification: The general framework includes the development of

multiple samples from the original sample, including a weighting of the samples. A binary

classifier is then developed using the full set of multiple samples (any binary classification

algorithm can be used). Lastly, a ranking process is constructed using the output of the

binary classifiers. Pinto da Costa et. al. developed a data replication strategy to design an

ordinal classifier that utilizes Deep Neural Networks (DNNs) [15]. In their work they utilized

an additional data dimension that represented the sample orderings (e.g., ‘0’ vs ‘1’ and

higher has a value of 0, in the additional dimension while ‘0’ & ‘1’ vs ‘2’ and higher had a

value of 1). In work that was published in published in 2010, the researchers successfully

extended their work data replication strategy, into SVM applications [16]. One of the most

common of the distance learning methodologies is Support Vector Machines, which seek

to identify hyperplanes that separates classes, in a higher dimensional space. As such they

are a natural machine learning methodology to apply to ordinal classification problems.

5. Ensemble Models: The RankBoost algorithm attempts to improve a set of confidence

functions, that maximize an ensemble of binary classifiers. Similarly, the ORBoost

algorithm applies the same concepts to develop improved performance from ordinal

regression models. The basic framework for the creation of ensemble models is the

development of “weak” classifiers, that are combined to produce an algorithm that

outperforms each of its components. Ensemble methods have a documented history of

outperforming competing single model solutions. The weak classifiers may be generated

11

by using a subset of available features, a subset of records (usually bootstrap sampling) or

some combination of the two. Instead of determining an optimal combination from a full

set of weak classifiers, boosting algorithms begin with an initial classifier, then add

additional weak classifiers until incremental classifier improvement (e.g., improvement in

model accuracy, on the training set), becomes zero (or approaches zero).

6. Gaussian Process: GPOR uses a Bayesian framework to model a latent function via

Gaussian Processes. Prior and posterior probabilities for class membership are estimated

for a set of latent functions of the input features. Optimization with respect to the

hyperparameters results in probability estimates of class membership, based on the input

record. GPORs include an optimization algorithm that discovers the ideal thresholds for

classifying data records based on the output metric, from the gaussian process. GPOR is

an example of an analytic framework that could fit into multiple categories.

In late 2016, Hamsici and Martinez proposed a Support Vector Machine based algorithm that

attempted to maximize the margins between adjacent classes [17]. The authors apply Sequential

Minimal Optimization (SMO), to efficiently and simultaneously solve k-1 problems, where k is the

number of ordinal classes. Their algorithm is similar to that Keerthi and Chu, but with the notable

and meaningful difference that their algorithm does not assume equal margins between adjacent

classes. In addition, their algorithm includes weight parameters, that enable the prioritization of

one or more of the individual algorithms, over others. This prioritization weighting allows a

researcher to focus on a specific pair of ordered classes (e.g., a medical researcher may want the

classifier to have the best possible classification of stage two cancer versus stage three, while still

12

effectively classifying five different ordinal classes). Weighting can also be used to address

unbalanced classes within the data (i.e., unbalance records counts for the classes).

In 2017, Wang, et. al. used a nonparallel hyperplane assumption for the development of a

specialized Support Vector Machine (SVM) algorithm to address the Ordinal classification

problem [7]. For k ordinal classes, their algorithm estimates k-1 hyperplanes. For each, they

include constraints which ensure that like-labelled samples are within a prescribed margin of the

hyperplane, while unlike-labelled samples are one or more units away. They also include

constraints to ensure the ordering of the hyperplanes reflect the ordering of the classes. The use

of nonparallel hyperplanes may result in classification issues, if data points map into a region

near the crossing of two hyperplanes.

These algorithms exhibit mixed performance across the standard test data sets that are used

to benchmark performance of ordinal classifiers. Many are benchmarked using 20 or more small

datasets, with performance that represents modest improvements, when the algorithm actually

outperforms other classifiers. While these incremental improvements are notable, they are being

benchmarked against current “best in breed” classifiers, so as a rule, it is rare to find one that

outperforms best benchmark classifier by 10% or more in terms of decline in classification error.

It is worthy of note, because the solution that is reported in Chapter 5 has an accuracy

improvement of fourteen percent or more on two out of seven benchmark datasets, when

compared to four of the highest performing algorithms.

In February 2018, Nguyen et. al. incorporated “Triplet Loss” based constraints to an algorithm

that is similar to SVM optimization [3]. Their algorithm employs triplet loss-based constraints, on

local clusters of data points. The researchers produced a linear version of their algorithm, as well

13

as a version that employs the kernel trick to produce a nonlinear mapping of the data into a

higher dimensional space. Within their work, the algorithm produced solid results with mixed

performance where the linear version outperformed the nonlinear version roughly half of the

time. Given the researcher’s stated algorithm compute cost of 𝒪(𝑛3), while their solution is

successful with relatively small datasets (e.g., under 25,000 records), it may not be viable for

larger datasets. In the future, they could conceivably develop a new version that uses SMO to

solve the problem, once the constraints are developed. Doing so should broaden the applicability

to larger datasets, but still may not be viable if the number of records exceeds 100,000 by a

significant amount.

Triplet Loss is a term that was first used in the ground-breaking FaceNet solution to the ReId

(reidentification) problem [18]. In developing FaceNet, Schroff et. al. leveraged the foundational

work in Large Margin Nearest Neighbor (LMNN) Classification published by Weinberger and Saul

[19]. The essence of the FaceNet process is to train a Convolutional Neural Network (CNN) to

produce an N-dimension embedding, that is optimized based on relative distances of similar and

dissimilar pairs of data points. A margin, that is analogous to the margin found in a Support Vector

Machine, is used to ensure that similar pairs (those with the same label) being “closer” than

dissimilar pairs (those with different labels) is based on a difference in distances that is not trivial

(i.e., not arbitrarily close to zero). This process produces what is commonly called a “triplet loss”

function (discussed further in Chapter 4) that is based on linear distance comparisons. As the

following general triplet loss function demonstrates, the loss function uses a fixed margin that is

strictly greater than zero, to ensure that a point, 𝒙5, is closer to the positive anchor, 𝒙6 (same

14

class), than it is to the negative anchor, 𝒙7 (different class from 𝒙5) and the difference, 𝛿, is fixed

and not trivially close to zero [18].

𝑡𝑟𝑖𝑝𝑙𝑒𝑡	𝑙𝑜𝑠𝑠 = maxF𝑑F𝑥6, 𝑥5I − 𝑑(𝑥7, 𝑥5) + 𝛿, 0I					(1)

Triplet loss puts a significant burden on the analyst to devise a reasonable strategy for

identifying triplets for use in estimating function error, since the number of possible triplets grows

as a cubic function of dataset size [20]. The framework of triplet loss provides a mechanism for

applying a distance comparison between points without requiring the underlying distance

assumptions of regression analysis. This framework of triplet loss makes it well suited to the

ordinal classification problem, but triplet loss cannot be used because it does not guarantee that

the ordering information is utilized nor that the ordering of classes is guaranteed (it only

guarantees that different classes are separated). While it cannot be directly applied, triplet loss

provides some of the intuitive motivation for methodology reported in Chapter 4.

Triplet loss effectively addresses the ordering, but only as it relates to an identified triplet of

data points. In developing LODML, Nguyen et. al. developed a useful geometric representation

of the goal of their use of triplet-based constraints. In a two-dimensional representation of a

neighborhood, they illustrate the goal of classes falling in ‘distance band’ radiating out from the

center of the neighborhood with the center being a chosen data point (Figure 1, below) [3]. In

comparing a nominal problem, to an ordinal problem their graphic illustrates that the ‘distance’

frame of reference must be rotated, to ensure that the ordering of classes to be properly

maintained. Without loss of generality, these distances could easily be mapped to a continuous

scalar scale. In doing so, the ordered classes would occur in clusters along the number line.

15

Figure 1 Local Neighborhood Ordered Classes vs Nominal Classes

The image on the left illustrates distance metric learning for the nominal classification
problem. The image on the right illustrates the ordinal classification problem [3]

16

Chapter 3. DEEP LEARNING

Deep Learning falls under the broad class of Artificial Neural Networks (ANNs), which have

origins that date back to the 1800s [21]. With its origins from simple Multi-Layer Perceptrons,

Deep Learning is one of the primary Machine Learning strategies that are in wide use throughout

the world with a history of solving a broad variety of data analysis and classification problems.

Deep Learning is made up of a number of specialized classification strategies that have been

derived from Deep Neural Networks (DNNs) which may also be called Artificial Neural Networks

(ANN). DNNs originate from the Multi-Layer Perceptron, with the DNNs primary distinction as

having a greater degree of complexity due to having more hidden layers and more nodes.

Like other machine learning methodologies, the application of Deep Learning algorithms falls

into two general categories based on the “goal” of the application. Supervised applications have

a targeted outcome that the algorithm attempts to predict based on other existing data. This

targeted outcome is separate from the data that is being used for prediction. Examples of

supervised problems are the prediction of category (class) membership (e.g., predict whether or

not a picture has a dog in it) or predicting a volumetric outcome (e.g., how much money will a

customer spend in the future). Unsupervised applications focus on the development of insight or

understanding of the data without having a specific target with which the outcome may be

compared to determine the accuracy of the mathematical model that is developed. Examples of

unsupervised applications are data reduction techniques (e.g., autoencoders) which attempt to

capture as much “information” from the existing data in a significantly fewer number of data

elements. Unsupervised applications also include various forms of cluster analysis, which attempt

17

to group data records into homogeneous sets while providing maximum separation between the

groupings [21].

3.1. THE MULTI-LAYER PERCEPTRON

 Figure 2 is a basic visual representation of a Multi-Layer Perceptron (MLP). The columns of

circles are called a “layer” and each circle is called a “node.” The arrows that connect the nodes

represent numerical weights, that are calculated during the model estimation process. The

dashed arrows represent a feedback process, that incrementally updates the weight values,

through a process called “Back Propagation.”

 Figure 2 Simple Multi-Layer Perceptron with weight updates

The nodes also represent a nonlinear transformation of the input data, called the “activation

function”, after they are multiplied by their respective weights and summed. The activation

functions provide the nonlinearity to the algorithm’s learning process. Ideal activation functions

18

are sufficiently simple and well behaved to allow the numerical estimation and update processes

that are required for learning. Figure 3 includes the graphical representation of three of most

common activation functions [22]:

Sigmoid	Function	(AKA	Logistic	Function):												
1

1 + 𝑒Z[(2𝑎)

																									Rectified	Linear	Unit	(ReLU):								max(𝑥, 0)								(2𝑏)

																											Hyperbolic	Tangent	(tanh):								
𝑒[− 𝑒Z[

𝑒[+ 𝑒Z[(2𝑐)

Figure 3 Plot of three common activation functions, found in Deep Neural Networks

As a general rule, Neural Networks, including MLPs, are initialized with small random weights.

Each record of data is then fed through each node, by applying the corresponding weights,

summing and then applying the activation function for the node. This process occurs in each

19

node, layer by layer until the final output (output layer) is reached. At this point, the loss (i.e.,

classification error) value is calculated by comparing the output value to the “ground truth” that

is represented by the label or target value for the individual data record. One of the most

common loss functions is the summed squared error. If we denote the algorithm output as 𝑦l and

the ground truth value as 𝑦 then the summed squared error for a DNN that is applied to dataset

D, would be:

𝑆𝑢𝑚𝑚𝑒𝑑	𝑆𝑞𝑢𝑎𝑟𝑒𝑑	𝐸𝑟𝑟𝑜𝑟 = 	r(𝑦5 −	𝑦l5)+
5∈t

																(3)

The weight values within each of the nodes are then updated via backwards propagation,

represented by the curved dashed arrows, in Figure 2. The numerical basis for the weight

updates is based on Stochastic Gradient Descent (SGD), which calculates the optimal update

value via the application of partial derivatives, with respect to the respective weight values for

the composition of activation functions that lead from the node to the output layer. Unlike Total

Gradient Descent, which applies updates after all training records are fed through the neural

network, Stochastic Gradient Descent, updates with each record [23]. However, in most cases

today, SGD is applied to mini-batches of records to promote stability in estimating the gradient

[21]. An explicit example of this weight update process is given in the Exclusive OR section (see

Section 3.2).

When applied to data, SGD is calculated by using the sum of values across a sampling of the

data. In real applications, SGD is not what is used in most Deep Learning algorithms [22]. Newer

methodologies like Adam have a foundation in SGD, but address some of the issues of applying

SGD to small batches and combining the result with prior weight update values, which leads to

faster convergence of algorithms [24]. After the weights are updated, the process repeats.

20

One of the outputs of successive iterations of a DNN is a sequence of scalar value, that

represents the total cost (error in estimation) for the iteration.

Definition1:	𝐹𝑜𝑟	𝑎7 ∈ 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒	𝐴, 𝑖𝑓	𝑡ℎ𝑒𝑟𝑒	𝑒𝑥𝑖𝑠𝑡𝑠	𝑎∗	𝑤ℎ𝑒𝑟𝑒	𝑓𝑜𝑟	𝑔𝑖𝑣𝑒𝑛	𝜀 > 0		𝑎𝑛𝑑	

𝑎𝑙𝑙	𝑖 ≥ 𝑛	𝑎𝑏𝑜𝑣𝑒	𝑎	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, |𝑎5 − 𝑎∗| < 	𝜀, 𝑡ℎ𝑒𝑛	𝑡ℎ𝑒	𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒	𝑖𝑠	𝑠𝑎𝑖𝑑	𝑡𝑜	𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒	

𝑡𝑜	𝑎∗	[25].

From a practical application, individual machine learning algorithms are not tested for this

formal version of convergence, but the basic principle is applied. When the algorithm reaches

the point that improvement in the cost function value ceases to occur or improvements are

trivially small, the algorithm is said to have converged.

3.2. THE EXCLUSIVE OR PROBLEM (XOR)

The Exclusive OR (XOR) problem represents one of the simplest classification examples, where

the labeled outcomes are not linearly separable in the space of available predictive attributes.

The problem has four records with two attributes, 𝑥* and 𝑥+ [26]. The labels of ‘AND’ represent

combinations of 𝑥* and 𝑥+ that are equal, while the desired labels of ‘OR’ will have a value of ‘1’

for 𝑥* or 𝑥+, but not both and ‘0’ for the non-one (see Table 2). Geometrically speaking, the four

records represent the corners of a box in two-dimensional space. In Figure 4, the desired ‘OR’

cases are represented by solid dots, while the ‘And’ case are circles. As illustrated in the figure, a

circular shaped threshold provides the separation of the cases that is desired for the problem

[26].

21

Table 2 XOR Data

Label 𝑥* 𝑥+ y

AND 0 0 0

OR 1 0 1

OR 0 1 1

AND 1 1 0

Figure 4 XOR Plot

To solve the problem, the labels are converted to binary 0 and 1 values (i.e., the ‘y’ values in

the table), since algorithms cannot use text directly. It can also be noted that

𝑦 = 𝑓(𝑥*, 	𝑥+) = 1 − (𝑥* + 𝑥+ − 1)+								(3)

provides a perfect solution to the problem, but the vast majority of classification problems

cannot be solved via simple visual inspection and educated guessing of a solution. If traditional

statistical methodologies were used to attempt to provide a numerical formula to solve the

problem, the analyst may attempt to fit a function of the form

					𝑦 = 𝑓(𝑥*, 	𝑥+) = 𝑎𝑥*+ + 𝑏𝑥++ + 𝑐𝑥*𝑥+ + 𝑑𝑥* + 𝑒𝑥++ g 								(4)

where ‘a’-‘e’, ‘g’ in (4) represent the unknown coefficients that the methodology would

attempt to estimate to improve model fit. This framing of the problem results in four data points,

with six unknowns, so no unique solution is possible. As such, classical statistical methodologies

that are commonly applied would not work for solving the problem. As a direct consequence, the

XOR problem may be the simplest problem that requires the nonlinear estimation power that is

presented by ANNs.

22

Figure 5: Fully Annotated XOR Neural Network Graph

Figure 5 represents the fully annotated network graph for solving the XOR problem. The boxes

with 1’s represent the constant or “bias” terms (𝑤�′s) that need to be estimated along with the

weights for the data elements. They were omitted from Figure 2, to provide a simplified visual

introduction to neural networks. To solve the XOR problem, the process starts by using random

values for the weight and bias. After each submission of the data points through the neural

network is completed, the “loss” value, 𝐿 is calculated, by summing the squared difference

between the predicted value 𝑦l and the correct label 𝑦 as the error value [22]

																			𝐿 = r(𝑦 − 𝑦l)+. 													(5)

The gradients that are used for the weight updates are the partial derivatives with respect to

the given weight and bias value. The sigmoid function is used as the node activation function

(nodes 𝑦*	and	𝑦+) and is represented as 𝜎*	and	𝜎+ in equations (6) and (7). For each weight or

bias value and for each data record 𝑛 (represented by row number) the ANN update process uses

the partial derivatives with respect to the weight (or bias value). The update for the output layer

is [22]

23

For 𝑖 ∈ {0, 1, 2} representing the hidden layer node:

																														
𝜕𝐿
𝜕𝑤5	

= r
𝜕(𝑦7 − 𝑦l7)+

𝜕𝑤5	

�

7�*

= r2(𝑦7 − 𝑦l7)
�

7�*

𝑦�,7																																													(6)

The updates for the hidden layer (nodes y1 and y2) are a little more complicated (see equation

(7)).

For 𝑗 ∈ {0, 1, 2}	and	𝑖 ∈ {1, 2} , representing the data source and hidden layer nodes,

respectively:

𝜕𝐿
𝜕𝑤�,5	

= r
𝜕(𝑦7 − 𝑦l7)+

𝜕𝑤�,5	

�

7�*

= r2(𝑦7 − 𝑦l7)
�

7�*

𝜕𝜎5,7
𝜕𝑤�,5	

= r2(𝑦7 − 𝑦l7)𝜎5,7F1 − 𝜎5,7I𝑥�,7

�

7�*

									(7)

Note that equation (7) is effectively equation (6) with an added term, to represent the gradient

from the output of the hidden layer to the input layer of the data. This chaining of gradient

components has potentially serious implications if a large number of hidden layers are used in

the neural network.

 The gradients represent the direction and magnitude for increasing value at the current state

of the system. To reduce the error terms the gradients are subtracted from the weights. As a

general rule, a step size or “learning rate” is applied to the gradient before it is subtracted from

the weight. Adjusting the step size can lead to a more efficient convergence to an optimal

solution. Note that excessively large step sizes may even prevent the algorithm from achieving

an optimal solution.

24

3.3. DEEP NEURAL NETWORKS

The most basic form of Deep Learning is a form of supervised learning called Deep Neural

Networks. They are distinguished from simple MLP’s in the number of hidden layers that are

utilized. This deeper architecture comes with its own challenges. The calculated gradients may

explode in size or vanish, if the multiplicative chain in the calculation has sufficiently large or

small values, respectively, at each point in the chain [21].

Figure 6 DNN Representative Graph

There are a number of strategies that may be employed to address this issue. For a period of

time, the pretraining of network layers, using unsupervised learning techniques to establish initial

weights then using back propagation to refine the weights for the full network was a useful

strategy. More current architecture designs use Rectified Linear Units (ReLU) as the activation

function to address the problem. In addition to minimizing the likelihood of vanishing/exploding

gradients, the use of ReLU as the activation function in DNN nodes has also been demonstrated

to improve algorithm performance [21].

25

For extremely deep neural networks, the use of ReLU activation functions does not always

solve the vanishing/exploding gradient problem. Residual Neural Networks include additional

connections in the graph that skip layers. These networks were used to handle very deep image

classification problems with exceptional performance [27].

Figure 7: Residual Neural Network Graph

Deep neural networks are also applied to more challenging problems like image classification.

The most obvious challenge in attempting to classify images, is the structure of the data itself.

Images are two-dimensional if grey scale or three-dimensional if they are in color (e.g., a color

image with red, green and blue layers). Reformatting an image to a one-dimensional array

removes a significant amount of information from the data.

The standard approach to address image classification is the use of a Convolution Neural

Network (CNN). In this approach, images are analyzed by systematically assessing small

overlapping “patches” of the image (two-dimensional subsets of the image; if color then three-

dimensional). Much like the input to output process for a DNN node, a set of weights is applied

to the data, in the patch, which are summed, and a nonlinear activation function is applied. Each

26

set of weights and activation function that is applied, in a pass over an image is called a “filter”

to create a two-dimensional output. The application of multiple filters results in multiple two-

dimensional outputs (called “channels”). A single “convolution” layer applies multiple filters

producing a three-dimensional data object that is many times deeper than the original image (or

prior layer output; see Figure 8). The data are then “pooled”, typically by taking the maximum

value of a patch of the output channels (which may differ in size from the convolutional layer

patches), to reduce the volume of data. Each patch is applied independently in a convolutional

layer. Weights for the filters are updated across the entire layer (and mini-batch). Multiple

iterations of convolutions and pooling may occur within an algorithm. At the end of these

iterations, the data are reformed into a one-dimensional vector (the “Embedding” in Figure 8),

that is then fed into a standard DNN layers [28].

Figure 8 Basic Convolutional Neural Network Graph

A number of highly successful, general purpose CNNs are available for image classification.

These CNNs are pretrained on very large image datasets and can be used to simply preprocess

27

image data into the final one-dimensional layer or may be used as a pretrained CNN that refines

the network weights through a training session. Examples of these pretrained CNNs are VGG16,

ResNet50, AlexNet, GoogleNet and InceptionV3 [27, 29, 30, 31, 32].

The next generation of ResNet image classifier called “ResNeXt” [33]. Figure 9 comes from the

publish paper by Xie, et. al. A key differentiator of ResNeXt and ResNet is the use of multiple

parallel paths, which contain their own convolution and pooling layers as well as the inclusion of

a residual path (essentially a second independent path of hidden layers from some output layer

that is rejoined later in the neural network) [33]. The residual path may have the same

architecture as the other path(s), but it also may differ. Before the two paths are joined their data

structures must match, so great care must be taken in creating the residual paths [33].

Figure 9: ResNeXt versus ResNet Architecture Fundamental Differences

Left: A block of ResNet. Right: A block of ResNeXt with cardinality=32. Layers
shown as: # in channels, # out channels. Complexity is essentially equal [33]

One of the most complex Deep Learning algorithms is the Recurrent Neural Network or RNN.

From a basic design point, the RNN graph is similar to a DNN. The difference in design comes

from the recurrent connections which feed data backwards to an earlier layer within the network

(Figure 10). This recurrence process makes RNNs well suited to handling time series or sequence

28

data. The RNN may have a full DNN as the last layers of the network, or it may have a last layer

that simply feeds the output layer [34].

Figure 10 Recurrent Neural Network Graph

A useful type of unsupervised learning that comes from the Deep Learning is the Autoencoder.

The goal of these neural networks is to reduce data dimensions (number features). They take an

input dataset and process it through one or more hidden layers, that have significantly fewer

nodes than the number of input features. The output layer has the same number of nodes as the

number of input features. The input and output nodes are paired one to one. The loss function

is the sum of the squared differences for the pairings [21]. Since the goal of the process is to

reduce data dimensions, the number of nodes is usually significantly smaller than the number of

input features. When training is completed, the layer with the smallest number of nodes

represents the reduced data dimensions. Figure 11 is a simple representation, but auto encoders

may have a deep architecture, particularly for extremely large data sources.

29

Figure 11 Simple Autoencoder

3.4. MINI-BATCH PROCESSING

Deep neural network algorithms have a computation complexity of 𝒪(𝑛�) [35]. As data set

size, increases to today’s “Big Data” levels of millions or billions of rows of data, the computation

complexity, in submitting the entire dataset, in a single pass through the DNN is not possible.

DNNs almost always use some form of small batch or mini-batch submission process. For a batch

size b, that is significantly smaller than the full dataset size, the computation complexity of

submitting a single batch is 𝒪(𝑏�). To submit all of the data in a data set with n records, 𝑐𝑒𝑖𝑙(𝑛/𝑏)

submissions must occur, so the computation complexity of submitting the full dataset, one time

using mini-batchers is

					𝒪(𝑏�) ∗ 𝑐𝑒𝑖𝑙 &
𝑛
𝑏(≈ 𝒪(𝑛𝑏�) = 𝑏�𝒪(𝑛)																										(8)

30

𝒪(𝑏�) is a constant, meaning the use of mini-batches takes an algorithm that has a computation

complexity of 𝒪(𝑛�) and makes the problem linear in terms of number of records, 𝒪(𝑛). In

addition, the use of mini-batches has demonstrated improved generalizability of deep neural

network models [36].

3.5. HINGE LOSS

Support Vector Machines were introduced by Vapnik et. al. in the mid 1990’s [37]. While the

name did not originate until sometime later, they created the concept of “hinge loss”. For the

vast majority of datasets that are not perfectly separable, the “soft margin” version was

introduced that introduced a constraint of the form:

										𝑦5(𝒘�𝒙5 + 𝑏) ≥ 1 −	𝜁5, 𝜁5 ≥ 0															(1)

Where 1, on the right-hand side, is the “margin” associate with the loss function (the margin

can be set to a value of 1, without loss in generality). A more general version of this inequality,

with nonzero margin, 𝛾, could be expressed as:

𝑦5(𝒘�𝒙5 + 𝑏) ≥ 𝛾 −	𝜁5, 𝜁5 ≥ 0, 𝛾 > 0			(2)

It can be shown that this system of inequalities is equivalent to:

𝜁5 = max(𝛾 − 𝑦5(𝒘�𝒙5 + 𝑏), 0)																	(3)

This equation is the essence of the Hinge Loss function, where loss is zero, for function values

below zero and loss contribution occurs when the function is above zero. For at least the past

decade, Hinge Loss is one of the most common loss functions used in deep learning algorithms.

This functional form is important in the creation and application of Ordinal Hyperplane Loss

31

(OHPL), where a simple linear difference of scalar values contributes to algorithm loss (error). If

the value of the difference is positive the loss is set to that value. If not, it is set to zero. This

function is continuous for all 𝒙 and differentiable for all 𝒙, except when 𝒘�𝒙5 = −𝑏. Triplet Loss

is a special application of Hinge Loss, that uses the difference in distance from a single point

(called the positive anchor) to two other points, one of which has the same label as the positive

anchor and the other has a different label. The value is zero unless the point with the unmatched

label is not sufficiently further away from the anchor point, than the matched label point, by a

preset margin. This function provides an easy way to focus deep net training, on “hard cases”

that are a significant distance from the desired goal, while setting the distance, for cases that are

close to the goal, to a value of zero. In developing OHPL, the underlying principles of Triplet Loss

and Hinge Loss are combined, to develop a special loss function that directly addresses ordinal

classification problem.

32

Chapter 4. ORDINAL CLASSIFICATION PROBLEM DESCRIPTION

This chapter covers the proposed solution to the Ordinal Classification problem that utilizes

deep learning to directly develop a classification metric, a relatively intuitive mathematical and

geometric motivation for the solution. The proposed strategy employs a commonly applied

functional form that is used to develop large margin classifiers in machine learning. Conceptually,

these frames of reference provide a foundation for the development of a unique loss function,

that enables the application of virtually any deep learning architecture (DNN, CNN, RNN, etc.) to

solve ordinal classification problems [38].

4.1. FUNDAMENTAL ORDINAL CLASSIFICATION PROBLEM

The proposed solution focuses on the identification or estimation of a nonlinear mapping,

𝜙(𝑥), that provides an optimal separation of classes, with three fundamental properties.

1. Different classes must be properly ordered. Numerically, they can be separated in

either increasing order or decreasing but they must be properly ordered. In ensuring

this property, the solution requires an assumption of monotonically increasing

ordering without imposing an unnecessary and limiting restriction on distances

between adjacent classes. Note that if ordering in the mapped space is naturally

decreasing based on the optimal weights a simple multiplication of the output by -1

would ensure increasing ordering, so without loss in generality, the increasing ordering

is set as the goal.

33

2. Borrowing generalizability benefits of large margin classifiers (per Vapnik et. al. [37]),

the distances between classes must be non-trivial (i.e., not arbitrarily close to 0). Note

that setting a minimum distance between classes does not impose regression like

distance assumptions where the distance between two adjacent classes must be

exactly one, since any non-zero distance may be rescaled to the minimum value while

other distances would increase to a value greater than one. The simple multiplication

of a constant would have no impact on classification. At the same time, some degree

of regularization (upper bound or error penalty on the weights, a la Ridge Regression,

Lasso Regression and SVM) must be employed to ensure that the minimum margin is

not a simple rescaling of a trivial margin. Setting a minimum value avoids the challenge

of implementing a rescaling component to the algorithm. No other distance

assumptions that restrict relative class distances are applied.

3. Depending on the specific execution of the first two fundamental properties, it is

possible that the group centers perfectly adhere to the minimum distance

requirement, but the classifier behaves no better than random guessing. To avoid this

scenario, the algorithm must learn a mapping that forms homogeneous sample classes

clusters (i.e., provide for a clustering of the data, in the mapped space, that has

homogeneous clusters, in terms of class). If the problem is not completely separable,

then this property becomes a requirement of “near” homogeneous (or as close as

possible to homogeneous). Under ideal circumstances, the results of these three

strategy properties will provide a mapping, 𝜙(𝒙),	as illustrated in Figure 12.

34

Figure 12 Ordered Separation of Classes

The goal of this research is to solve the ordinal classification problem by developing a deep

learning strategy that can learn such an optimal mapping as described above from training data.

Current best in breed algorithms that attempt to solve the ordinal classification problem use a

predetermined function or set of functions and optimize a set of weights that minimize an

associated cost function. Deep learning algorithms use the available data to learn highly complex

nonlinear functions, without imposing a limitation of predefining the functional form. These

nonlinear functions are most likely estimations of more complex functions, within the space that

is represented by the available data.

Current ordinal classification applications using deep learning apply binary classification

neural networks to develop a set of solutions to alternate problems. These strategies either

classify one class versus another by analyzing multiple pairs of classes or one class versus all

others (exhaustively using each class as the base class in at least one binary classifier).

Additionally, they may employ a repeated sampling of available data with changes in the relative

35

binary classes. In the case of the multiple classifiers, the models are then combined into a single

ordinal classifier through an aggregation strategy (e.g., simple sums or weighted sums). Deep

learning algorithms within a single model architecture (e.g., DNN, CNN) that solve different

problems (e.g., regression, nominal classification) differ in their loss functions. This loss function

may be applied across multiple model architectures. Developing a loss function that meets the

problem requirements would not only enable the development of DNNs to develop ordinal

classifiers but may also be broadly applied to other deep learning model architectures. This loss

function forms the mathematical and algorithmic solution to the deep learning solution to the

ordinal classification problem.

4.2. GEOMETRIC MOTIVATION

In developing Ordinal Hyperplane Loss (OHPL), a similar representation of data, that Ngyuen

et. al. used in Figure 1, provides a geometric representation of the ordinal classification problem.

In a fully separable problem, the perfect solution would to be a transformation 𝜙(𝒙) (usually

nonlinear, but could be linear, if appropriate) that maps the unseparated classes into a new

space. Figure 13, below represents a simple three class problem, represented and separated, in

two-dimensional space. This illustration assumes a goal that is similar to that of the application

of triplet loss, but with ordering of classes requirements. The goal of such an algorithm would be

to “pull” all of the points in a single class as close as possible to the cluster center, while

maintaining the ordering of the clusters. From this representation, the vector between points in

adjacent classes, can be parsed into two components: 1) the component parallel to the vector

36

between adjacent class cluster centers (solid lines) and 2) a component that is perpendicular, to

the vector between the class cluster centers (dashed/dotted lines).

Figure 13 Separable Mapping 𝜙:ℝ+ → ℝ+.

Solid lines represent vectors between class cluster centers. Dotted lines are perpendicular to the
vector between Class 1 and Class 2 cluster centers. Dashed lines are perpendicular to the vector
between Class 2 and Class 3.

If the algorithm improves loss (error), in terms of pulling points closer to the cluster center,

but does not improve error between classes (aggregate distance of all points in adjacent classes,

from each other) or the movement is large for trivial improvement in error between classes, the

movement is essentially perpendicular to the vector between the cluster centers (i.e., movement

parallel to the dashed/dotted lines, in Figure 13). Not only does this “improvement” in terms of

distance loss (error) not improve classification, but it may contribute to the over fitting of the

model, in terms of its ability to generalize, to other datasets. This perpendicular direction

introduces a hyperplane that may better represent the data, in terms of class membership as

determined by point distances. If the parallel hyperplanes, going through the two cluster

centroids, are used, to represent the cluster, then the distance from points, to these hyperplanes,

37

defined as the length of a perpendicular line segment that connects a point to the hyperplane,

would represent distances and direction where a potential change in the position of a point

would guarantee improvement in the separation of the two classes.

Similarly, hyperplanes between other adjacent class pairs would provide significant benefit in

truly separating other class pairs. In aggregate, this process introduces a new potential issue. If

the hyperplanes are not parallel, then it is possible that when the algorithm is applied to a new

data set, values near the intersection of two of the hyperplanes may be misclassified even though

they have zero contribution to the loss function value that is used to estimate weights in the

model. To address the possible issue of intersecting hyperplanes causing classification problems

for points near the intersection, a requirement of parallel hyperplanes (see Figure 14) is applied.

In doing so, reducing loss (error) that is in the direction of the solid line should provide an

effective separation of classes. In addition, using position along a single vector reduces the loss

(error) calculation to a simple difference of scalar values. Ensuring class ordering and reducing

the distance from the class centroid may be efficiently addressed by an algorithm.

38

Figure 14 Parallel Hyperplanes.

For the same separable mapping, dotted lines represent parallel hyperplanes
through the cluster centers, to which the solid line is perpendicular. Distance
between hyperplanes, represent distance between points (e.g., dashed lines),
that is aligned with the separation of all classes.

39

Chapter 5. OHPL – ORDINAL HYPERPLANE LOSS

This chapter reviews the novel loss function called Ordinal Hyperplane Loss (OHPL) which is

specifically designed for predicting ordinal classes. OHPL enables deep learning techniques and

strategies to be applied to the ordinal classification problem. The more complete application of

OHPL within a deep neural net context is appropriately named OHPLall. More specifically, by

minimizing OHPL, a deep neural network learns to map data to an optimal space where the

distance between points and their class centroids are minimized while a nontrivial ordinal

relationship among classes are maintained.

Class centroids, based on simple averaging of data values in the mapped space, provide a

framework for imposing the fundamental property of class ordering and a mechanism for

measuring distances between classes as well as a numerical framework for estimating loss/error

contribution, due to inefficient class ordering. These class centroids can therefore be used to

enable algorithm “learning” (i.e., improvements in performance/fit). Class distance may be

defined distance between two class centroids. Setting a minimum distance threshold ensures

that a non-trivial distance between centroids is created and maintained, while not imposing rigid

regression like distance assumptions [38].

Once class ordering is established, data point distances from class centroids are used to ensure

that points are closer to their class centroid than to unlike class centroids. Large margin

methodology ensures “closer” does not mean trivially closer. Given the multi-dimensional nature

of data, not all “distance” from a centroid that exceeds a threshold, is “error” in terms of class

separation and classification. Decreasing the distance that is perpendicular to the line connecting

40

the centroids of two classes, does not improve the separation of classes. Using parallel

hyperplanes to define the class centroids ensures that the algorithm prioritizes individual point

transformations that contribute to class cluster separation. In addition, this use of hyperplanes

enables the use of scalar distances in a loss function [38].

The development of an efficient algorithm, based on this set of requirements, introduces the

ability to apply deep learning to a broad set of core problems using structured data, in DNNs as

well as Deep and Wide Networks. This new loss function provides a foundation for single image

classification using CNNs including but not limited to primary problems of age estimation and

medical classification (e.g., using MRI’s to determine cancer stage). It would also enable more

advanced applications like RNN which examine time series data, text (short statements or full

documents) or possibly spatially sequential MRI images. In essence it provides a fundamentally

new methodology for developing ordinal classifiers.

OHPL is an aggregation of two key components [38]:

1. Hyperplane Centroid Loss (HCL), which applies a large penalty within the algorithm, for

violations of the ordering and minimal distance assumptions

2. Hyperplane Point Loss (HPL), which provides an error value, for points that violate the

large margin boundary around the class Hyperplane Centroid, that is proportional to

the distance from the boundary.

Based on the proposal of OHPL, a researcher may design a deep learning strategy that learns

an optimal dimensional space where OHPL is minimized.

41

5.1. LINEAR HYPERPLANES

A given point 𝒙 is a point on the hyperplane, defined by 𝒘	and	𝑐, if 𝒙 satisfies equation (2),

where 𝒘 and 𝒙 are vector valued and 𝑐 is a scalar constant.

𝑓(𝒙) = 𝒘�𝒙 + 𝑐 = 0					(2)

A set of different parallel hyperplanes of this form will have the same coefficient vector, 𝒘,

and differ in their constant value 𝑐 . The absolute value of 𝑐 represents the ‘distance’ of the

hyperplane, expressed as the minimum distance of the points on the hyperplane, from the origin.

This concept of distance can be applied to two parallel hyperplanes (note that two nonparallel

hyperplanes will intersect and therefore will always have a distance of zero). Given hyperplanes:

𝐻* = {𝒙:	𝒘�𝒙𝒊 = 𝑏*}					(3𝑎)

and

𝐻+ = �𝒙:	𝒘�𝒙𝒋 = 𝑏+�		(3𝑏)

 where 𝑏* ≠ 𝑏+ 	(3𝑐)

For a point, 𝒙𝟏 , on 𝐻* hyperplane, the ‘distance’ to a second, parallel hyperplane, is the

minimal distance of the point, to any point on the hyperplane. By shifting the frame of reference

for 𝒙𝟏 and the hyperplane as follows, to create 𝒙𝟏¢ 	and	𝐻*¢ :

											𝒙𝟏¢ = 𝒙𝟏 − 𝒙𝟏							(4)

𝐻*¢ = 𝐻* − 𝑏* = {𝒙:	𝒘�(𝒙𝒊 − 𝒙𝟏) = 𝑏* − 𝑏* = 0	}							(5)

𝒙𝟏¢ is the origin and sits on a hyperplane through the origin that is parallel, to 𝐻+. Define 𝐻+¢ by

applying the same transformation to 𝐻+, to arrive at:

42

𝐻+¢ = �𝒙:	𝒘�(𝒙𝒋 − 𝒙𝟏) = 𝑏+ − 𝑏* = 	𝑏+′	�								(6)

The absolute value of 𝑏+′ is the distance of the hyperplane 𝐻+¢ from the origin and

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝒙𝟏, 𝐻+) = 𝑏+¢ = |𝑏+ − 𝑏*|						(7)

To generalize:

								∀	𝒙𝒊 ∈ 𝐻*, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝒙𝒊, 𝐻+) = |𝑏+ − 𝑏*|							(8)

The distance between the two hyperplanes, 𝐻*, and	𝐻+ can be defined as follows:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐻*, 𝐻+) = |𝑏+ − 𝑏*|							(9)

 In general, for a mapping, 𝝓(𝒙), this concept of distance can be applied to two points, that

respectively sit on hyperplanes, 𝐻¦	and	𝐻§, in the mapped space:

𝝓(𝒙𝒊) ∈ 𝐻¦ = {𝒘�𝝓(𝒙) = 𝑏¦}								(10)

and

𝝓F𝒙𝒋I ∈ 𝐻§ = {𝒘�𝝓(𝒙) = 𝑏§}								(11)

Then the distance, 𝑑, between 𝝓(𝒙𝒊) and 𝝓F𝒙𝒋I:

𝑑 &	𝝓(𝒙𝒊), 𝝓F𝒙𝒋I(= |	𝐻¦ − 𝐻§| = |𝑏¦ − 𝑏§|					(12)	

For the purposes of writing a loss function, (12), for a computer algorithm application of the

Hinge Loss function allows for the use of an algorithmically simple function as follows:

𝑑 &	𝝓(𝒙𝒊), 𝝓F𝒙𝒋I(= max(𝑏¦ − 𝑏§, 0) + max(𝑏¦ − 𝑏§, 0)						(13)

Similarly, OHPL is actually the combination of two loss functions, that utilize the distance

between hyperplanes, as well as the specific distance function in (13). The algorithms use the

concept of the “hyperplane centroid” as the fundamental definition of a class centroid, from which

43

data points may be assessed, in terms of proximity to the centroid. In (14), the hyperplane centroid

for class k and a given 𝒘 is defined to be the mean value of all 𝑏5 for all i, in class k, where 𝒘�𝒙𝒌𝒊 =

𝑏¦5. For 𝑛¦ samples in class k, the hyperplane centroid for class k, 𝐻𝐶¦,	is:

𝐻𝐶¦ =
1
𝑛¦

r 𝒘�𝒙𝒌𝒊
ª«�¦

= 𝑏¦¬¬¬											(14)

5.2. HYPERPLANE CENTROID LOSS

First the component of the OHPL function, ensures that the hyperplane centroids are properly

ordered, per the ordering of the classes. This ordering can be expressed as a difference in adjacent

hyperplane centroids. If adjacent hyperplane centroids are properly ordered, then the transitive

property ensures that all hyperplane centroids are properly ordered. For the purposes of

developing a useful algorithm, not only do we need to achieve the ordering, of the hyperplane

centroids for adjacent classes, but it is more desirable for the spacing be non-trivial. For fixed 𝛿 >

0 and two adjacent hyperplane centroids, 𝐻𝐶¦­*	and	𝐻𝐶¦, where the higher subscript denotes

the higher class: [38]

𝐻𝐶¦­* − 𝐻𝐶¦ > 𝛿											for	fixed	𝛿 > 0		(15)

Within the OHPL algorithm, adjacent classes k and k+1, and 𝛿 = 1, the Hyperplane Centroid

Loss contribution of 𝐻𝐶¦ relative to 𝐻𝐶¦­* is:

HC	Loss¯,¯­* = max(𝐻𝐶¦ − 𝐻𝐶¦­* + 1, 0)						(16)

If 𝐻𝐶¦­*	is	at	least	𝛿	𝑑istance	from	𝐻𝐶¦, then the ordering is correct with sufficient distance

between the adjacent classes. For the k ordinal class problem, the Hyperplane Centroid Loss (HCL)

is:

44

HCL = rmax(𝐻𝐶5 − 𝐻𝐶5­* + 𝛿, 0)
¦Z*

5�*

								(17)

In the actual OHPL loss algorithm, HCL is coded as the multiplication of three matrices with

hyperparameter 𝛿 (usually set to 1) added to each element of the resulting k x 1 vector. Negative

values in the resulting vector are set to zero, then the elements of the vector are summed to arrive

at a total HCL loss value. This formulation of HCL is important when assessing the viability of

applying OHPL to large data sets (e.g., 250,000 or more records) since it may be one of the limiting

factors in the algorithm [38].

In the initial formulation, of OHPL, the hyperplane centroid ordering is applied to the full data

training set, in batch within each iteration, through a data set. In the initial work, weighting is used

to prioritize these relationships over the point loss effort to move points close to their

corresponding hyperplane centroid. Experimental tests indicate very minor violation of the

hyperplane centroid minimum distance requirement (less than 1%), but in all cases the distance

between hyperplane centroids, can be demonstrated to be a nontrivial distance from zero [38].

5.3. HYPERPLANE POINT LOSS

The second component of OHPL is “Hyperplane-Point Loss” (HPL). In calculating this loss

component, individual data points are compared to their corresponding Hyperplane Centroids.

The primary goal is to “draw” points closer to their corresponding Hyperplane Centroid. This

component of the algorithm provides a natural “regularization” of the model which limits the size

of the weights. HPL is actually the sum of two analogous loss functions that work in different

45

“directions” a la the formulation of (6) (see Figure 15 and Figure 16). This process is effectively an

application of L1 distance (absolute value of the differences) which works effectively within the

algorithm [38].

Figure 15 Hyperplane Point Loss - Increasing Direction.

Solid parallel lines represent adjacent Hyperplane Centroids. Dashed line
represents the upper margin for the lower value ordinal class. In the increasing
direction, points above the upper margin have nonzero contribution to the total
loss [38].

For the points in a given class, “looking” in the “increasing” direction (corresponding to an

increase in ordinal class value), the points that are higher than their respective hyperplane

centroid may potentially contribute to the loss (those below will be examined later). For points

that are above their hyperplane centroid, but are already sufficiently close to their hyperplane

centroid, to result in a proper classification, drawing them closer to the hyperplane centroid won’t

improve classification, so their loss contribution is set to zero. As a minimum, these points with

zero contribution to the HPL must be closer than their distance to the next highest HC. Based on

46

the success of other large margin classifiers, the HPL algorithm uses a margin that ensures that

points are closer to their hyperplane centroid than the midpoint between the hyperplane centroid

and the adjacent hyperplane centroid [38].

Figure 16 Hyperplane Point Loss - Decreasing Direction.
Solid parallel lines represent adjacent Hyperplane Centroids. Dashed
line represents the lower margin for the upper value ordinal class. In
the decreasing direction, points below the lower margin have nonzero
contribution to the total loss [38].

In Figure 16, the circled points are lower than the margin below their hyperplane centroid, so

it contributes to the total HPL value. Note that the dotted margin line/threshold is closer to the

hyperplane centroid, than to the adjacent hyperplane centroid. Similarly, when we look in the

decreasing direction, points that are further from their hyperplane centroid, than the margin, will

contribute to the HPL total. In Figure 17, below, the seven circled points contribute nonzero values

to HPL [38].

47

These two components of point related loss combine to produce a simple loss calculation,

based on the subtraction of scalar values, combined with the application of the maximum

function on two scalar values, creating a piecewise linear function, with two pieces. Figure 17

demonstrates the application of HPL to a simple three ordinal class example, in two

dimensions [38].

Figure 17 HPL for Three Ordinal Class Case.

Solid parallel lines represent adjacent Hyperplane Centroids. Long dashed
lines represent the margins for Class 1 and Class 3. Short dashed lines are
the margins for Class 2. Circled points contribute to HPL and total OHPL [38].

As discussed in the Hyperplane Centroid Loss section, the distances between adjacent

hyperplane centroids is not fixed. In fact, within the algorithm, they are not guaranteed to be

greater than the set margin value. If not, the value contributes to the overall loss within the

algorithm and are heavily weighted, so losses from this violation tend to be minor. On the other

48

hand, there is no upper bound on the distance between adjacent hyperplane centroids. In these

cases, a larger absolute margin may be used, leading to better algorithm efficiency. To account for

the desired nonequal nature of the distances between adjacent hyperplane centroids, the HPL

algorithm uses a fixed proportion of the distance between adjacent HCs [38].

The two components of the HPL algorithm (an increasing and a decreasing) are summed to

arrive at the total loss contribution. To illustrate the “increasing” case set 𝛾 to be desired

proportion of distance between adjacent hyperplane centroids then then let 𝐻𝑃𝐿­represent the

HPL for the direction of increasing class value. For point 𝒙𝒊, in dataset S, and its corresponding

hyperplane centroid, 𝐻𝐶and the adjacent hyperplane centroid 𝐻𝐶­ which is above 𝐻𝐶 [38]:

																																																									for	0.5 < 𝛾 < 1.0																																													(18)

																																										𝑝𝑜𝑖𝑛𝑡	𝑚𝑎𝑟𝑔𝑖𝑛 = 	𝛾(𝐻𝐶­ − 𝐻𝐶)																																(19)

𝐻𝑃𝐿5­ = max	((𝑓(𝒙𝒊) − 𝐻𝐶) − (𝐻𝐶­ − 𝐻𝐶) + 𝛾(𝐻𝐶­ − 𝐻𝐶), 0)																(20)

																				= max(𝑓(𝒙𝒊) − 𝛾𝐻𝐶 − (1 − 𝛾)𝐻𝐶­, 0)																																												(21)

Similarly, for the decreasing case,

																					𝐻𝑃𝐿5Z = max(𝛾𝐻𝐶 − 𝑓(𝒙𝒊)) + (1 − 𝛾)𝐻𝐶Z*, 0)																												(22)

																																								𝐻𝑃𝑃𝐿 = r𝐻𝑃𝐿5­ + 𝐻𝑃𝐿5Z

𝒙«∈±

																																														(23)

In the initial work, the two components of Ordinal Hyperplane Loss are combined, to arrive at

the total loss. A weight 𝜂 is applied to the HCL component of the loss calculation, to ensure a

prioritization of class ordering over the reduction in point distance from the hyperplane centroid,

to arrive at:

𝑂𝐻𝑃𝐿 = 𝜂𝐻𝐶𝐿 + 𝐻𝑃𝑃𝐿												(24)

49

OHPL is applied within Deep Neural Network to create OHPLnet. Subsequent research, using

OHPLnet, a found evidence that dynamically maintaining the hyperplane centroid distances was

in direct conflict with the goal of drawing points closer to their hyperplane centroid. The evidence

was mostly anecdotal in that some datasets experienced good results early on that were on par

with other executions of the algorithm on the dataset. Then progress would stop well before

achieving the minimum loss value and training set classification accuracy of other submission of

the algorithm. The breakthrough that lead to the initial OHPLall variant (covered later) is the most

compelling evidence that there was internal conflict between maintaining the hyperplane

centroids and reducing point distances from the respective hyperplane centroids.

5.4. DEEP LEARNING STRATEGY BASED ON OHPL

Deep Neural Networks require structured data with a single 1 X m vector, per data record.

Since OHPLnet addresses the specific error calculation requirements for ordinal classification

tasks, it can be easily added to DNNs. The design is identical to any other DNN with the notable

difference that the DNN maps the data into a new multi-dimensional space (𝝓(𝒙)). From that

point optimal weights, 𝒘	and	constant	term	𝒃 , that define the hyperplanes is estimated to

produce with a scalar output value. The scalar output is used to calculate prediction error (Figure

18). At that point, model estimation error, based on the OHPL design principals are used, instead

of using another existing methodology to calculate error.

50

Figure 18 OHPL as a Deep Neural Network:

Design is identical to other DNNs with the exception of the linear output
𝑓(𝝓(𝒙)), which is used to calculate HCL and HPL loss components.

Similarly, an OHPL can be included as the DNN component of CNNs, to facilitate the analysis

of images. Example problems would include:

* medical images that have ordered labeling (e.g., cancer stage)

* age recognition for facial images

* Facial emotional intensity

* Weather (e.g., satellite images to predict storm severity classes)

51

Figure 19 Convolutional Neural Network Graph with OHPLnet Neural Network Layers

The response value of Net Promoter survey responses has been linked to the recency of

interaction of the respondent with the company’s offering.) [39]. RNNs, with an OHPLnet layer

could be employed to not only better predict customer response, gain insight into the ‘drivers’

of the response value, by removing the time component of response and then conducting a driver

analysis, to identify key product attributes, that relate to rating.

Figure 20 Recurrent Neural Network Graph with OHPLnet Neural Network Layers

52

In all cases, it is conceivable that, in these more complex neural networks (e.g., RNN, CNN,

ResNet), the layer that “feeds” the OHPLnet is a scalar value, that has a nonlinear activation

function, prior to output. In this case, the hyperplane centroids would simply be a point on the

number line.

As the use of Deep Learning expands, more complex and varied neural network designs are

being created. Since OHPLnet does not depend on the architecture that precedes the output

layer, it is well suited to being applied to new network designs as they are developed.

OHPLnet ALGORITHM: Iterative Algorithm
Hyper-Parameters:
h – number of hidden layers
lh – number of nodes per layer
𝛼 – prioritization weight for HCL
lr – learning rate
m – HC margin
γ– point margin proportion
bs – batch size
Input: Rescaled training data {(xi,yi)|i=1,…,n}

Parameters h, lk, 𝛼, lr, {lk = 1,…h}
Begin:
 Randomize weight (W) and bias (b) in each DNN node
 While not converged do
 OHPL = 0, HPL = 0, HCL = 0
 Feed full dataset through selected ANN

From ANN Output, Calculate HCL:
Calculate difference in adjacent centroids
Subtract m
Sum positive values, as HCL

 Select mini-batch (bs)
Calculate mini-batch output from network
Calculate distances from respective hyperplane centroids
Sum positive values, as HPL

OHPL = HPL + 𝛼*HCL
 Calculate Stochastic Gradient Descent (SGD)
 Update W and b via SGD and lr

53

 Repeat until training sample exhausted
 Check convergence
End: Output W and b

5.5. SCALING TO LARGE DATASETS

Truly large ordinal datasets, while real, have not been tested with algorithms for which

benchmark performance can be found. For this reason, experimental results for the performance

of OHPLnet on large datasets (100K+ records) is not available. An effort was made to include the

largest datasets that have been tested with other algorithms. The largest of these has fewer than

25000 records [38].

Heuristically speaking, OHPLnet should be scalable to any dataset that can be analyzed using

a DNN. The HPL component is applied to mini batches, a process that allows DNNs, to be applied

to very large datasets. This leaves HCL is the potential limiting factor [38].

Per the HCL algorithm discussion, the loss is calculated using simple matrix multiplication, to

calculate means by class. If a data set is so large that it cannot be computed within a single

computer the algorithm allows for breaking up the processes into as many pieces (submatrices)

as necessary (e.g., parse the matrix, by row into sizes that can be computed). Summaries by class

are calculated for each of the submatrices, then those resulting vectors are summed (position by

position). The elements of the resulting vector are divided by the sample counts for the

corresponding class. While breaking up the problem would be less than ideal, since there are

computational costs for doing so, it is a viable process that could be run in parallel on multiple

processors [38].

54

OHPLnet was developed to allow the application to large datasets. In this case, we define

“large” as 200000 records or more. The benchmark algorithms reported by Gutiérrez, et. al. and

the very recently reported algorithm that was developed by Nguyen, et. al., use estimation

processes like SVM or Gaussian Processes (or algorithms that are very similar to the point that

their estimated computational complexity is 𝒪(𝑛+) for the most efficient algorithms), making

them potentially unsuitable to apply to datasets that are appreciably larger than 100K records

(or require complex processing strategies, to do so). An example application is reported in the

OHPLnet results section.

55

Chapter 6. EXPERIMENTAL RESULTS FOR OHPLNET

Experimental tests used Python version 3.6.3, in Jupyter Notebook 5.0.0. with Google’s

Tensorflow 1.5.0 [40] and several packages from Sci-Kit Learn (e.g., StratifiedKFold and shuffle)

[41], Numpy [42] [43] and Pandas [44]. Development and analysis work were split between a

MacBook Pro (Retina, 15-inch, Mid 2015) and a desktop with an AMD FX-8350 processor, 12GB

of DDR3 RAM and a Nvidia GEFORCE GTX 1080ti GPU. Classification datasets were chosen from

datasets that are found in a number of related studies. For benchmark purposes, with the

exception of the LODML linear classifiers produced by Nguyen et. al. [3], the results that are

reported by Gutiérrez, et. al. are used [9].

6.1. EXPERIMENTATION: STANDARD TEST DATASETS

OHPLnet was tested against seven ordinal classification datasets that are found in a number

of related studies. For benchmark purposes, the results that were reported by Gutiérrez, et. al.

are used [9]. The Cars and Red Wine datasets contain typical ordinal classes, for ~1,600 records.

They come from the UCI (University of California Irvine) dataset repository [45].

From the from the Chu and Ghahramani research, [8] the CPU Small and Census 10 datasets

are used. These datasets are among the largest for which benchmark results are available. They

represent a very difficult problems where the ordinal classes are created by producing equal size

binning of records using a sorted continuous variable (or as close as possible, given 10 bins and a

number of records that are not a multiple of 10). For both datasets, continuous values were split

56

into 10 bins, representing ordinal response classes. Chu and Ghahramani provided a MatLab

script that allows prospective researchers to create an identical binning [46].

The ERA (Employee Rejection/Acceptance), LEV (Lecturers Evaluation) and SWD (Social

Worker Decisions) datasets were introduced by David [47] and can be found at http://mldata.org.

Table 3 Test Dataset Key Characteristics

 # Records # Features # Classes
Average

Records per
Class

Class Distribution

CPU Small 8,192 12 10 819.2 ~820 per class

Census 10 22,784 16 10 2,278.4 ~2,278 per class

Cars 1,728 6 4 432 (1,210, 384, 69, 65)

Wine-Red 1,599 11 6 266.5 (10, 53, 681, 638, 199, 18)

ERA 1,000 4 9 111.1 (92, 142, 181, 172, 158, 118, 88, 3, 18)

LEV 1,000 4 5 200 (93, 280, 403, 197, 270)

SWD 1,000 10 4 250 (32, 352, 399, 217)

6.2. ALGORITHM ASSESSMENT

There are two standard assessment tests that are used to assess performance in attempting

to predict ordinal classification data. The MZE test is also used to test classification of nominal

data. For ground truth values, 𝑦5 and prediction values 𝑦l5 , the test reports the proportion of

misclassifications when scoring the validation samples. MZE is explicitly computed as:

𝑀𝑍𝐸 =
1
𝑁r(𝑦5 ≠ 𝑦l5) 	=

1
𝑁r(𝑦5 ≠ 𝑦l5) +

1
𝑁r(𝑦5 = 𝑦l5) 	−

1
𝑁r(𝑦5 = 𝑦l5)										(26𝑎)

57

= 1 −
1
𝑁r(𝑦5 = 𝑦l5) 	= 1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦															(26𝑏)

Mean Absolute Error (MAE) is the standard measure of closeness that is used to assess the

performance of ordinal classifiers. Not only may MAE be a more meaningful metric for special

cases, it also may be a more meaningful way to access model performance in general. In

calculating MAE, for each record the absolute difference between actual class and predicted class

is calculated. The mean of these values becomes the MAE score for the algorithm, when applied

to the given dataset, as follows:

𝑀𝐴𝐸 =
1
𝑁r

|𝑦5 − 𝑦l5|												(27)

As a minimum, MAE is a powerful way to distinguish among models that have comparable

MZE performance. It should be noted that the MAE metric was a primary motivating factor in

deciding to use a variant of the L1 norm for OHPL, instead of the L2 norm, that is more commonly

used in data analysis and machine learning methodologies.

Figure 12 provides a visual illustration of the fundamental difference between MAE and MZE.

A standard methodology to assess classifier performance is the use of a “confusion” matrix. The

basic principle is to use the classifier to score a dataset that has known labels, giving each record

an actual and a predicted class value. The actual values correspond to the rows of the matrix and

the predicted classes are represented in the columns. Every record is an ordered pair that occurs

within the matrix. Cells of the matrix are filled with counts of the corresponding ordered pairs.

Assuming that the row and column sequence is the same, then the diagonal (darkest colored cells

58

in the matrix below) represents the correctly classified counts, which sum to the MZE value,

before dividing by the total number of records.

 Figure 21 Color Coded Confusion Matrix.

Entries are counts for ordered pairs of actual and predicted classes.
Darker colored cells represent “closer” agreement of actual and
predicted values.

As you move further from the diagonal of the matrix, the values get lighter in color (further in

color from the diagonal). This color change represents increasing error, in the classification and

the lighter the color, the higher the error for points that are represented in the cells. An ideal

classifier, that is not a perfect classifier will have zeros in the three lightest colors in the Color-

Coded Confusion Matrix (Figure 21).

6.3. BENCHMARK ALGORITHMS

The POM algorithm had slightly better results on the CPU Small data set (0.580 vs 0.588 for

the GPOR algorithm), but the algorithm performed so poorly on the other datasets, that it was

removed in favor of the GPOR. In addition, the results for the POM algorithm were excluded from

59

the mean* of the algorithms reported by Gutiérrez, et. al. (a total of 15 algorithms were included

in the mean calculation, reported in Figures 5 & 6 of the paper) [9].

An additional motivation for including the GPOR is its overall status as the best performing

algorithm across the 41 benchmark datasets that Gutiérrez, et. al. examined. The ORBoost and

SVMOP are selected due to their excellent performance across the seven included datasets.

Four Benchmark Algorithms :

1. Support Vector Machines with Ordered Partitions (SVMOP): The algorithm converts a

problem with k classes into k-1 binary classification problems. SVM classifiers are

estimated for each problem, using an error weighting that is proportional to the absolute

difference in classes. In specifying the classifier that discerns whether the label for record

𝒙5 is larger than p, the error weight for the record is abs(𝑦5 − 𝑝 + 1) [14]. From that point,

a standard strategy for using k-1 classifiers is employed (e.g., assess the classes in order,

then choose, one class prior to the first instance of a positive objective score)

2. GPOR is Wie and Ghahramani’s Gaussian Process for Ordinal Regression [8]. Their

algorithm uses a Bayesian framework to estimate latent functions {𝑓(𝒙5)}. Mercer kernel

functions are used to explicitly define the covariance of 𝒙5	and	𝒙�, in the Gaussian kernel

as:

𝐶𝑜𝑣¹𝑓(𝑥5), 𝑓F𝑥�Iº = 𝒦F𝑥5, 𝑥�I = exp¼−
𝜅
2rF𝑥5

¾ − 𝑥�
¾I
+

¿

¾�*

À										(28)

making the prior probabilities, of {𝑓(𝒙5)}, a multivariate Gaussian:

𝒫(𝑓) =
1

(2𝜋)
7
+|𝛴|

*
+
exp Ä−

1
2𝑓

�𝛴Z*𝑓Å , 𝛴	is	nxn	with	elements	defined	in	(20)

60

 The joint probability is written:

										𝒫(𝒟|𝑓) =È𝒫(𝑦5|𝑓(𝒙5))
7

5�*

																													(29)

By Bayes’ theorem, the posterior probability is:

𝒫(𝑓|𝒟) =
1

𝒫(𝒟)È𝒫(𝑦5|𝑓(𝒙5))𝒫(𝑓)
7

5�*

																	(30)

The kernel parameters 𝜅 , in (28), the threshold parameters ({𝑏*, Δ+ …ΔËZ*}) and

Gaussian noise (assumed to have 0 mean and unknown variance) can be collected into

the hyperparameter vector, 𝜃, meaning the normalization factor 𝒫(𝒟) is more precisely

stated as 𝒫(𝒟|𝜃) (called the “evidence for 𝜃“. Monte Carlo methods could be used to

integrate over the 𝜃 -space but are considered to be too compute expensive for

applications to most real datasets. Instead, Wie and Ghahramani use two approaches to

determine the optimal values for 𝜃 : 1) Laplace Approximation and 2) Expectation

Propagation. For optimal hyperparameters 𝜃∗ , prediction of ordinal class is explicitly

stated as:

𝑦l� = 𝑎𝑟𝑔𝑚𝑎𝑥	𝒫F𝑦� = 𝑖|𝒙�, 𝒟, 𝜃∗I																(31)

3. Ordinal Regression Boosting (ORBoost) with “All Margins” (ORBALL) was developed by Lin

and Li [48]. Per the authors, ORBoost is essentially an extension of the RankBoost

algorithm developed by Freund, et. al [49]. Their algorithm estimates a set of “ordered”

weak binary classifiers (binary variable is set to mimic, label ordering) based on subsets

of the feature set. The classifiers are iteratively accumulated using weighting to maximize

classification accuracy within the training set. Training is stopped when addition of new

61

weak classifiers fails to make meaningful improvements in training set classification

accuracy.

4. For LODML, training samples are segmented into “target neighborhoods” with as many

as q samples in each target neighborhood, triplet loss constraints are developed to

preserve the class ordering of labels, within the target neighborhoods [3]. For the

constraints, Nguyen et. al. use a Mahalanobis distance metric of the form:

𝑑𝑴+ F𝒙5, 𝒙�I = F𝒙5 − 𝒙�I
𝑻𝑴F𝒙5 − 𝒙�I = 〈𝑴, F𝒙5 − 𝒙�IF𝒙5 − 𝒙�I

𝑻〉												(32)

	where	𝑴 is symmetric, positive semidefinite. For ℛ , the set of constraints, their

algorithm solves the problem:

											min 𝛼	tr(𝑴) +
1
𝑚 r 𝜉5,�,§

(5,�,§)∈ℛ

																(33)

𝑠. 𝑡. 𝑑𝑴+ (𝒙5, 𝒙§) − 𝑑𝑴+ F𝒙5, 𝒙�I ≥ 1 − 𝜉5,�,§ 									(34)

																				𝜉5,�,§ ≥ 0, (𝑖, 𝑗, 𝑙) ∈ ℛ																							(35)

																																				𝑴 ≽ 0																																(36)

Nguyen et. al. also produced nonlinear versions of these algorithms which employ the kernel

trick, much like SVM. LODML performs on par with the nonlinear version and has test results that

span a large number of test datasets, so LODML is used in this assessment.

6.4. BENCHMARK RESULTS

Fig 5 compares MZE for OHPLnet versus the top performers for the individual data sets. The

OHPLnet results are based on executing the algorithm using a five-fold cross validation strategy.

Because neural network solutions are dependent on their starting weights, a researcher will

62

typically develop multiple models, then use a predetermined selection criterion to choose the

best model. The initial variant of OHPLnet tended to have inconsistent results. For every good

model result, there tended to be a result that was disappointing. For this exercise, the algorithm

was executed 50 times, on each fold and the 20 best results, based on training set MAE, was

selected.

For the small “traditional” ordinal data sets (i.e., not “CPU Small” or “Census 10”), OHPLnet

performs on par with the more complex algorithms. It is the larger data sets with larger numbers

of ordinal classes where OHPLnet achieves demonstrably better results. When applied to the

CPU Small OHPLnet improves MZE by 27% over GPOR (the second-best performing algorithm;

26% over POM).

Table 4 MZE Results for OHPLnet versus Benchmark Algorithms

 SVMOP GPOR ORBALL Mean* LODML OHPL

CPU Small 0.631 0.588 0.654 0.634 0.569 0.428

Census 10 0.771 0.749 0.774 0.774 0.7373 0.635

Cars 0.003 0.037 0.012 0.038 0.028 0.024

Wine-Red 0.358 0.394 0.334 0.374 0.432 0.431

ERA 0.745 0.712 0.760 0.752 0.828 0.722

LEV 0.367 0.388 0.391 0.381 0.490 0.399

SWD 0.424 0.422 0.439 0.437 0.529 0.422

Table 2 compares MZE for OHPLnet versus the top performers. When applied to solve the

Census 10 problem, OHPLnet improves MAE by 16% over GPOR (and 18.3% over the mean score).

OHPLnet performs even better when using MZE, where the score improves by almost 50% versus

63

the best benchmark algorithms (both are either best of the 16 reported or differ from best by

less than 1%). The

When MZE scores differ as much as reported for the CPU Small and Census 10 data sets, it

should be expected to see improved MAE values, since there are significantly fewer values, that

have a nonzero MAE contribution.

Table 5 MAE Results for OHPLnet versus Benchmark Algorithms

 SVMOP GPOR ORBALL Mean* LODML OHPL

CPU Small 1.06 0.92 1.04 1.05 0.895 0.735

Census 10 1.64 1.64 1.51 1.683 1.597 1.247

Cars 0.003 0.04 0.01 0.04 0.034 0.024

Wine-Red 0.41 0.42 0.37 0.42 0.516 0.488

ERA 1.61 1.24 1.25 1.366 1.836 1.610

LEV 0.40 0.42 0.43 0.418 0.622 0.438

SWD 0.45 0.44 0.46 0.464 0.616 0.459

It can be useful to combine MZE and MAE, into a single metric by taking the ratio of the two

(MAE/MZE; see Table 6). This new metric is essentially equivalent to a conditional error (error for

incorrect classifications). For the CPU Small, this ratio is 1.16 (so MAE is 16% above MZE). The

same ratio for the mean of the 15 models is 1.66 and the best ratio of the four top algorithms is

1.56 (so 56% above the MZE). Equivalently, on the Census 10 dataset, the MAE/MZE ratio for

OHPLnet is 1.15, while the best ratio for the four benchmark algorithms is 1.95. For these larger

datasets, even when restricting the assessment to mean error of misclassified records, OHPLnet

64

represents a significant improvement over the best existing algorithms. For some applications of

ordinal classes, ranges of values are group into important classes. Net Promoter Score reviewed

in Chapter 8 is a good example of this process. In those cases, the error in misclassification has a

very high degree of importance, since it should lead to better results in the grouped classes.

Table 6 MAE/MAE Results for OHPLnet versus Benchmark Algorithms

MAE/MZE SVMOP GPOR ORBALL Mean* LODML OHPL

CPU Small 1.680 1.565 1.590 1.656 1.573 1.099

Census 10 2.127 2.190 1.951 2.174 2.166 1.121

Cars 1.000 1.081 1.000 1.053 1.183 1.000

Wine-Red 1.145 1.066 1.108 1.123 1.194 1.159

ERA 2.164 1.742 1.645 1.816 2.217 1.034

LEV 1.090 1.082 1.100 1.097 1.269 1.098

SWD 1.061 1.043 1.048 1.062 1.158 1.088

During follow up analysis, it was discovered that while the OHPLnet algorithm did achieve the

0.745 MZE and 0.769 MAE scores on the ERA dataset that were reported in Ordinal Hyperplane

Loss [38], these scores were invalid due to the algorithm failing to establish and maintain the

proper ordering of classes (the highest class had a hyperplane centroid value that was lower than

the prior hyperplane centroid). The correct values are reported in Table 4 and Table 5.

65

6.5. APPLICATION TO LARGE DATASETS

To illustrate that OHPLnet is capable of analyzing large datasets, an 80% training sample from

the Census 10 dataset was replicated 11 times to create a training dataset of 200,464 records.

The first replication was used as is. For each of the other 10 replications, a small amount of

gaussian “noise” was added to ensure that the algorithm did not achieve an artificially fast

convergence to an optimal solution due to the fact that the dataset had 11 identical records for

each record from the original set (doing so would effectively mean the algorithm was executing

11 iterations through the dataset, with each iteration over the derived dataset). The algorithm

was set to complete a comparable number of iterations that resulted from the development of

the regular sample classifier for the Census 10 dataset. When processing on the same computer,

the algorithm scaled linearly in terms of time to converge, taking roughly 11 times the average,

for each fold of the 5-fold cross validation, of the Census 10 dataset. In terms of classifier MZE

and MAE, the results were virtually identical to the results for the 5-fold cross validation. This

test effectively confirms the ability to scale DNNs to address very large ordinal classification

problems [38].

66

Figure 22 Time to Complete 500 Epochs by Number of Records (K records)

As can be seen in Figure 22, OHPLnet scales linearly with batch size, as would be expected

from a DNN.

67

Chapter 7. EVOLUTION OF OHPLNET

7.1. MINI-BATCH OHPLNET

The initial work on OHPLnet provided a meaningful improvement over the best ordinal

classifiers that are available today, but the methodology had some concerns that needed to be

addressed. All of the benchmark data sets were small in size, so the initial algorithm design was

able to use the entire dataset, for calculating the hyperplane centroids for each batch submission.

Since the design for that part of the algorithm used straightforward matrix operations on

structured data, the conceptual investigation could be conducted without concern for that the

standard benchmark datasets that were too large to run in a single pass. To apply the original

version to a very large dataset (e.g., one million records), algorithmic changes were going to be

required (e.g., incorporate efficient matrix multiplication, that may be distributed to multiple

computing nodes).

A primary example of a dataset that could not be analyzed using OHPLnet as it was originally

constructed would be medical image files. To test the practical threshold of the OHPLnet design,

a simple classification of medical images was examined. A fully dedicated computer, with an

NVIDIA 1080 ti GPU that has 10 GB of GPU memory, could not process 2,000 medical images,

through a Convolutional Neural Network, in a single batch. The practical limit for grey scale images

that were 176 by 176-pixels was 500 images in a single batch.

In addition, the planning phase of the additional research included three different strategies

for addressing the requirement to establish hyperplane centroids and allow them to update as the

algorithm progressed, without the requirement of processing the entire dataset in a single

68

execution and update of the DNN. Each strategy provides marginal success in the goal, but overall

the algorithms did not perform as well as expected on one of the benchmark datasets (Red Wine

Rating), indicating that there may be a unique challenge within that dataset, that needed to be

overcome.

The first approach was the development of a simple mini-batch variant of the original OHPLnet.

This approach was chosen as the first attempt due to the pervasive use of mini-batch processing

within the Deep Learning community, but more importantly, that mini-batch based deep neural

nets have a solid history of providing improved generalizability. As such, the approach may

overcome the limitation of OHPLnet on the one dataset where it under performed, making it an

algorithm that provide better generalization than OHPLnet. Developing the new variant required

the restructuring of the HCL estimation to enable it to use small batches instead of the full dataset.

These small batches may not include data from all class labels.

Many datasets are unbalanced in terms of the counts of records by class and frequently

researchers must deal with highly unbalanced data. All of the benchmark datasets have some

degree of imbalance in the class labels so they made appropriate test cases to ensure the new

algorithm would properly address imbalances. To address this issue, the data labels were used to

calculate an integer “distance” between adjacent hyperplane centroids that were present in the

mini-batch, where the difference in label value is more than 1. For example, if the full dataset

contained six distinct class labels, ‘0’-‘6’, but the mini-batch only contained records with values ‘2’

and ‘4’, then instead of requiring a minimum one-unit distance between the respective

hyperplane centroids, the threshold was set to (4 − 2) ∗ 1.

69

OHPLnet Mini-Batch ALGORITHM: Iterative Algorithm
Hyper-Parameters: h – number of hidden layers
lh – number of nodes per layer
𝛼 – prioritization weight for HCL
lr – learning rate
m – HC margin
γ– point margin proportion
bs – batch size
Input: Rescaled training data {(xi,yi)|i=1,…,n}

Parameters h, lk, 𝛼, lr, {lk = 1,…h}
Begin:
 Randomize weight (W) and bias (b) in each DNN node
 While not converged do

OHPLnet = 0, HPL = 0, HCL = 0
 Select mini-batch and one hot encode mini-batch labels

Feed mini-batch through selected ANN
From ANN Output, Calculate HCL:

Adjacent Distance: Calculate difference in adjacent centroids
Adjacent Margin: Calculate adjacent label and multiply by m
Calculate HC error: Adjacent Distance – Adjacent Margin
Sum positive values, as HCL

From ANN Output, Calculate HPL:
Calculate distances from respective hyperplane centroids
Sum positive values, as HPL

OHPLnet = HPL + 𝛼*HCL
 Calculate Stochastic Gradient Descent (SGD)
 Update W and b via SGD and lr
 Repeat until training sample exhausted
 Check convergence
End: Output W and b

The resulting algorithm had highly mixed results when applied to the benchmark datasets. It

performed extremely well on the Cars dataset that has a very high accuracy rate for virtually every

ordinal classification methodology. On the more challenging data sets, the results were very

sporadic. Not only was classification accuracy not as high as for OHPLnet, there was a very high

degree of variability in results across repeated executions of the algorithm at the point that the

70

algorithm reached its stopping criteria. Part of the issue is that the algorithm struggled to establish

the proper ordering of the hyperplane centroids.

In addition, the total training error (loss) at the end of an iteration through the data, does not

have the desired correlation with classification accuracy (both in terms of MZE or MAE values for

the training set). Figure 23 is a simple plot of Training MZE and MAE versus total training error,

for 20 consecutive model developments. The dataset is split into 80% training and 20% validation,

with the same partitioning used for all 20 models. Note that this analysis did not include the model

selection criterion that were used to benchmark the initial variant of OHPLnet. For that effort, a

100-sample test set was randomly selected from the training sample and used to select the best

candidates for inclusions. The point of this effort is to demonstrate lack of relationship between

the available model metrics and the scoring of a completely independent set of data. It does not

require sophisticated statistical analysis to determine the lack of relationship between total error

and classification error (see Figure 23).

71

Figure 23 SWD Training Dataset: MZE and MAE vs Total Training Error

As would be expected, the same story holds true for the relationship between training error

and validation set classification error. The slight increasing slope in the Validation set trend line in

Figure 24, is not sufficient information to make the determination to use training error to choose

the best model.

72

Figure 24 SWD Validation Dataset MZE and MAE vs Total Training Error

The other option is to use Training MAE or MZE to select the best classifier from a set of models

that are generated from successive executions of the OHPLnet Mini-Batch algorithm. As can be

seen in Figure 25 and Figure 26, the same lack of relationship holds true.

73

Figure 25 SWD Validation Dataset MZE and MAE vs Training Dataset MAE

Figure 26 SWD Validation Dataset MZE and MAE vs Training Dataset MZE

74

It is highly plausible that the mini-batch variant was successful in uncovering local ordered

relationships in the mapped space, but some of those local relationships negated each other,

resulting in a model that fit the ordering of the most “localities” with the same or similar

directional ordering. A key anecdotal point of evidence to supports this conclusion is the dramatic

increase in total loss after a sort of the data.

7.2. TWO-STAGE OHPLNET

The initial version of OHPLnet was designed to create the proper ordering and spacing of the

hyperplane centroids in stage one. In stage two, the algorithm fixes the hyperplane centroid

values and passes the model weights and centroid values to a separate algorithm. In addition,

the new algorithm provides results that have a strong relationship between the training set MAE

values and the values for the validation set. Figure 27 plots MZE and MAE for the Census

validation dataset. As can be seen there exists a strong relationship where a low training set MAE

indicates a low validation set MAE. The MZE trend isn’t as steep, but the extremely low variation

from the trend line suggests that the trend, while smaller is still reasonably reliable.

75

Figure 27 Validation Set MZE and MAE versus Training Set MAE

OHPLnet Two Stage ALGORITHM: Iterative Algorithm
Stage 1 – Hyperplane Centroid Ordering
Hyper-Parameters:
h – number of hidden layers
lh – number of nodes per layer
𝛼 – prioritization weight for HCL
lr – learning rate
m – HC margin
bs – batch size
Input: Rescaled training data {(xi,yi)|i=1,…,n}
 Weights (to handle imbalanced labels)
 One hot encoded labels

Parameters h, lk, 𝛼, lr, {lk = 1,…h}
Begin:
 Randomize weight (W) and bias (b) in each DNN node
 While ordered spacing less than 1
 OHPL = 0, HPL = 0, HCL = 0
 Select large batch
 Calculate large batch output from network
 Calculate HCL:

Adjacent Distance: Calculate difference in adjacent centroids

76

Adjacent Margin: Calculate adjacent label and multiply by m
Calculate HC error: Adjacent Distance – Adjacent Margin
Sum positive values, as HCL

 Repeat until training sample exhausted
 Check convergence
End: Output W and b

Stage 2 – Minimize Point Distance
Hyper-Parameters:
h – number of hidden layers
lh – number of nodes per layer
lr – learning rate
γ– point margin proportion
bs – batch size
Input: Rescaled training data {(xi,yi)|i=1,…,n}
 Weights (to handle imbalanced labels)
 One hot encoded labels
 Stage 1 model weights
 Hyperplane Centroids

Parameters h, lk, 𝛼, lr, {lk = 1,…h}

 Select mini-batch (bs)
Calculate mini-batch output from network
Calculate distances from respective hyperplane centroids + γ
Sum positive values, as HPL

Calculate Stochastic Gradient Descent (SGD)
 Update W and b via SGD and lr
 Repeat until training sample exhausted
 Check convergence
End: Output W and b

Since the initial hyperplane centroid solution may not be optimal after a number of iterations

of reducing point distance error, the algorithm needs to be able to update the hyperplane

centroids, finding a potentially new solution that uses the current state as a starting point. The

final two-stage version of OHPLnet was developed performs the same two-stage process, but

also tracks model development performance. If performance does not improve within a

prescribed number of iterations, the algorithm attempts to re-estimate the hyperplane centroids.

77

In current design of OHPLnet, the hyperplane centroids are estimated on the entire dataset, in

a full batch processing, when possible. For very large datasets or large image files that cannot be

processed in a single batch, a “maximum” batch strategy is employed. In experiments, the ordinal

class ordering is established very quickly, but subsequent updates, when needed, will progress

more slowly, taking a significantly larger number of epochs to reach a solution. For some datasets,

this re-estimation of the hyperplane centroids required so may iterations that a processing limit

was added. If the re-estimation does not occur in the allowed number of epochs, then the

hyperplane centroids, that were in use prior to the attempted re-estimation are used. During

experimentation, results suggest that reaching a point where hyperplane centroids cannot be re-

estimated are indications that the algorithm has reached a local minimum and the condition may

need to become one of the stopping criteria, for the algorithm.

7.3. OHPLALL

The simple mini-batch OHPLnet algorithm provides mixed result when applied to the same

benchmark dataset found in Chapter 6 experimental results. In Chapter 10, OHPLall is used to

predict the classification of medical images. The image sizes were very large (1 MB each) and

could not be compressed without risking the loss of important detail, that is required for

classification. In order to complete the analysis, a new mini-batch version of OHPLnet was

needed. In addition, the original Mini-Batch OHPLnet required a sort of each mini-batch (labels

and training data), before submitting the data for processing by the neural network. While this

process could be repeated for the new algorithm, one goal for this research was to improve

78

OHPLnet by simplifying the algorithm and remove unnecessary processing steps. Sorting small

batches does not require high compute time but running over 1,000 sorts per iteration through

the data does have an impact. This new variant of OHPLnet is called OHPLall.

To provide a natural prioritization on the hyperplane centroid ordering the new algorithm

changed the HCL loss component to compare all classes that were represent in the mini-batch to

each the other classes. The margin must be appropriately adjusted to account for ordinal label

differences that are greater than 1 (i.e., cases were the labels differ by more than 1). For each

mini-batch, the new mathematical formula for HCL is found in equation (37).

𝐻𝐶𝐿 =rmaxF𝐻𝐶5 − 𝐻𝐶� + (𝑗 − 𝑖) ∗ 𝛿, 0I
5Ô�

												(37)

OHPLall ALGORITHM: Iterative Algorithm
Hyper-Parameters: h – number of hidden layers
lh – number of nodes per layer
𝛼 – prioritization weight for HCL
lr – learning rate
m – HC margin
γ– point margin proportion
bs – batch size
Input: Rescaled training data {(xi,yi)|i=1,…,n}

Parameters h, lk, 𝛼, lr, {lk = 1,…h}
Begin:
 Randomize weight (W) and bias (b) in each DNN node
 While not converged do

OHPL = 0, HPL = 0, HCL = 0
 Select mini-batch and one hot encode mini-batch labels

Feed mini-batch through selected ANN
From ANN Output, Calculate HCL:

All HCL Distances: Calculate distances for all pairs of centroids
All HCLs Margin: Calculate label differences and multiply by m
Calculate HC error: Adjacent Margin – Adjacent Distance
Sum positive values, as HCL

79

From ANN Output, Calculate HPL:
Calculate distances from respective hyperplane centroids
Sum positive values, as HPL

OHPL = HPL + 𝛼*HCL
 Calculate Stochastic Gradient Descent (SGD)
 Update W and b via SGD and lr
 Repeat until training sample exhausted
 Check convergence
End: Output W and b

7.4. EXPERIMENTAL RESULTS FOR NEW VARIANTS OF OHPLNET

In testing the centroid ordering was attained with minimal priority weighting of hyperplane

centroid loss components. The experimental results demonstrate that the new variants of

OHPLnet, particularly OHPLall, perform well on the benchmark data sets that we examined in

Chapter 6. Two-Stage OHPLnet and OHPLall perform well across the seven benchmark datasets.

While Two-Stage OHPLnet consistently provides the top performance, OHPLall comes in at an

admirable second place for 6 of the seven datasets.

80

Table 7 MZE Results for New OHPLnet versus other OHPL Base Algorithms

 OHPL OHPLnet
Mini-Batch

Two-Stage
OHPL OHPLall

CPU Small 0.542 0.518 0.573 0.516

Census 10 0.646 0.723* 0.701 0.681

Cars 0.024 0.012 0.003 0.014

Wine-Red 0.444 0.542 0.358 0.418

ERA 0.772 0.790 0.709 0.755

LEV 0.412 0.544 0.362 0.412

SWD 0.427 0.492 0.371 0.407

* - Five of the 20 scores for Census 10 would have been rejected, if the goal were
focused on best performing model. Their training set MZE and MAE scores were
essentially equal to random assignment. If those values are removed, the resulting
MZE and MAE values would be 0.665 and 1.170, respectively.

The development of new OHPLnet variants lead to new algorithm, based on the same design

principles with improved results. In addition, the new variants are more capable of analyzing very

large datasets.

81

Table 8 MAE Results for New OHPLall versus other OHPLnet Base Algorithms

 OHPLnet
OHPLnet

Mini-
Batch

Two-Stage
OHPLnet OHPLall

CPU Small 0.763 0.701 0.814 0.709

Census 10 1.267 2.002* 1.207 1.199

Cars 0.024 0.012 0.003 0.014

Wine-Red 0.520 0.539 0.384 0.457

ERA 1.790 1.447 1.272 1.543

LEV 0.460 0.677 0.382 0.442

SWD 0.473 0.560 0.386 0.425

82

Chapter 8. OHPLNET ANALYSIS STRATEGIES

In addition to designing two new very capable OHPLnet algorithms, this research includes the

development and assessment of sampling strategies that could be valuable approaches to

analyzing extremely large datasets. Each of the three strategies uses a sampling process designed

to reduce the compute cost calculating and updating the hyperplane centroids, by reducing the

size of the data sample that is used to calculate and update the hyperplane centroids. These

strategies should also provide an opportunity for significant improvements in processing time on

very large datasets.

8.1. DOUBLE-BATCH SAMPLING STRATEGY

With the inclusion of a two-tiered batch selection framework, the algorithm for OHPLnet

Double-Batch is a modification of the original OHPLnet work. The most significant limiting factor

in applying the original OHPLnet to a very large data set (e.g., one million records or more) is the

ability of the computer to process all of the data to establish the hyperplane centroids, in a single

pass. In this strategy, large batches of records (e.g., 10,000 records each) are chosen, without

replacement. The large batch is used to calculate the hyperplane centroids each time a mini-batch

is processed. Mini-batches sampled, without replacement, from the large batch and submitted for

processing. In essence, the large batch is treated as though it were the full training set for the

processing. Subsequent large batches are submitted and processed until all data within the

training data set are processed. If the large batch size (number of records) is set to that of the

training set size then the algorithm the same as using OHPLnet.

83

OHPLnet Double Batch ALGORITHM: Iterative Algorithm
Hyper-Parameters:
h – number of hidden layers
lh – number of nodes per layer
𝛼 – prioritization weight for HCL
lr – learning rate
m – HC margin
γ– point margin proportion
bs – batch size
Input: Rescaled training data {(xi,yi)|i=1,…,n}

Parameters h, lk, 𝛼, lr, {lk = 1,…h}
Begin:
 Randomize weight (W) and bias (b) in each DNN node
 While not converged do
 OHPL = 0, HPL = 0, HCL = 0
 Select large batch and one hot encode large batch labels

Feed large batch through selected ANN
From ANN Output, Calculate HCL:

Adjacent Distance: Calculate adjacent centroids distance
Adjacent Margin: Calculate adjacent label, multiply by m
Calculate HC error: Adjacent Distance – Adjacent Margin
Sum positive values, as HCL

 Select mini-batch (bs) within the large batch
Feed mini-batch through selected ANN

From ANN Output, Calculate HPL:
Calculate distances from respective hyperplane centroids
Sum positive values, as HPL

OHPL = HPL + 𝛼*HCL
 Calculate Stochastic Gradient Descent (SGD)
 Update W and b via SGD and lr

 Repeat until training sample exhausted
 Check convergence
End: Output W and b

8.2. SINGLE STRATEFIED SAMPLING STRATEGY

The single stratified sampling variant employs a single stratified sample of the training set, at

initialization of the algorithm. The same sample is used for all epochs (a single full iteration

84

through the training set) within the execution to termination. It is assumed that with a sufficient

sample size (e.g., 10,000 records per class), that the hyperplane centroid solution would be a

sufficient representation of the full dataset. In employing a single sampling for the entire

execution of the algorithm, there is a risk that a rare event occurs, and the sample is not truly

representative of the entire data, which could lead to reduced or even poor generalizability of the

algorithm. Since there is a single sampling event and the hyperplane centroids are estimated on

a small sampling of the full dataset, relative to the full training set size. This speed consideration

makes the development of this variant a worthwhile endeavor.

OHPLnet Single Stratified ALGORITHM: Iterative Algorithm
Hyper-Parameters:
h – number of hidden layers
lh – number of nodes per layer
𝛼 – prioritization weight for HCL
lr – learning rate
m – HC margin
γ– point margin proportion
bs – batch size
Input: Rescaled training data {(xi,yi)|i=1,…,n}

Parameters h, lk, 𝛼, lr, {lk = 1,…h}
Begin:
 Randomize weight (W) and bias (b) in each DNN node
 Select stratified batch and one hot encode batch labels

OHPL = 0, HPL = 0, HCL = 0
 While not converged do

Iterate through dataset
Feed stratified batch through selected ANN

From ANN Output, Calculate HCL:
Calculate difference in adjacent centroids
Calculate adjacent label and multiply by m
Calculate HC error: Adjacent Distance – Adjacent Margin
Sum positive values, as HCL

 Select mini-batch (bs) from full training set
Feed mini-batch through selected ANN

85

From ANN Output, Calculate HPL:
Calculate distances from respective hyperplane centroids
Sum positive values, as HPL

OHPL = HPL + 𝛼*HCL
 Calculate Stochastic Gradient Descent (SGD)
 Update W and b via SGD and lr

 Check convergence
End: Output W and b

8.3. EPOCH STRATIFIED SAMPLING STRATEGY

Epoch Stratified Sampling variant creates a new relatively large stratified sample of the training

set at initialization of the algorithm (though not as large as the Single Stratified Sampling Strategy).

A new stratified sample is created at the start of each epoch within the execution of the algorithm.

Since the sampling is repeated, smaller strata sizes are used (e.g., 1,000 records per class). In doing

so, unless the number of epochs is set very low, a larger number of records are used at some point

in the model creation. The use of a larger percentage of the full training dataset should mitigate

risk an undue influence from a rare sampling events that may include an unusual number of

outliers. Like the Single Stratified Sampling Strategy, the hyperplane centroids are estimated on a

small sampling of the full dataset, but the sampling changes with each epoch so over the course

of the full execution of the algorithm the hyperplane centroids are based on a larger proportion

of the data. While the sampling at the start of each epoch this provides allows for very large

datasets without overwhelming the computing system.

86

OHPLnet Epoch Stratified ALGORITHM: Iterative Algorithm
Hyper-Parameters:
h – number of hidden layers
lh – number of nodes per layer
𝛼 – prioritization weight for HCL
lr – learning rate
m – HC margin
γ– point margin proportion
bs – batch size
Input: Rescaled training data {(xi,yi)|i=1,…,n}

Parameters h, lk, 𝛼, lr, {lk = 1,…h}
Begin:
 Randomize weight (W) and bias (b) in each DNN node
 While not converged do

Select stratified batch and one hot encode batch labels at the start of the epoch
 OHPLnet = 0, HPL = 0, HCL = 0
 Iterate through dataset

Feed stratified batch through selected ANN
From ANN Output, Calculate HCL:

Calculate difference in adjacent centroids
Calculate adjacent label and multiply by m
Calculate HC error: Adjacent Distance – Adjacent Margin
Sum positive values, as HCL

 Select mini-batch (bs)
Feed mini-batch through selected ANN

From ANN Output, Calculate HPL:
Calculate distances from respective hyperplane centroids
Sum positive values, as HPL

OHPL = HPL + 𝛼*HCL
 Calculate Stochastic Gradient Descent (SGD)
 Update W and b via SGD and lr

 Check convergence
End: Output W and b

87

8.4. EXPERIMENTAL RESULTS FOR OHPLNET VARIANTS

Artificial neural networks are prone to having high variation in results, leading to a strategy of

developing multiple models, which are validated against a validation sample that is selected from

the training data (i.e., not the testing or validation sample that is used to test the performance

of the final model that is selected) [50]. This can lead to a bit of a serendipitous approach to

model development. OHPLnet shares some similarities with triplet loss, which uses relative

position of similar and dissimilar samples to determine the error contribution of a triplet of

points, in the mapped space. The process requires the use of “hard triplets” to optimize model

performance. The identification of these hard triplets can make triplet loss challenge effectively

use [51].

Similarly, OHPLnet is reliant on the identification of hyperplane centroids. Unlike triplet loss,

identifying them is not based on a strategy of searching for specific data records to use in the

analysis. The algorithm finds a mapped space where the hyperplane centroids exist, with the

proper ordering and proper minimal spacing. At the same time, the algorithm is attempting to

minimize the distances of individual points. The relative “push” to gain appropriate ordering and

spacing for the hyperplane centroids is in direct conflict of the “pull” on the points to minimize

distance from the average value for the point’s class. This likely contributes to the high variability

in results when OHPLnet is applied to some datasets.

Even with high initial weighting on the establishment of the hyperplane centroids (in some

cases on order of 10Õ), the results could have more variance than desired. This led to the

development of a variable weighting of the hyperplane centroid loss, for early iterations of the

algorithm, followed by decreased weighting, but at a level to maintain hyperplane centroid

88

ordering and minimum distance. The variant with variable weighting had some success and was

being used when the discovery that lead to OHPLall was uncovered.

The data in Table 9 illustrate this phenomenon. The same algorithm that produced unit

minimum distances for all other datasets, included in this report as well as at least a dozen others,

consistently fails to do so with the ERA dataset. The minimum distance of under 0.3 is actually

lower than the point margin that was initially used in the component of the algorithm that

focuses on a point’s distance from its corresponding hyperplane centroid. Setting the margin for

point distance to 0.1 or less does not change the result. More importantly, on an 800-record

training set, the multiplier weight for hyperplane centroid distance was initially set to 1,000.

Table 9 ERA Dataset Double Batch Results for 5 Algorithm Executions

Training Set
MZE

Training Set
MAE

Validation
Set

MZE

Validation
Set

MAE

Minimum
Hyperplane

Centroid
Distance

0.753 1.434 0.746 1.541 0.212

0.747 1.415 0.771 1.595 0.210

0.743 1.429 0.727 1.493 0.259

0.741 1.438 0.761 1.576 0.219

0.756 1.418 0.746 1.517 0.202

This finding presents a possible additional interpretation/application of OPHL base results. The

ERA data set provides a scenario where extreme weighting is used to bias the loss almost

exclusively on the ordering a minimum distance requirement for the hyperplane centroids. Some

89

degree of minimizing point distance from the point’s corresponding hyperplane centroid, can be

included. Otherwise, the algorithm may reach a solution where no points occur between

hyperplane centroids, for the maximum and minimum classes, which would effectively turn an

ordered prediction of three or more classes into a binary prediction. In the ERA dataset, the

predictive features don’t have sufficient “information” or “signal” to provide the desired

separation of classes (hyperplane centroids). In a case like this, the results indicate that relative

to the available set of predictive features, the classes may not be as distinct as the labels imply.

In some scenarios, there may even be an argument for combining the two classes into one. An

example of this last scenario is explored in Chapter 10.

Through the evolution of the OHPLnet algorithms to the eventual development of OHPLall,

algorithm accuracy in terms of MZE and MAE values for scored holdout samples did not

necessarily change, but algorithm consistency did. The for the publication of Ordinal Hyperplane

Loss, the benchmark testing relied on a separate 100 record test sample to identify versions of

models that were generated using the same training set. For some datasets, like CPU Small and

Census 10, the resulting model scores were relatively stable. For others like the Red Wine dataset,

mean MZE was 0.444 with a standard deviation for 20 models of almost .11 (25% of the MZE

score). The benchmark process selected the 20 best models from batches of five executions of

OHPLnet , to arrive at the score, reported in the paper.

Table 10 and Table 11 report mean MZE and MAE, respectively, for 20 iterations of each

algorithm for the five variants of OHPLnet and OHPLall, across the seven benchmark datasets..

Unlike the process for the benchmarking, that was done for Ordinal Hyperplane Loss, these

90

results are reported without employing a selection process to choose a best model for a set of

models. OHPLnet has consistently high performance across all seven datasets.

Table 10 MZE Results for OHPL/OHPLall versus Analysis Strategies Using OHPL

 OHPL
OHPLnet

Mini-
Batch

Two-
Stage

OHPLnet
OHPLall

OHPLnet
Double
Batch

OHPLnet
Epoch

Stratified

OHPLnet
Single

Stratified

CPU Small 0.542 0.518 0.573 0.516 0.544 0.535 0.534

Census 10 0.646 0.723* 0.701 0681 0.775 0.668 0.678

Cars 0.024 0.012 0.003 0.014 0.002 0.007 0.011

Wine-Red 0.444 0.542 0.358 0.418 0.531 0.446 0.459

ERA 0.772 0.790 0.709 0.755 0.769 0.750 0.758

LEV 0.412 0.544 0.362 0.412 0.558 0.417 0.422

SWD 0.427 0.492 0.371 0.407 0.536 0.442 0.451

* - Five of the 20 scores for Census 10 would have been rejected, if the goal were
focused on best performing model. Their training set MZE and MAE scores were
essentially equal to random assignment. If those values are removed, the resulting
MZE and MAE values would be 0.665 and 1.170, respectively.

91

Table 11 MAE Results for OHPLall versus other OHPLnet Base Algorithms

 OHPL
OHPL
Mini-
Batch

Two-
Stage
OHPL

OHPLall
OHPLnet
Double
Batch

OHPLnet
Epoch

Stratified

OHPLnet
Single

Stratified

CPU Small 0.763 0.701 0.814 0.709 0.768 0.744 0.757

Census 10 1.267 2.002* 1.207 1.199 1.779 1.199 1.162

Cars 0.024 0.012 0.003 0.014 0.002 0.007 0.011

Wine-Red 0.520 0.539 0.384 0.457 0.636 0.512 0.533

ERA 1.790 1.447 1.272 1.543 1.660 1.564 1.619

LEV 0.460 0.677 0.382 0.442 0.706 0.456 0.451

SWD 0.473 0.560 0.386 0.425 0.644 0.493 0.498

Like Epoch Stratified OHPLnet, Two-Stage OHPLnet has excellent consistency in performance,

as demonstrated by the low standard deviation across the results of 20 iterations of the

algorithms (see Table 12 and Table 13). The major difference in the performance of Epoch

Stratified OHPLnet and Two-Stage OHPLnet comes in one of the experiments, discussed later. In

that experiment, OHPLnet Stratified failed to consistently establish the hyperplane ordering for

a very challenging dataset. It is this failure that lead to the change in design that differentiates

Two-Stage OHPLnet from the other algorithms.

92

Table 12 Standard Deviations of MZE

 OHPL
OHPL
Mini-
Batch

Two-
Stage
OHPL

OHPLall
OHPLnet
Double
Batch

OHPLnet
Epoch

Stratified

OHPLnet
Single

Stratified
CPU

Small 0.007 0.006 0.006 0.009 0.010 0.006 0.008

Census
10 0.009 0.102 0.012 0.007 0.018 0.007 0.007

Cars 0.024 0.008 0.005 0.016 0.002 0.005 0.007

Wine-
Red 0.0967 0.102 0.011 0.021 0.035 0.003 0.032

ERA 0.036 0.021 0.016 0.009 0.017 0.010 0.014

LEV 0.032 0.113 0.016 0.031 0.065 0.014 0.015

SWD 0.018 0.184 0.011 0.018 0.069 0.016 0.016

Table 13 Standard Deviations of MAE

 OHPL
OHPL
Mini-
Batch

OHPLall
Two-
Stage
OHPL

OHPLnet
Double
Batch

OHPLnet
Epoch

Stratified

OHPLnet
Single

Stratified

CPU Small 0.017 0.010 0.018 0.006 0.015 0.008 0.015

Census 10 0.036 0.144 0.018 0.043 0.147 0.018 0.024

Cars 0.024 0.008 0.016 0.005 0.002 0.005 0.007

Wine-Red 0.071 0.156 0.024 0.012 0.056 0.003 0.041

ERA 0.211 0.069 0.041 0.011 0.099 0.023 0.035

LEV 0.047 0.113 0.034 0.018 0.122 0.014 0.016

SWD 0.019 0.203 0.022 0.011 0.128 0.025 0.022

93

As reported in Table 14 Sample Strategy for Double Batch and Stratified Batches, the ERA

dataset has the lowest number of records per class, at just over 111 records/class. Four other

datasets have under 500 records/class. For these five datasets, the maximum number of records

per class in the stratified data is set to ½ of their average number of records per class. For the

other two, the maximum strata size is set to 10% of the average number of records per class,

rounded up to the nearest integer multiple of 100. In each iteration, a new stratified sampling is

generated. This strategy essentially ensures that a single poor sampling does not impact algorithm

performance in terms of accuracy of prediction.

To overcome this issue, multiple, independent sorted copies of the data were appended into a

larger file and the algorithm fit a model without sorting. While this revised process provided

stability, the solution was not much of an improvement over the regular mini-batch. It simply

provided a more stable output, but rarely provided exceptional results. In addition, the replication

data strategy is counter to the goal of analyzing large data sets in a minimal amount of time. While

OHPLnet Mini-Batch is not an abject failure, it is not a desirable solution to address the inclusion

of hyperplane centroids for analysis of large datasets.

Closely related to the OHPLnet Mini-Batch strategy is the OHPLnet Double Batch strategy. The

basic premise of this approach is to first select a relatively large sample from the available data

(5,000-10,000 records depending on the number of labels), then run mini-batches of data in the

large sampling to reduce distance to the hyperplane centroids that are determined by the larger

batch. As documented in Table 1, only two of the datasets exceed 2,000 records in size. For the

seven analyzed datasets, the “large” batches were set to be ½ of the number of records in the

training sets. Each of the two datasets that exceed 2,000 records, also exceed 8,000 records,

94

meaning the training sets would exceed 6,400 records. For the two largest datasets, CPU Small

and Census 10, the large batch size was set to 1,024 records (see Table 10).

Table 14 Sample Strategy for Double Batch and Stratified Batches

Number

of
Records

Number
of

Classes

Average
Records per

Class

Large
Batch
Size

Maximum
Strata
Size

CPU Small 8,192 10 819.2 1,024 100

Census 10 22,784 10 2,278.4 1,024 300

Cars 1,728 4 432 692 200

Wine-Red 1,599 6 266.5 640 100

ERA 1,000 9 111.1 400 50

LEV 1,000 5 200 400 100

SWD 1,000 4 250 400 125

OHPLnet Double Batch is variant of OHPLnet that produced the top results for the Cars dataset

(reported later, in Table 10 and Table 11). Though the results for the Cars dataset is not the

compelling motivation for OHPLnet or OHPLall, the vast majority of algorithms that were tested

by Gutierrez, et. al., performed very well on this dataset [9], so it any methodology that would be

considered to be a top performer would likely perform very well on it, too.

It also performed well on the other datasets with better consistency in results, but the

occasional very poor result could still occur. The OHPLnet Double Batch algorithm provides a more

stable diagnostic result for selecting the ‘best’ performing model from a set of trained models,

95

using the same training set. Across all seven benchmark datasets, summing training set MZE and

MAE provide a good metric for selecting the best performing model out of a set of models. To

illustrate, from 20 models, that were created using the same training and validation samples of

the SWD data set. Summed training MZE and MAE are rescaled to a minimum value of zero and a

maximum value of one for data. Similarly, validation set MZE, validation set MAE and summed

MZE and MAE, from the validation set were rescaled. The regression trend line for each of the

validation metrics, regressed on the training set metric are virtually the same line and several of

the data points are almost perfectly overlapped (see Figure 28). While OHPLnet Double Batch is

not the winner across the board, in terms of model accuracy, the ability to confidently select a

model that should generalize to other data, without the use of a separate test sample, is very

compelling.

Figure 28 SWD Dataset Validation MAE, MZE and MAE + MZE vs Training set MAE + MZE.

96

All values rescaled to a [0,1] interval.

97

Chapter 9. APPLICATION: CLASSIFICATION OF MEDICAL IMAGES

The American Cancer Society reports that in 2017 over 300,000 people in the United States

were diagnosed with breast cancer and over 40,000 people died from the disease [52]. Due to

improvements in treatment and early detection, the death rates that are attributed to breast

cancer have declined 39% from 1989 to 2015.

Radiologists use the first six categories of the seven-point BI-RADS (Breast Imaging Reporting

and Data System) rating system to classify mammography images. The seventh category is used

for images that are of breast images with a known malignancy, that was confirmed via a biopsy

[53]. The zero category is used for images where classification is uncertain and additional

information is required. Categories one through six are a sequence of ordinal classes.

Table 15 BI-RADS Category Scale [53]

Category Definition

0 Additional imaging evaluation and/or comparison to prior mammograms is needed.

1 Negative

2 Benign (non-cancerous) finding

3 Probably benign finding – Follow-up in a short time frame is suggested

4 Suspicious abnormality – Biopsy should be considered

5 Highly suggestive of malignancy – Appropriate action should be taken

6 Known biopsy-proven malignancy – Appropriate action should be taken

98

The Cancer Imaging Archive (TCIA) is a public access database of curated medical images [54]

[55], with accompanying annotations:

Table 15: CBIS-DDSM Annotations [54] [56]

Annotation Relation
to Scan Event

Definition/Values

Side Prior to Left or right breast

View Prior to CC - craniocaudal
MLO - mediolateral oblique

Density Rating Prior to Breast density rating

Abnormality Type After Calcification (2 annotations) – Type and distribution
Mass (2 annotations) – shape and margin

Assessment After BI-RADS rating (0, 2-5)

Pathology
After Image
Assessment

Benign Without Callback
Benign
Malignant

The CBIS-DDSM (Curated Breast Imaging Subset of DDSM) is found within the TCIA and

contains over 2,600 images that are selected by a trained mammographer [55, 56]. The data were

released in 1997. Even though they are more than 20 years old, they remain a valid source of

curated mammography data for researchers [57]. Several studies analyzing the CBIS-DDSM data,

have been published in the past year or two [58, 59].

In a very recently published paper (Feb 10, 2019), Agarwal et. al. used pretrain VGG16,

ResNet50 and InceptionV3 to produce classifier models to detect abnormal masses, in

mammograph images. The work examined confirmed abnormal masses found in the CBIS-DDSM

database. Their research reported a true positive rate classification of 0.98 when using the

99

classifier that was built using the InceptionV3 algorithm [60]. After training the classifier, they

scored 224 by 224-pixel image patches from the full mammography data in INbreast database

[61] to determine the generalizability of their models [60].

Shen et. al. built a successful classifier that detected malignant abnormalities within full

mammography scans. They trained their classifier on reduced size mammography images from

the CBIS-DDSM database, with an average size reduction of approximately .29 (average reported

image size of approximately 4,000 by 3,000 pixels reduced to 1,152 by 896 pixels). Patches of 224

by 224 pixels were generated from the reduced images. They used a sampling strategy to select

malignant, benign, and background patches for training their classifier using Resnet50 and

VGG16. The classifier was then used to [58] classify images from the INbreast database.

Li et. al. used Radiographic Texture Analysis combined with CNN based classifier, examining

only the craniocaudal images, in an effort to predict the presence of unilateral breast cancer

[62]. Their Radiographic Texture Analysis employed a stepwise feature selection using Support

Vector Machines. Their research demonstrated meaningful improvement, in prediction AUC

using the combination of the two classifiers, over-using either classifier on its own.

The goal of this research is to analyze mammography images from the CBIS-DDSM database

that have been classified by radiologists, to build an image classification model predicts BI-RADS

categories two through five. The CBIS-DDSM database contains images that in the DICOM format

and classified to have suspicious masses or calcifications with provided labels.

100

There are three types of images, that differ by size:

1. Full mammography images

2. Images that are cropped for standardization for use in computer-aided diagnosis and

detection (CADx and CADe, respectively). Regions of interest are at the centroid of the

image [57].

3. Regions of Interest (ROI) images are smaller images that focus more directly on the

abnormality [57].

The calcification image data provides almost 230 more images than the mass abnormality

data. Due to the larger sample of data, the calcification data are examined. Based on

examination of the image data, the cropped images are relatively large images for the

purposes of this type of classification. Row pixel counts are in the 4,000 to 7,000 range and

column pixel counts of 2,000 to 4,500. Attempting to use these images, with the available

computer resources would require that the images be reduce by a factor of seven. Malignant

abnormalities tend to differ from benign abnormalities in their “mathematical geometry” [57].

Compressing images, to 1/30th of their current image size would likely remove distinguishing

characteristics that would be critical in differentiating BI-RADS class.

101

 Figure 29 Distribution of Row Pixel Count
for Cropped Calcification Images

Figure 30 Distribution of Column Pixel Count
for Cropped Calcification Images

The Region of Interest scans vary in size from 70 pixels to 3,000 pixels but are heavily

skewed to under 1,000 pixels per side. Due to their size these images are better choices for

analysis, on a desktop or laptop. Many of the images would still need to be resized to a smaller

pixel count but on an order of ¼ (or smaller) the size of the original image.

Figure 31 Distribution of Row Pixel Count for
ROI Calcification Images

 Figure 32 Distribution of Column Pixel
Count for ROI Calcification Images

In examining the histograms in of pixel counts for rows and columns, there exists a clear break

at 900 pixels for rows, but a meaningful number of additional images are in the 1,000-1,200-row

102

pixel range. The column pixel counts for the images with row pixel counts below 900 is skewed,

similar to the full set, but the “skinny” part of the tail begins at roughly 1,200 pixels. Setting the

column limit to equal the row, would exclude a relatively small number of images.

 Figure 33 Distribution of row pixel count for
ROI Calcification Images with row pixel count

between 700 and 1,100.

Figure 34 Distribution of column pixel count

for ROI Calcification Images with column pixel
count between 700 and 1,100.

Figure 35 Distribution of column pixel count for ROI Calcification Images

with row pixel count less than 900

Figure 36-Figure 39 are a set of four sample images, select from the Calcification ROI Training

set. In some cases, a single calcification is relatively large while in others there are multiple very

103

small calcifications or may even be a cluster of calcifications. Across the images a variety of

background texture/noise can be seen.

Figure 36 Sample Mammography Image

View: Craniocaudal
Distribution: ‘NA’
Pathology: Benign Without Callback

Figure 37 Sample Mammography Image

View: Craniocaudal
Distribution: Clustered
Pathology: MALIGNANT

Figure 38 Sample Mammography Image

View: Mediolateral Oblique (MLO)
Distribution: Clustered
Pathology: Benign

Figure 39 Sample Mammography Image

View: Mediolateral Oblique (MLO)
Distribution: Segmental
Pathology: Malignant

104

There are 71 images in the selected records of the combined in the Training and Test datasets,

whose mammograms received a BI-RADS classification, indicating that additional tests and

information was needed to be able to make an assessment. For the purposes of this analysis,

these records are problematic, since the value ‘0’ is an inappropriate label for this ordered scale.

Removing these records from the training set removes potential excessive error being introduced

into training.

These records also provide an opportunity for additional assessment of a classification. While

the exact BI-RADS class in the ordered scale is unknown, the pathology finding for the patient is

available. Almost 50% of the images with classification of ‘0’ were determined to have a

malignant tumor (Table 16). If the model provides an appropriate ordered classification based on

the abnormal classification the records with the higher predicted BI-RADS class would have a

larger number of patients who had a malignancy.

Table 16 Zero Assessment Patient Key Statistics

Pathology
Finding

Number
of Images

BENIGN 38

MALIGNANT 33

Total Records 71

In training set, the patients with a rating of ‘3’ have a higher incidence rate of a malignancy.

While the difference is not statistically significant at the 90% level, given the fact that BI-RADS ‘4’

is supposed to be a higher risk group than BI-RADS ‘3’, this is a surprising finding. The high

incidence of malignancy in these two groups also poses a bit of an issue when attempting to train

105

an order classifier. Based on the literature, the patients with a malignancy could be appropriately

reclassified as BI-RADS category ‘6’, though developing a classifier that predicted values of ‘6’, for

use as a secondary assessment for a radiologist, would be inappropriate since that class is

reserved for confirmed malignancies from biopsies.

Using the hypothesis that the patients with malignancy were appropriately labelled, based on

a trained radiologist’s assessment, there may be an opportunity to classify the images of patients

with a malignancy in separate classes, based on their initial BI-RADS rating. If successful, the

finding would demonstrate that there are discernable differences in the images that can be

detected by a classifier that is estimated using a convolutional neural network.

In addition to providing are preselected training set of images, The Cancer Image Archive

provides an independent set of test images. For the purposes of this research, 306 of the images

qualified for inclusion (Table 17). The ‘3’ and ‘4’ class malignancy rates do not adhere to the

percentages that are expected of effective BI-RADS ratings of mammography images.

Table 17 Image Counts by BI-RADS Rating

BI-RADS
Rating

Training Set
Percentage
Images with
Malignancy

Number
of

Images

Test Set
Percentage
Images with
Malignancy

Number of
Images

2 0.2% 473 0.0% 71

3 35.5% 84 69.6% 23

4 39.9% 742 36.9% 176

5 98.5% 124 100.0% 36

Total 29.3% 1,423 38.2% 306

106

For benchmarking purposes, the algorithms that were used in Chapter 4 cannot be used for

processing images. The Ordinal Regression algorithm developed by Cheng et. al will be used since

it is able to CNNs to analyze images [12].

While CNNs provide a powerful methodology for analyzing images, image classification

requires a very significant amount of data processing. Unless large, powerful computing systems

are available, algorithms that solve image classification problems must use very small batches.

For this research, the images were processed on two different computers. The first had a Nvidia

GTX 1080 ti GPU, with 10 GB of memory. The second had a Nvidia RTX 2060 GPU with 6 GB of

memory. Both GPUs provide significant processing improvement over using a CPU.

With the exception of the Mini-Batch variant, all OHPLnet variants, including the two stage

variants that identify the hyperplane centroids prior to executing the minimum point distance,

require 30 or more samples per class, within the batch, to provide reasonably stable hyperplanes.

The computational system requirement for analyzing images using CNNs are impacted by more

than simple image size. Each filter that is applied within a layer resulting in a “channel” that is

essentially an altered version of the image. Large CNNs that analyze massive image databases

(e.g., ImageNet) use hundreds of filters per layer, resulting in hundreds of channels. This process

effectively multiplies a single “data point” (image) hundreds of times. This same process is done

for large numbers of layers, again resulting in a multiplicative effect on the size of the data being

processed. System resource capacity can quickly be exceeded even with relatively small network

architectures.

For the purposes of the analysis of mammograms, the images were first compressed to

expedite processing and to allow for appropriate identification of hyperplane centroids. The first

107

attempt used 1,200x1,200 pixel or smaller images that were compressed to 256x256 pixels.

Images for under-represented classes were over sampled to create a balanced training dataset

with 742 images for each class. Attempts to create a classifier were modestly successful, with

training set accuracy in the 30% to 32% range (versus 25% for random assignment). The lower

memory in the Nvidia RTX 2060 GPU resulted in a system constraint in processing the images

with a maximum of 64 per batch. The classifiers that were developed using this level of image

compression performed poorly.

The degree of compression was then reduced resulting in 512x512 pixel images. While

processing time increased and the maximum batch size limit decreased to 24 per batch, results

for this compression level weren’t much better than for the 256x256 pixels per image

compression. More importantly, the results for this compression level had a high degree of

variation in resulting model performance (MZE values between 0.40 and 0.70).

The calcification spots on the images are quite small. As mentioned earlier, radiologists

examine the nature of the edges of the calcifications to assess BI-RADS level. While compression

of images may have worked for other researchers who focused on predicting a binary outcome,

that was based on an objective biopsy result, the experimental results from the compression of

images indicate that classifying the images into four somewhat subjective classes based on

human interpretation of the images, isn’t appropriate. These less than desirable results may be

an indication that compression of almost any level removes the fine details that could be

important in determining BI-RADS rating class. The research proceeded using uncompressed

images. The images that are more than 1,024 pixels on either side are cropped at the edges. Any

image with a side that has fewer than 1,024 pixels are padded with zeros, which is consistent

108

with the padding that CNN algorithms use. The larger size results in a 12 images per batch

limitation on for the CNNs that show early promise in performance testing.

The 12 images per batch limitation required the use of the Mini-Batch OHPLnet variant. In the

initial work, the variant that was outlined in Section 7.1 struggled to provide proper ordering of

the hyperplane centroids for some datasets and results suffered if the data were sorted during

processing. In the application of Mini-Batch OHPLnet when the ordering was not achieved, a

single pair of adjacent hyperplane centroids were “inverted” (in the wrong order). If the

algorithm compared these hyperplane centroids to all others, the error cost, in terms of the total

loss would be significantly higher, so numerically they would have had higher “priority,” in the

batch update. This batch size limitation lead to the development of the OHPLall.

Several dozen Convolutional Neural Network architectures were tested with the 1,024x1,024-

pixel images. While several architectures performed comparably, to each other, an algorithm

with ten Convolutional layers and four DNN hidden layers (see Figure 40) performed well for both

OHPLall and Ordinal Regression.

109

Figure 40 Convolutional Neural Network Architecture

In evaluating model performance, the ability for a classifier to address this issue and return a

distribution of malignancy rates that are more consistent with the BI-RADS definitions may be

more important than actual accuracy and mean absolute error performance.

Twenty OHPLall models were generated using both OHPLall and Ordinal Regression. For

OHPLall, the mean batch training error, for an epoch is a reasonable metric to use for as a

stopping criteria. As can be seen, in Figure 41, mean batch error values that are below 0.5 results

in low test set MZE and MAE. While higher mean batch error values may have low test set MZE

and MAE, they may also have higher than desired test set MZE and MAE values.

110

Figure 41 Training Data Mean Batch Error

From the results in the test set it is clear that classifying mammography images into the

somewhat subjective BI-RADS classes is a particularly challenging task (see Table 18). Ordinal

Regression MZE and MAE are 25% and 43% higher, respectively, than OHPLall, on the mean

values of 20 executions of each algorithm (see Table 18). In addition, the MAE values for Ordinal

Regression had double the standard deviation for MAE as OHPLall.

Table 18 OHPLall vs Ordinal Regression MAE and MZE Results

Algorithm Metric MZE MAE

OHPLall
Mean 0.473 0.612

Std Dev 0.033 0.046

Ordinal
Regression

Mean 0.595 0.877

Std Dev 0.041 0.099

111

In addition to assessing standard model performance metrics, it is also worthwhile to assess

class predictions relative to biopsy results for the calcifications. For this evaluation, a single well

performing model for each algorithm is examined. Table 19 reports the MAE and MZE for the

selected models. If a model “struggles” to properly classify records within a given BIRAD rating,

it is likely to be desirable for the errors to occur in the lower rating values and perform better in

the higher ratings leading to early treatment for a malignancy. Both models perform poorly on

BI-RADS ‘3’ and ‘5’ rated images. From the table it is clear to see that Ordinal Regression does a

very good job, with BI-RADS ‘2’ rated records, but performs poorly, relative to OHPLall in the

other three classes (to the point that MAE for OHPLall is roughly equal to MZE for Ordinal

Regression). As mentioned earlier, these two metrics may not be the best assessment of model

quality.

Table 19 Rating Level Assessment for a High Performing OHPLall Model

vs A High Performing Ordinal Regression Model

BI-RADS OHPLall
MZE

OHPLall
MAE

Ord Reg
MZE

Ord Reg
MAE

2 0.408 0.732 0.211 0.338

3 0.696 0.739 0.739 0.826

4 0.324 0.386 0.574 0.767

5 0.750 0.944 0.889 1.417

Total 0.422 0.559 0.539 0.748

Per the BI-RADS definitions it is expected that malignancy rates would increase with BI-RADS

score. The algorithm that produces models that best meet this expectation would provide higher

112

quality predictions. Ordinal Regression predicted a significant shift in BI-RADS rating, towards the

low end of the scale, resulting in very good MZE and MAE values for the ‘2’ class, but poor results

for the other classes. In addition, images classified as a ‘5’ by OHPLall have over three times the

Malignancy Rate (percent of images that were ultimately classified as malignant) as Ordinal

Regression. Early identification of malignancy is critical in treating breast cancer, so this skew

towards lower values versus OHPLall is less desirable for a model that is intended to be used as

a diagnostic tool.

Table 20 Detailed Results for a High Performing Ordinal Regression Model

BI-RADS*
Actual

Malignant
Counts

OHPLall
Malignant

Counts

Ord Reg
Malignant

Counts

Actual
Malignancy

Rate

OHPLall
Malignancy

Rate

Ord Reg
Malignancy

Rate

2 0 7 44 0.0% 12.5% 42.7%

3 16 28 29 69.6% 48.3% 35.8%

4 65 69 40 36.9% 38.8% 37.4%

5 36 13 4 100.0% 92.9% 26.7%

Total 117 117 117 38.2% 38.2% 38.2%
* - Value for reported BI-RADS rating source, per column heading

The image database also contained a number of images with a BI-RADS classification of ‘0’.

This class is designated as “Additional imaging evaluation and/or comparison to prior

mammograms is needed”. While a specific rating value is not available, the models can be

assessed based on the malignancy rates for the predicted classes. As was the case for the test

dataset, relative to OHPLall, Ordinal Regression shifts cases to the lower end of the rating scale.

This skew towards the lowest available BI-RADS class includes a shift of nine malignant cases, to

113

the ‘2’ class, giving this Ordinal Regression a higher malignancy rate than the rates for the other

three classes. OHPLall classifies two malignant cases into class ‘2’. OHPLall classifies over 2/3

malignant cases into classes ‘4’ and ‘5’, while Ordinal Regression classifies just over half of the

malignant cases into class ‘4’ and no malignant cases into class ‘5’. The OHPLall results are more

consistent with the overall definitions of the BI-RADS measurement system.

Table 21 Results For ‘0’ Rated Cases

BI-RADS OHPLnet
Counts

OHPLnet:
Malignant

Counts

Ordinal
Regression

Counts

Ordinal
Regression
Malignant

Counts

2 2 2 15 9

3 14 8 15 7

4 42 16 40 17

5 13 7 1 0

Total 71 33 71 33

For the classification of the available mammography images into BI-RADS rating, a

Convolutional Neural Network that uses OHPLall loss provides better results than a Convolutional

Neural Networks that use Ordinal Regression. Not only does it provide better overall results, but

in the critical secondary assessment OHPLall works well in predicting images that have a

malignancy into higher BI-RADS classes.

114

Chapter 10. APPLICATION: MULTI-CLASS SENTIMENT ANALYIZER

In late 2003 Frederick Reichheld originally proposed Net Promoter in a famous Harvard

Business Review article [63]. In the intervening years, Net Promoter Score (NPS) became a widely

used client feedback system to assess overall perception of a company’s products and services.

The basis of Net Promoter measurement systems is a survey program that captures responses

from a company’s customers who are asked to estimate their likelihood of recommending the

company, its products, or its services to a friend or colleague [64]. The responses are given on a

10 or 11-point scale (‘1’-‘10’ or ‘0’-‘10’), with ‘10’ being “extremely likely” and the lowest value

being “extremely unlikely.” The values are recoded into a 3-point semantic scale (see Table 22)

[64]:

Table 22 Net Promoter Value to Semantic Label Recode

Response
Value

Semantic
Label

‘9’-‘10’: Promoter

‘7’-‘8’: Passive

‘0’-‘6’: Detractor

The Net Promoter Score is calculated by subtracting the percentage of respondents who are

Detractors from the percentage who are Promoters, to create a metric that has a scale of -100 to

100 [64]. Many companies use a variety of customer touchpoints for their NPS measurement

system [65]. Some companies are so committed to their NPS program that they are embedding

the system into all facets of their business. In addition to being surveyed on overall company

115

performance, customers are asked to rate specific product and service offerings. Processes that

are internal to the company (e.g., helpdesks that employees use for workstation issues) are also

measuring NPS [65]. The ability to assess likely Net Promoter Score in text, in social media

(Twitter, Facebook, etc.), blogs (e.g., technical review sites), and customer surveys, provides

multiple additional touchpoints for the company to assess. A text based NPS metric may even be

viable for rating competitor’s Net Promoter Scores.

Current state of the art sentiment analyzers use numerical word embeddings to represent the

words in the analyzed text. A word embedding is a numerical vector representation of words,

where each word in the corpus (aggregate body of text) is associated a unique vector [66]. Words

that are close in semantic/contextual meaning have similar vector values.

Not only do Net Promoter responses provide valuable insights to the company, to provide

qualitative interpretation to response scores but they also provide an opportunity to develop a

“sentiment” like classifier for short text messages or responses. Companies like Uber, Facebook,

and Twitter employ very sophisticated sentiment analysis process to better understand customer

attitudes [67]. For a company that is making Net Promoter Score a core KPI (Key Performance

Indicator), the ability to correctly and efficiently classify social media comments and survey

responses without the need for manual evaluation may open new areas of business analysis and

measurement that are not currently available.

The survey database for the IT company that provided the NPS data for analysis has over

60,000 completed surveys with short responses that are linked to a respondents NPS score. This

data includes responses from customers across the globe. In the cases where responses are

provided in a language other than English, Watson Language Translator was used to provide

116

English versions of the response. It should be noted that the data have not gone through a

secondary screening to validate the class labels. Respondents are free to enter any text response

that they choose. In some cases, respondents offer reasons as to why the rating was a ‘9’ and not

a ‘10’, so the response may appear to be negative or similar to negative comments that

correspond to low rating values. In other cases, a low rating may be provided, and the respondent

decided to focus on a positive attribute of a call (e.g., the agent was polite and worked hard to

resolve a problem) which may be very similar (or even identical) to a response for a very high

rating. In other cases, the respondent may list the technical components/processes that resulted

in a problem and a positive or negative sentiment is not clear. In spite of these inconsistencies in

some records, there is sufficient data for the algorithm to be able to discern patterns that are

associated with each response class, but the pure accuracy likely would not reach that of well

documented binary sentiment analyzers that can be found on-line.

This real-world application is a test of OHPLall in analyzing text. While this is a test of verbatim

responses of no more than 500 characters, other text applications may be quite large, so this test

will use the OHPLall to assess performance. An example application on a very large corpus might

be the development of letter grade classifier predicting grade on a corpus of 1,000+ term papers

that are each 25 pages in length. Assuming 300 words per page, a single document would have

approximately 7,500 words per document (double spaced). If one of the larger word to vector

embeddings, with vector length of 100, is used the size of a single document would be almost

100,000 values. While the data used for this application isn’t this large, the text is a valid

assessment of real data that is produced by real activities in businesses.

117

An appropriate benchmark algorithm must be able to take advantage of the power of word

embeddings as well as the ability to analyze word sequences that is offered by RNNs and CNNs.

An Ordinal Regression with at least one Gated Recurrent Neural Network layer is a good choice

that meets these requirements.

If sufficient data sample is available, an analyst may choose to develop a unique word

embedding for the corpus of documents that they are analyzing. For smaller projects, particularly

those that have a large number of words that have the same meaning as a common body of

documents, the analyst may choose to use a word to vector database like GloVe [68] or

Word2Vec [69]. These databases provide pretrained word embeddings for 400,000 to several

million English words. In developing the word embedding databases, a very large corpus of

documents (e.g., Wikipedia) is analyzed to identify word-word “co-occurrences” (frequencies at

which two words occur adjacent to each other in the text).

In generating the GloVe database, Stanford researchers identified the 400,000 most common

English words and developed a word-word occurrence matrix. To generate the embedding

vectors, the log of the values in the word-word occurrence matrix is decomposed resulting in a

unique 50-dimensional representation of each word [70]. Two words that frequently occur with

the same set of thirds words will have very similar vector representations.

A researcher may also choose to employ a transfer learning approach by using data from one

of the word embedding databases as the initial embedding in a deep learning model and enable

the model to update the embedding values to maximize the predictive abilities of the classifier.

This strategy may be particularly useful when analyzing a corpus of documents from a single

118

topical area where word meanings are different that more common meanings (e.g., the use of

the word “default” for software settings versus for credit accounts).

Since word sequences provide important context for the sentiment or attitude of the message,

the words in a document are converted to sequences of numerical vectors. These vectors can

then be analyzed using either a Recurrent Neural Network or by employing a Convolutional

Neural Network that uses one-dimensional filters. Training of the network proceeds as with any

other DNN.

The goal of this sentiment analysis effort is to simulate a real-world application of OHPLall to

develop a sentiment classifier based on raw survey data. Text records that are single word values

and have no expected association with the responder’s attitudes towards the company (e.g., 20

occurrences of the single word “on”) and responses that do not contain any actual English words

(e.g., four occurrences of the digit ‘1’) are removed, leaving 60,593 records available for analysis.

The data were split into Training, Test, and Validation sets using proportions of 80:10:10. Due to

the unbalanced nature of the dataset, random sampling was employed to ensure that all eleven

response classes were represented within each sample (see Table 23).

119

Table 23 NPS Sentiment Analysis Sample Counts by Response Class

Response
Class

Training
Set Counts

Test Set
Counts

Validation
Set Counts

Percentage
of Sample

0 1,544 193 193 3.2%
1 655 82 82 1.4%
2 868 109 109 1.8%
3 1,053 132 132 2.2%
4 767 96 96 1.6%
5 2,416 302 302 5.0%
6 1,820 227 227 3.7%
7 3,595 449 449 7.4%
8 7,596 950 950 15.7%
9 9,195 1,149 1,149 19.0%

10 18,964 2,371 2,371 39.1%

As is the case with virtually all predictive model development methodologies, deep neural

networks struggle to provide desired classification when built on highly unbalanced datasets

where the frequency of records for one or two classes are significantly higher than the others. In

the case of the available NPS data, class ‘10’ represents 39% of the available data. In addition,

class ‘9’ represents an additional 19% of the data (see Table 23). In application, the eleven-point

NPS scale is recoded into three classes where classes ‘9’ and ‘10’ are combined. In this final three

class version, the highest class, represents 58% of the data (see Table 25).

Unbalance datasets can lead to model results that are not only unusable but have the

potential to provide incorrect insights leading to incorrect decisions. A simple Ordinal Regression

model was created on the unbalanced training set for this research. The results for the training

set provide a good illustration of the problems that may occur by analyzing a highly unbalance

dataset, without addressing the imbalance. In Table 24, the dark cells provide the counts for the

records that were properly classified, in the eleven-class case. The lighter shaded cells along with

120

the dark shaded cells provide the counts for the three-class grouping of the response values. The

predictions skew heavily in the direction of the two largest classes (‘9’ and ‘10’), with the

predictions of ‘9’ occurring 50% more frequently than their actual incidence rate in the dataset.

In addition, no records are predicted to have a prediction of ‘0’. The model predicts the

‘Detractor’ class (shaded upper left 6 cell by 6 cell section) at a rate that is similar to that found

in the actual responses, but the ‘Promoter’ ratings would be 15% higher than actual if the model

predictions are used. These results would tend to give the company a false read on how many of

their customers were highly satisfied with their products and services and unjustly skew the NPS

metric in the positive direction.

Table 24 Confusion Matrix: Counts for Actual versus Predicted Classes

As a standard practice weighting or oversampling of low frequency classes is employed to

address this issue. In the case of NPS it may be inappropriate to employ either solution to the

point that all eleven classes have equal representation when developing a model. Since the data

121

will ultimately be recategorized into three classes, it is more appropriate to use the proportions

for the three-class version of the data, to address the imbalance (see Table 25).

Table 25 NPS Three Class Counts by Class

Semantic
Response

Response
Class

Training Set
Counts

Test Set
Counts

Validation
Set Counts

Percentage
of Sample

Detractor ‘0’ 9,123 1,141 1,141 19%

Passive ‘1’ 11,191 1,399 1,399 23%

Promoter ‘2’ 28,159 3,520 3,520 58%

A simple oversampling strategy based on the frequency counts for the three-class semantic

scale is employed. Differentiation within the classes in the three-class grouping is not an

important result for the company. Therefore, no additional oversampling is performed within the

three-class groupings of the 11-class responses. It is important for very low scores (e.g., 0 and 1)

to be correctly classified as ‘0’ on the three-class scale whenever possible. To accommodate this

requirement, an eleven-class model is specified instead of simply using the three-class labels for

model development.

OHPLall is used within a Gated Recurrent Neural Network (GRNN). Gated Recurrent Neural

Networks were created to address the vanishing/exploding gradient problem that may occur in

RNNs. A GRNN differs from an RNN in their basic nodes. In the RNN, information from a prior

node is combined with the new input for the node both are subject to multiplication by weights

and summarized before a nonlinear function is applied. In the GRNN, the GRU (Gated Recurrent

Unit) receives the same inputs but two “gates” within the node impact behavior. The first gate

decides what information from the prior hidden state (i.e., the memory from the prior state) is

122

accepted into the node. The other determines what information from within the current node is

passed to the next node [34]. The activation functions within these gates behave as on-off

switches but are actually continuous functions, so the weights within them can update the same

way that weights in a simple DNN node is updated [34]. GRNNs are useful in sentiment analysis,

since they can selectively carry memory though the recurrent network so the specific positioning

of key words (e.g. adjacent or two-words apart versus 20 words apart) does not critically hinder

classification.

For the current NPS classification problem a GRU layer with 128 outputs is used. The GRU layer

is fed by the word embedding layer that is initialized with word embedding vectors from the

GloVe database. Words that occur in the texts but are not found in the word embedding database

are initialized with random values. Since the content of the text is specific to computers and the

IT domain, the word embeddings are further trained to optimize their contribution within the full

network. Two additional standard DNN layers are included before the standard scalar output for

OHPLall (see Figure 42).

123

Figure 42 NPS GRNN Network Graph

The neural network architectures are optimized by comparing model solutions training sample

results against the results for the validation sample to arrive at a final network architecture. From

that point, twenty models were estimated using the winning architecture for each algorithm. In

addition to predicting the eleven ordinal classes, the predicted classes are reclassified into the

three-class solution. Mean Zero One Error (MZE) and Mean Absolute Error (MAE) are calculated

for each. In Table 26, bold values denote the best performance on the metric between OHPLall

and Ordinal Regression.

When NPS data were analyzed relative to customer behaviors and financial relationship with

the company, OHPLall provided strong evidence that it would be appropriate to combine some

124

classes. Similarly, in the models that were developed for the NPS Sentiment Classifier, the ‘9’ and

‘10’ classes weren’t separated by the desired one-unit distance. Distances were consistently in

the 0.20 range. This result is additional confirmation that the grouping of the ‘9’ and ‘10’ response

classes is an appropriate aggregation of those classes.

Table 26 NPS Sentiment Analyzer Results For 20 Iterations of Each Algorithm

 Three Class
MZE

Three Class
MAE

Eleven Class
MZE

Eleven Class
MAE

OHPLall
Mean 0.320 0.370 0.652 1.281

Std Dev 0.006 0.007 0.014 0.032

Ordinal
Regression

Mean 0.360 0.406 0.724 1.352

Std Dev 0.007 0.007 0.010 0.011

Mean
Comparison

Percent
Difference 13% 10% 11% 6%

While neither algorithm achieves a stellar classification accuracy or mean error, OHPLall

outperforms Ordinal Regression in both MAE and MZE for the eleven-class model. The

performance differences are statistically significant at the 95% confidence level. The

performance advantage of the eleven-class model in terms of MAE carries over to result in an

even stronger performance in the three-class recode. As would be expected the performance

difference for the three-class recode of the predictions is also statistically significant.

Low accuracy rates for both methodologies is in part due to the inconsistencies in rating versus

the content of verbatim responses. Table 27 provides a sampling of examples where the

respondent’s rating is not consistent with his/her verbatim response. In the example cases, the

verbatim comments would appear to be inconsistent with the rating while the predictions are

125

consistent with the text. While these cases are explicitly selected to illustrate the potential

challenges of developing semantic analyzers based on survey data they suggest that even with a

less desirable accuracy and higher mean absolute error than desired, the classifier may provide

a good basis to enhance the company’s NPS program and associate KPI metrics.\

Table 27 NPS Responses That Are Inconsistent with Verbatim Comments

Survey
Response

Three-Class
Labels

Prediction
Three-Class

Labels
Verbatim Comments

Detractor Promoter 1 experience 2 the support was fantastic
Detractor Promoter because it was very carefully supported
Detractor Promoter because of the quick response
Detractor Promoter interface and graphics capabilities
Detractor Promoter because we could respond promptly and as expected

Detractor Promoter after calling we quickly arranged replacement parts and technical
personnel it was very helpful to solve problems in a few hours

Detractor Promoter good service
Detractor Promoter quick response and accurate answer
Detractor Promoter the positive experience prevails
Detractor Promoter competent friendly patient

Promoter Detractor 1 very long and complex bureaucratic procedures 2 long lead
times for orders

Promoter Detractor we had a performance issue not able to pinpoint that support has
been able to come with

Promoter Detractor because we cannot access the system without our pcomm in our
pc os environment

Promoter Detractor because the printing function of acs is not stable when it comes
to printing it becomes pcomm which is the way to recommend it

Promoter Detractor
this pmr has been very long and has already had a predecessor
pmr with the same problem which could not be solved at the
time

Promoter Detractor … price competitiveness is still weaker

Promoter Detractor time did not change the quality of the system ie of its granite
operating system

Promoter Detractor vacations at grundfos and at … prolonged the handling time
Promoter Detractor the solution was not satisfactory
Promoter Detractor no good communication in this case

126

From a manual assessment of a sampling of 100 misclassifications, 44% of the misclassified

cases in the test sample are cases where the NPS rating is not consistent with the entered

score. The precise value is difficult to assess because the assessment can be very subjective for

some of the examples. Using the midpoint of the range we would expect an accuracy rate

above 80% for the classifier (MZE of 0.20) which is comparable to binary classifiers that are

reported in published papers [71].

127

Chapter 11. APPLICATION: OHPLNET FOR INTERPRETTIVE ASSESSMENT

For decades businesses have used purchase RFM (Recency, Frequency and Monetary Value)

to successfully engage with customers to successfully promote future spending. Companies also

report a linkage between recency of interaction with the company and Net Promoter Score (NPS)

survey response rating (see 114) [39]. While it is not likely that the two are perfectly correlated,

it is not unreasonable to expect RFM metrics correspond to NPS survey response ratings. The

metric has been demonstrated to have a strong association with future company revenues [72].

Given the relationship with future revenues, it is not unreasonable to assume that there may be

some association between Net Promoter rating and customer spend prior to survey response.

A very large IT company with a large B2B (business to business) presence has a database of

more than 400,000 NPS survey responses. Not all of the responses can be link to specific

customer behavioral data, like products purchased and their timing, but a sufficient number can

be linked to attempt to predict survey response, based on the pattern of customer purchase over

the prior year. In the IT marketplace, “frequency” has dramatically different meaning for services

than for hardware, both of which will have different meanings than for software. As such creating

a purchase frequency metric across all purchases may be impractical to attempt. This company’s

product portfolio is sufficiently complex, to the point that “frequency” is too difficult to provide

a reliable metric, but a detail set of revenue data is available, across a broad timeline.

Historically, predictive analysis using the company’s data, indicated that purchase behavior in

a recent time frame (e.g., last month or quarter) as well as for more extended time periods (e.g.,

prior year or two prior years) have a strong correlation to future purchase. The company’s NPS

data has an additional complication in that larger customers have a high likelihood of providing

128

multiple NPS survey responses, particularly when considering an extended period of time. This

repeated response presents a significant complicating factor when attempting to build a model

that predicts NPS response. To avoid cases where the same customer provided multiple, different

responses, in the same time window (quarter), the most frequent response for the time period

was chosen.

For the analysis, just over 71,000 B2B response records were available with detailed revenue,

firmographic (industry, number of employees, number of business locations, etc.) and company

sales “coverage” (larger customers have dedicated sales teams, while small customers may only

receive telephone sales support). Customer purchase data (revenues) were totaled by product

purchase and time period (prior month, prior quarter, prior half year, prior year and prior two

years). In total, over 2,600 data elements were available for classification NPS response, based

on known customer behavioral attributes.

129

Table 28 Net Promoter Response Distribution

Semantic
Label

Response
Scale

Response
3-Point
Rescale

Record
Count Percentage

Detractor 0 0 2,798 3.9%

Detractor 1 0 996 1.4%

Detractor 2 0 1,170 1.6%

Detractor 3 0 1,273 1.8%

Detractor 4 0 1,075 1.5%

Detractor 5 0 3,665 5.1%

Detractor 6 0 2,756 3.8%

Passive 7 1 5,863 8.2%

Passive 8 1 11,672 16.2%

Promoter 9 2 12,549 17.5%

Promoter 10 2 28,085 39.1%

A successful model that the company could use as part of customer advocacy and retention

efforts could not be built since there does not appear to be sufficient “signal” in the available

feature set that is related to NPS response score. While this application doesn’t provide sufficient

predictive power to provide a usable classifier to determine an expected NPS classification based

on company purchase behaviors, it does provide sufficient predictive benefit above a “rational”

random assignment to do a different assessment of the results, that assessing pure accuracy

metrics. The challenges in analyzing the data lead to two valuable results:

1. OHPLnet experienced significant challenges in building a predictive model. The

challenge lead to a significant revision of OHPLnet which became Two-Stage OHPLnet.

During initial efforts to use OHPLnet the results, including multiple strategies outlined

130

in Chapter 8, the models demonstrated minimal benefit (incremental performance)

over a rational random assignment because the algorithm could not consistently

progress to the point of mapping to a new space that provided a proper ordering of

the eleven response classes.

2. While Two-Stage OHPLnet provides a small amount of lift in fit over random

assignment, it also provided an insight into the traditional aggregation of NPS values

in to the documented three-point semantic scale. Since the model cannot be deemed

a “success”, this insight into the clustering of scores provides a heuristic reinforcement

of part of the NPS process.

The NPS responses were highly skewed towards the high end of the response scale (‘9’ and

particularly ‘10’). To address this issue, multiple weighting schemes were tested. The “Weight 11

Point Scale” is a simple ratio of the corresponding cell with the largest cell count. This weighting

assumes an equal likelihood of response for all eleven classes. Since NPS scores are aggregated,

into fewer scale points the equal likelihood assumption is not likely to be valid, but was used as

a test effort to “force” the maximum number of records to be scored in classes ‘0’-‘6’ (the best

unweighted model result was 0.11% of the validation sample in classes ‘0’-‘6’). The simple square

root of the “Weight 11 Point Scale” value provided weighting that is close to the rescaling but

provides differentiated weighting for cells within the normal rescale by frequency. Lastly, a

weighting based on the normal three point rescale, using the same methodology as for the

“Weight 11 Point Scale” (i.e., the largest value for the three cells is divided by the corresponding

value for the three-point class).

131

Table 29 IT Company NPS Response Counts and Tested Weighting Scales

Semantic
Label

Response
Scale

Response
3-Point
Rescale

Record
Count Percentage

Weight
11-Point

Scale

Weight
Square Root

11-Point
Scale

Weight
3-Point
Scale

Detractor 0 0 2,798 3.9% 10.0 3.2 3.0

Detractor 1 0 996 1.4% 28.2 5.3 3.0

Detractor 2 0 1,170 1.6% 24.0 4.9 3.0
Detractor 3 0 1,273 1.8% 22.1 4.7 3.0
Detractor 4 0 1,075 1.5% 26.1 5.1 3.0
Detractor 5 0 3,665 5.1% 7.7 2.8 3.0
Detractor 6 0 2,756 3.8% 10.2 3.2 3.0
Passive 7 1 5,863 8.2% 4.8 2.2 2.3
Passive 8 1 11,672 16.2% 2.4 1.6 2.3

Promoter 9 2 12,549 17.5% 2.2 1.5 1.0

Promoter 10 2 28,085 39.1% 1.0 1.0 1.0

Multiple DNN models were estimated on an 80% training set in an attempted to provide a

classification of the eleven-point response that was an improvement over random assignment.

Due to the highly skewed nature of the response data, assigning all values to the class ‘10’

provides the best MZE score of 0.609, with a corresponding MAE score of 2.01. Since the goal of

the effort is to provide predictions for classes, the eleven-point classes that fall in each of the

three-point classes, it is not reasonable to set the random threshold to that of simply labeling all

records with a value of ’10.’ Instead, there must be some records that are in classes ‘0’-‘6’. Since

‘6’ has the smallest absolute difference from ten, the random assignments will include random

assignments in class ‘6’. The random assignment of records into classes ‘6’-‘10’, with ‘6’ assumed

to have the frequency count of the classes ‘0’-‘6’, is referred to as the “rational random

assignment”. In Table 30 Random Assignment of Classes, marginal probabilities for the classes

132

were used to estimate a random assignment across classes six through ten based on the

proportion of classes in the data set that fall in these 5 classes. The MAE and MZE values for this

test were 0.735 and 2.024, respectively.

Table 30 Random Assignment of Classes

 Randomly Assigned Label
Actual
Label 6 7 8 9 10

‘0’ 534 228 454 488 1093

‘1’ 190 81 162 174 389

‘2’ 223 95 190 204 457

‘3’ 243 104 207 222 497

‘4’ 205 88 175 188 420

‘5’ 700 299 595 640 1,432

‘6’ 526 225 447 481 1,076

‘7’ 1,120 478 952 1,023 2,290

‘8’ 2,229 952 1,895 2,037 4,559

‘9’ 2,397 1,023 2,037 2,190 4,902

‘10’ 5,364 2,290 4,559 4,902 10,970

Total 13,733 5,863 11,672 12,549 28,085

Creating a classification model for these data were particularly difficult. Initially, the OHPLnet

Double Batch algorithm, with 8 hidden layers and between 10 and 500 nodes per layer (inverse

pyramid design with 500 in the first layer and 10 in the last, with a proportional decrease in node

number in layers between the first and last) was used, but could not consistently achieve the

133

proper ordering of the hyperplane centroids, with a minimum distance of one unit between

adjacent layers (even with a phenomenally high weighting value of one million, on the HCL

component of loss). Multiple hyperplane centroids were ordered incorrectly at the completion

of these tests. It was suggested that the algorithm be revised to focus on the ordering of the

hyperplane centroids first, then allow the point loss component to be included. This suggestion

lead to Two-Stage OHPLnet which represents a very meaningful breakthrough in algorithm

speed, accuracy and consistency in models produced.

The new algorithm was able to produce results MZE and MAE that were better than the

corresponding values for the proposed a rational random assignment, but the improved

predictions weren’t a major advancement over rational random assignment and a relatively small

number of records were assigned to classes that fall into the “Detractor” classes. More notably,

regardless of weighting, the hyperplane centroids that were generated by using the final results

had class ‘1’ and class ‘2’ inverted (i.e., class ‘1’ had a larger hyperplane centroid value) with small

distances between the two (approximately 0.1 unit or less). This “inversion” of hyperplane

centroids with small spacing in the final scoring suggested that classes ‘1’ and ‘2’ should be

combined since the available feature set could not properly maintain the ordering, while

minimizing the distances of the points from their hyperplane centroids. The collapsing of classes

in the lower-class values that make up the “Detractor” class based on hyperplane centroid

ordering (and small distances between the offending hyperplane centroids), continued until a

seven-class solution was reached (see Table 31).

This same sequence of collapse held true through five model development cycles for each

weighting scheme at each level of collapse. Once the seven-class solution was reached, the class

134

ordering was maintained. Table 31 reports the mean MZE for five models produced using the

same training and validation sets as well as the sequence of binning classes and related data. As

would be expected, as the number of classes decreases, the accuracy metrics improve. At each

step that combines two classes, the rational random assignment also improves. As the number

of classes the MAE for the random assignment also improves, but not to as high a degree as the

Two-Stage OHPLnet assignment improves (see Table 31). The acceleration of improved MAE is

strong evidence that the combining of classes is an appropriate step.

Table 31 NPS Weighted Model Results with Binned Classes

Number of
Classes

Inverted
Classes MAE Random

MAE

Improvement
Over

Random

Percent
Improvement

11 ‘1’ & ‘2’ 1.837 2.024 0.190 9.4%

10 ‘4’ & ‘5’ 1.729 1.974 0.245 12.4%

9 ‘1’/’2’ & ‘3’ 1.632 1.873 0.241 12.9%

8 ‘0’ & ‘1’/’2’/’3’ 1.551 1.804 0.253 14.0%

7 None 1.517 1.765 0.248 14.1%

3 None 0.620 0.801 0.181 22.6%

Based on Final Model Hyperplane Centroid Values

At Since NPS scoring systems don’t utilize the eleven-point scale. They collapse the values into

a three-point scale it is appropriate to attempt to produce a model that classifies the three-point

scale. The problem remains an ordinal classification problem, but with fewer scale points. The

results for the best performing model for the three-scale version are also reported in Table 31.

135

For consistency sake, the Weight 11-Point Scale results are reported. The other two weighting

processes generated similar results.

The feature set contained a very high degree of collinearity among the features. In addition to

using standard DNN architectures, on the raw feature set two different Nonlinear Principal

Components analyses were used. For Nonlinear Principal Components (NPC), a three hidden

layer autoencoder was used to reduce the feature set dimensions. To create data reduction

solutions with 300 and 1,000 components, respectively. Over 90% of the variance contained in

the 2,600-feature set were retained in each NPC solution, with 98% retained in the 1,000-

component solution. The NPC versions of models did not perform as well as the models that used

the raw data inputs, so they were abandoned.

While this analysis effort did not produce a model that effectively predicted NPS response

rating, to the degree that it could be used as a key part of the company’s NPS management

system, it did provide a useful confirmatory insight for the company, in terms of the relationship

of response ratings to the desired three-point semantic scale. These results are specific to the

available purchase data. The inclusion of additional data from other company systems may

provide sufficient “signal” to result in stronger model performance.

136

Chapter 12. CONCLUSIONS

This research takes a capable newly developed loss function for use in Deep Neural Network

architectures and advances it to a more complete set of neural network strategies for solving

ordinal classification problems. The original work that provided a complex loss function for

ordinal classification problems was advanced by the development of multiple analysis strategies

(Double Batch, Single Stratified, Epoch Stratified Batch). Ultimately OHPLall resulted from tests

on a particularly difficult dataset where attempting to optimize Hyperplane Centroid ordering

and distance at the same time as minimizing point distances from the point’s corresponding

Hyperplane Centroids, ended, with results where Hyperplane Centroids were not properly

ordered. Developing the ordering of the centroids first, then minimizing point distances relative

to fixed Hyperplane Centroids, proved to be a successful strategy for the dataset. The strategy

also provided improved results for standard benchmark datasets that are used to evaluate

different ordinal classifiers.

Applying OHPLall by attempting to predict Net Promoter Score (NPS) using customer purchase

behaviors and customer attributes proved to be very difficult. The resulting models did not

provide a significant improvement over using random assignment to a logical subset of the

ordinal classes. It did however provide an insightful diagnostic, that verified the NPS assumption

that the eleven-point scale could be reduced to a useful three-point scale, with effective class

descriptions. The development of a successful “sentiment” type classifier of short verbatim text

had significantly better results. While pure classification accuracy may not be as high as desired,

a Gated Recurrent Neural Network using the new OHPLall variant performed well versus an

137

Ordinal Regression algorithm that used the same architecture. This performance advantage was

achieved in spite of evidence that the data contained inconsistently labelled records that affected

performance metrics.

When applied to classify mammography images into the BI-RADS rating scale, OHPLall

required some modifications of the original Mini-Batch variant, to allow very small batches of

large images. OHPLall developed Convolutional Neural Networks that consistently outperformed

Convolutional Neural Networks that were built using Ordinal Regression. Possibly more

importantly, OHPLall provided an appropriate “shift” of images of calcifications that were tested

to have a malignancy into higher BI-RADS classes than did the Ordinal Regression models.

OHPLall is a powerful analytic tool that has been demonstrated to develop Deep Neural

Network models of both structured and unstructured data. In “real world” applications, the

algorithm performed better than benchmarks, even when presented difficult datasets that were

filled with improper classifications or that hit system resource limitations. This work is a

meaningful advancement in our ability to analyze an important class of predictive model

development problems.

The application to real world data suggests that in addition to providing strong accuracy in

classification OHPLall may provide diagnostic information regarding the classes. In particular, the

algorithm may suggest adjacent classes that may not differ to the degree expected for the rating

system in general.

138

BIBLIOGRAPHY

[1] M. Kim and V. Pavlovic, "Structured output ordinal regression for dynamic facial emotion
intensity prediction," in Proceedings of the 11th European Conference on Computer Vision,
2010.

[2] K.-Y. Chang, C.-S. Chen and Y.-P. Hung, "Ordinal Hyperplanes Ranker with Cost Sensitivities
for Age Estimation," in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Providence, RI, 2011.

[3] B. Nguyen, Morell, Carlos and De Baetsa, Bernard , "Distance metric learning for ordinal
classification based on triplet constraints," Knowledge-Based Systems, no. 142, p. 17–28,
2018.

[4] K. Chang, C. Chen and Y. Hung, "Ordinal hyperplanes ranker with cost sensitivities for age
estimation," in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2011.

[5] W. Chu and S. S. Keerthi, "New approaches to support vector ordinal regression," in
Proceedings of the 22nd International Conference on Machine learning, Bonn, Germany,
2005.

[6] R. Herbrich, T. Graepel and K. Obermayer, "Support Vector Learning for Ordinal
Regression," in Ninth International Conference on Artificial Neural Networks, ICANN 99.,
Edinburgh, UK, 1999.

[7] H. Wang, Y. Shi, L. Niu and Y. Tian, "Nonparallel Support Vector Ordinal Regression," IEEE
TRANSACTIONS ON CYBERNETICS, vol. 47, no. 10, pp. 3306-3317, 2017.

[8] W. Chu and Z. Ghahramani, "Gaussian Processes for Ordinal Regression," Journal of
Machine Learning Research, no. 6, p. 1019–1041, 2005.

[9] P. Gutiérrez, M. Pérez-Ortiz and J. Sánchez-Mone, "Ordinal regression methods: survey
and experimental study," IEEE Trans. Knowl. Data Eng. 28, no. 1, p. 127–146, 2016.

[10] W. Waegeman and L. Boullart, "An ensemble of Weighted Support Vector Machines for
Ordinal Regression," in Proceedings of World Academy of Science Engineering and
Technology. , Vienna, Austria, 2006.

[11] J. D. M. Rennie, "Ordinal Logistic Regression," MIT, 16 February 2005. [Online]. Available:
http://people.csail.mit.edu/jrennie/writing/olr.pdf. [Accessed 20 March 2018].

[12] J. Cheng, "A Neural Network Approach to Ordinal Regression," 2007. [Online]. Available:
http://arxiv.org/abs/0704.1028. [Accessed 5 July 2019].

[13] J. S. Cardoso, R. Sousa and I. Domingues, "Ordinal Data Classification Using Kernel
Discriminant Analysis: A Comparison of Three Approaches," in Proceedings of the 11th
International Conference on Machine Learning Applications, Boca Raton, FL, 2012.

[14] E. Frank and M. Hall, "A Simple Approach to Ordinal Classification," in 12th European
Conference Machine learning: ECML, Freiburg, Germany, 2001.

139

[15] J. S. Cardoso and J. Pinto da Costa, "Learning to Classify Ordinal Data: The Data Replication
Method," Journal of Machine Learning Research, vol. 8, pp. 1393-1429, 2007.

[16] J. F. Pinto da Costa, R. Sousa and J. Cardoso, "An all-at-once Unimodal SVM Approach for
Ordinal Classification," in 2010 Ninth International Conference on Machine Learning and
Applications, Washington D.C, 2010.

[17] O. C. Hamsici and A. M. Martinez, "Multiple Ordinal Regression by Maximizing the Sum of
Margins," IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, vol. 27,
no. 10, pp. 2072-2083, 2016.

[18] Schroff, Florian ; Kalenichenko, Dmitry; Philbin, James ;, "FaceNet: A Unified Embedding
for Face Recognition and Clustering," in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Boston, MA, 2015.

[19] K. Q. Weinberger and L. K. Saul, "Distance Metric Learning for Large Margin Nearest
Neighbor Classification," Journal of Machine Learning Research, no. 10, pp. 207-244, 2009.

[20] Y. Movshovitz-Attias, A. Toshev, T. K. Leung, S. Ioffe and S. Singh, "No Fuss Distance Metric
Learning using Proxies," arXiv:1703.07464v3, 2017.

[21] J. Schmidhuber, "Deep Learning in Neural Networks: An Overview," Neural Networks, vol.
61, p. 85–117, 13 August 2015.

[22] A. Ng and K. Katanforoosh, "CS229 Lecture Notes," Stanford University, 29 October 2018 .
[Online]. Available: http://cs229.stanford.edu/notes/cs229-notes-deep_learning.pdf.
[Accessed 12 March 2019].

[23] L. Bottou, "Stochastic Gradient Learning in Neural Networks," 1991. [Online]. Available:
https://leon.bottou.org/publications/pdf/nimes-1991.pdf. [Accessed 23 March 2019].

[24] D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," Cornell University,
2014. [Online]. Available: https://arxiv.org/abs/1412.6980. [Accessed 11 March 2019].

[25] B. Lytle, "INTRODUCTION TO THE CONVERGENCE OF SEQUENCES," University of Chicago,
2015. [Online]. Available: http://math.uchicago.edu/~may/REU2015/REUPapers/Lytle.pdf.
[Accessed 23 March 2019].

[26] V. K. Singh, "Proposing Solution to XOR problem using minimum configuration MLP,"
Procedia Computer Science , vol. 85, p. 263 – 270 , 2016.

[27] He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; Sun, Jian, "Deep Residual Learning for Image
Recognition," Google, 13 August 2018. [Online]. Available:
http://arxiv.org/abs/1512.03385. [Accessed 12 March 2019].

[28] A. Karpathy, "CS231n Convolutional Neural Networks for Visual Recognition," Stanford
University, Spring 2019. [Online]. Available: http://cs231n.github.io/convolutional-
networks/. [Accessed 12 July 2019].

[29] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image
Recognition," CoRR, vol. abs/1409.1556, no. http://arxiv.org/abs/1409.1556, 2014.

[30] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with Deep
Convolutional Neural Networks," in Neural Information Processing Systems 2012, Lake
Tahoe, NV , 2012.

140

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed3, D. Anguelov, D. Erhan, V. Vanhoucke and
A. Rabinovich, "Going Deeper with Convolutions," in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Boston, MA, 2015.

[32] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, "Rethinking the Inception
Architecture for Computer Vision," CoRR, vol. abs/1512.00567, 2015.

[33] S. Xie, R. Girshick, P. Dollar´, Z. Tu and K. He, "Aggregated Residual Transformations for
Deep Neural Networks," CoRR, vol. abs/1611.05431, 2016.

[34] A. Zhang, Z. C. Lipton, M. Li and A. J. � Smola, "Dive into Deep Learning: Chapter 8.8.
Gated Recurrent Units (GRU)," 2019. [Online]. Available:
https://www.d2l.ai/chapter_recurrent-neural-networks/gru.html#reset-gate-in-action.
[Accessed 5 July 2019].

[35] F. Kasper, "Computational Complexity Of Neural Networks," 25 March 2015. [Online].
Available: https://kasperfred.com/posts/computational-complexity-of-neural-networks.
[Accessed 12 March 2019].

[36] D. Masters and C. Luschi, "Revisiting Small Batch Training for Deep Neural Networks,"
2018. [Online]. Available: http://arxiv.org/abs/1804.07612. [Accessed 12 March 2019].

[37] V. Vapnik, "An overview of statistical learning theory," Neural Networks IEEE Transac, vol.
10, pp. 988-999, 1999.

[38] B. Vanderheyden and Y. Xie, "Ordinal Hyperplane Loss," in 2018 IEEE International
Conference on Big Data, Seattle, WA, 2018.

[39] Tyler, Tim, "Net Promoter® Links to Recency-Frequency-Monetary (RFM)," Genroe,
[Online]. Available: https://www.genroe.com/blog/net-promoter-links-to-recency-
frequency-monetary-rfm/597. [Accessed 15 March 2019].

[40] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J.
Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard and R.
Jozefowicz, "TensorFlow: A System for Large-Scale Machine Learning," in Proceedings of
the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16),
Savannah, GA, 2016 .

[41] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau and M.
Brucher, "Scikit-learn: Machine Learning in Python,," Journal of Machine Learning
Research, vol. 12, pp. 2825-2830, 2011.

[42] T. E. Oliphant, A guide to NumPy, USA:, Trelgol Publishing, 2006.
[43] S. C. C. a. G. V. Stéfan van der Walt, The NumPy Array: A Structure for Efficient Numerical

Computation, Computing in Science & Engineering, 2011.
[44] W. McKinney, "Data Structures for Statistical Computing in Python," in Proceedings of the

9th Python in Science Conference, Austin, TX, 2010.
[45] D. Dua and K. E. Taniskidou, "UCI Machine Learning Repository," University of California,

School of Information and Computer Science., 2017. [Online]. Available:
http://archive.ics.uci.edu/ml. [Accessed 15 March 2018].

141

[46] W. Chu, "BENCHMARK of ORDINAL REGRESSION: datasets and results," UCL Gatsby
Computational Neuroscience Unit, 11 April 2004. [Online]. Available:
http://www.gatsby.ucl.ac.uk/~chuwei/ordinalregression.html. [Accessed 1 April 2018].

[47] A. B. David, "Monotonicity Maintenance in Information-Theoretic Machine Learning
Algorithms," Machine Leaming, no. 19, pp. 29-43, 1995.

[48] H.-T. Lin and L. Li, "Large-Margin Thresholded Ensembles for Ordinal Regression: Theory
and Practice," in Algorithmic Learning Theory, 17th International Conference, ALT,
Barcelona, Spain, 2006.

[49] Y. Freund, R. Iyer, R. E. Schapire and Y. Singer, "An Efficient Boosting Algorithm for
Combining Preferences," Journal of Machine Learning Research 4, no. 4, pp. 933-969,
2003.

[50] C. Ju, A. Bibaut and M. J. van der Laan, "The Relative Performance of Ensemble Methods
with Deep Convolutional Neural Networks for Image Classification,"
https://arxiv.org/abs/1704.01664v1, 2017.

[51] A. Hermans, L. Beyer and B. Leibe, "n Defense of the Triplet Loss for Person Re-
Identification," CoRR, vol. abs/1703.07737, 2017.

[52] American Cancer Society, "Breast Cancer Facts & Figures 2017-2018," American Cancer
Society, Atlanta, GA, 2017.

[53] American Cancer Society, "Understanding Your Mammogram Report," American Cancer
Society, 9 October 2017. [Online]. Available: https://www.cancer.org/cancer/breast-
cancer/screening-tests-and-early-detection/mammograms/understanding-your-
mammogram-report.html. [Accessed 15 March 2019].

[54] K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips, D.
Maffitt, M. Pringle, L. Tarbox and F. Prior, "The Cancer Imaging Archive (TCIA):
Maintaining and Operating a Public Information Repository," Journal of Digital Imaging,
vol. 26, no. 6, pp. 1045-1057, 2013.

[55] R. S. Lee, F. Gimenez, A. Hoogi, K. K. Miyake, M. Gorovoy and D. L. Rubin, "A curated
mammography data set for use in computer-aided detection and diagnosis research.,"
Scientific Data, vol. 4, 2017 volume 4, Article number: 170177 (.

[56] R. S. Lee, F. Gimenez, A. Hoogi and D. Rubin, "Curated Breast Imaging Subset of DDSM,"
The Cancer Imaging Archive, http://dx.doi.org/10.7937/K9/TCIA.2016.7O02S9CY, 2016.

[57] ksmith01 and Klingerc, "The Cancer Imaging Archive (TCIA) Public Access: CBIS-DDSM,"
The Cancer Imaging Archive (TCIA), 21 November 2018. [Online]. Available:
https://wiki.cancerimagingarchive.net/display/Public/CBIS-
DDSM#01fc928dcc1f420f9cd2dd80fdd37b16. [Accessed 5 March 2019].

[58] L. Shen, L. R. Margolies, J. H. Rothstein, R. B. McBride, E. Fluder and W. Sieh, "Deep
Learning to Improve Breast Cancer Early Detection on Screening Mammography," Clinical
Orthopaedics and Related Research, vol. abs/1708.09427, 13 August 2018.

[59] T. Kyono, F. J. Gilbert and M. van der Schaar, "MAMMO: A Deep Learning Solution for
Facilitating Radiologist-Machine Collaboration in Breast Cancer Diagnosis," CoRR, vol.
abs/1811.02661, 2018.

142

[60] R. Agarwal, O. Diaz, X. Lladó, M. H. Yap and R. Martí, "Automatic mass detection in
mammograms using deep convolutional neural networks," Journal of Medical Imaging,
vol. 6, no. 3, 2019.

[61] I. Moreira, I. Amaral, I. Domingues, A. Cardoso, M. Cardoso and J. Cardoso, "INbreast:
toward a full-field digital mammographic database," Academic Radiology, vol. 19, no. 2,
pp. 129-262, 2012.

[62] H. G. Li, M. L, B. Q. Huynh and N. O. Antropova, "Deep learning in breast cancer risk
assessment: evaluation of convolutional neural networks on a clinical dataset of full-field
digital mammograms," Journal of Medical Imaging , vol. 4, no. 4, 2017.

[63] F. F. Reichheld, "The One Number You Need to Grow," Harvard Business Review, vol.
December 2003, 2003.

[64] Medallia Corporation, "Net Promoter Score®," Medallia Corporation, 2019. [Online].
Available: https://www.medallia.com/net-promoter-score/. [Accessed 11 March 2019].

[65] Medallia, Inc, "Medallia Recognizes World’s Most Innovative Customer Experience
Leaders," Medallia, Inc, 16 May 2018. [Online]. Available:
https://www.medallia.com/press-release/medallia-recognizes-worlds-most-innovative-
customer-experience-leaders/. [Accessed 11 July 2019].

[66] B. Carremans, "Word embeddings for sentiment analysis," Towards Data Science , 27
August 2018. [Online]. Available: https://towardsdatascience.com/word-embeddings-for-
sentiment-analysis-65f42ea5d26e. [Accessed 5 July 2019].

[67] S. Gupta, "Sentiment Analysis: Concept, Analysis and Applications," Towards Data Science,
7 January 2018. [Online]. Available: https://towardsdatascience.com/sentiment-analysis-
concept-analysis-and-applications-6c94d6f58c17. [Accessed 5 July 2019].

[68] J. Pennington, R. Socher and C. D. Manning, "GloVe: Global Vectors for Word
Representation," Stanford University, August 2014. [Online]. Available:
https://nlp.stanford.edu/projects/glove/. [Accessed 5 July 2019].

[69] T. Mikolov, I. Sutskever, K. Chen, G. Corrado and J. Dean, "Distributed Representations of
Words and Phrases and their Compositionality," in Proceeding of Neural Information
Processing Systems (NIPS), Lake Tahoe, 2013.

[70] J. Pennington, R. Socher and C. D. Manning, "GloVe: Global Vectors for Word
Representation," in Proceedings Empirical Methods in Natural Language Processing, Doha,
Qatar, 2014.

[71] İ. Tarımer, A. Çoban and K. A. Emre, "Sentiment Analysis on IMDB Movie Comments and
Twitter Data by Machine Learning and Vector Space Techniques," 2019. [Online].
Available: http://arxiv.org/abs/1903.11983. [Accessed 5 July 2019].

[72] T. L. Keiningham, B. Cooil, T. W. Andreassen and L. Aksoy, "A Longitudinal Examination of
Net Promoter and Firm Revenue Growth," Journal of Marketing, p. 39–51, 2007.

[73] H.-T. Lin� and L. Li, "Reduction from Cost-sensitive Ordinal Ranking to Weighted Binary
Classification," Neural Computing, no. 5, pp. 1329-1367, 2012.

	Ordinal HyperPlane Loss
	Recommended Citation

	Microsoft Word - Dissertation Post Defense Version.docx

