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Abstract  

This research presents the development of a new framework for analyzing ordered class data, 

commonly called “ordinal class” data. The focus of the work is the development of classifiers 

(predictive models) that predict classes from available data. Ratings scales, medical classification 

scales, socio-economic scales, meaningful groupings of continuous data, facial emotional 

intensity and facial age estimation are examples of ordinal data for which data scientists may be 

asked to develop predictive classifiers. It is possible to treat ordinal classification like any other 

classification problem that has more than two classes. Specifying a model with this strategy does 

not fully utilize the ordering information of classes. Alternatively, the researcher may choose to 

treat the ordered classes as though they are continuous values. This strategy imposes a strong 

assumption that the real “distance” between two adjacent classes is equal to the distance 

between two other adjacent classes (e.g., a rating of ‘0’ versus ‘1,’ on an 11-point scale is the 

same distance as a ‘9’ versus a ‘10’). For Deep Neural Networks (DNNs), the problem of predicting 

k ordinal classes is typically addressed by performing k-1 binary classifications. These models may 

be estimated within a single DNN and require an evaluation strategy to determine the class 

prediction. Another common option is to treat ordinal classes as continuous values for regression 

and then adjust the cutoff points that represent class boundaries that differentiate one class from 

another.  This research reviews a novel loss function called Ordinal Hyperplane Loss (OHPL) that 

is particularly designed for data with ordinal classes. OHPLnet has been demonstrated to be a 

significant advancement in predicting ordinal classes for industry standard structured datasets. 

The loss function also enables deep learning techniques to be applied to the ordinal classification 

problem of unstructured data.  By minimizing OHPL, a deep neural network learns to map data 



 
 

vi 

to an optimal space in which the distance between points and their class centroids are minimized 

while a nontrivial ordering relationship among classes are maintained.  The research reported in 

this document advances OHPL loss, from a minimally viable loss function, to a more complete 

deep learning methodology. New analysis strategies were developed and tested that improve 

model performance as well as algorithm consistency in developing classification models. In the 

applications chapters, a new algorithm variant is introduced that enables OHPLall to be used 

when large data records cause a severe limitation on batch size when developing a related Deep 

Neural Network. 
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Chapter 1. INTRODUCTION 

The problem of ordinal class data occurs in a large and growing number of areas. Some of the 

most common sources and applications of ordinal data are: 

• Ratings scales (e.g. Likert scales, star ratings), like customer satisfaction ratings, 

“promoter” ratings and quality ratings 

• Sentiment scales (negative, neutral and positive) 

• Medical classification scales of disease stage/severity/risk (mammogram image BI-RADS) 

• Student performance (e.g., letter grades) 

• Socio-Economic scale (e.g., high, medium and low) 

• Meaningful groupings of continuous data (e.g., generational age groupings, grouping of 

noisy sensor data) 

• Facial emotional intensity [1] 

• Facial age estimation [2] 

• Weather (e.g., storm severity classes) 

• Performance ratings (e.g., high school prospects in football and basketball) 

Historically, due to the high cost of data capture for sources like surveys, medical studies, etc., 

the vast majority of sources for ordinal data generated relatively small datasets (e.g., under 20K 

records of structured data or a hundred or less for unstructured data like medical images). In 

more recent years, there’s been a dramatic increase in the number of datasets and analysis 

problems, with ordinal classes as the primary output/focus, that have hundreds of thousands or 
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even millions of records are being analyzed. In addition, relatively large image and datasets, with 

ordinal labels are becoming common place. Many of these large data sets have their genesis in 

the explosion of use of digital and text data. Ratings surveys found on sites like Amazon and Yelp, 

large corporation Customer Satisfaction/Net Promoter surveys and the aggregation of medical 

history and/or imaging records into large data systems are primary examples.  

Ordinal classes differ from nominal (unordered) classes by providing additional 

information/requirements in the form of a precise ordering of the classes. As a direct 

consequence, strategies for predicting nominal classes, tend to under-perform when applied to 

ordinal data. The use of sequential integers to represent the ordered classes is natural and 

commonly used for labeling the ordered classes. This representation might suggest that the 

application of methodologies like regression, that attempt to predict a continuous value would 

be effective in developing ordinal classifiers. Strategies like regression assume that equal 

“distances” between values have a consistent numerical meaning (e.g., all one-unit differences 

having the same meaning), but this assumption is rarely true in ordinal data. Within prediction 

algorithms, these fundamental differences in the type of data being predicted may be addressed 

in the loss function or by employing potentially complex, multi-model strategies. An ideal loss 

metric for ordinal classification would assess the ordering of the data and form discrete 

homogeneous class groupings without imposing an equal “distance” assumption between 

predicted classes.  

The fundamental difference in ordinal and nominal classes also leads to a difference in 

assessment for classifier performance. The best classification strategies must not only have a 

classification accuracy that is on par with or better than other strategies, but in the best strategies 
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misclassified cases should to be ‘close’ to the correct class (e.g., misclassifying a ‘3’ as a value of 

‘4’ is more desirable than misclassifying it as a ‘5’).  

Existing strategies to address the unique requirements of classifying ordinal data utilize the 

power of methodologies like SVM (Support Vector Machines) [3, 4, 5, 6, 7] and Gaussian 

Processes [8]. Others that use Deep Neural Networks employ complex multi-model or repeated-

sampling approaches. As such, any attempts to apply them to the large datasets would require 

major alterations to the algorithm or the use of complex sampling or ensemble strategies that 

are applied to nonlinear model results. 

To address these conditions unique to the ordinal classification problem (also known as the 

ordinal “regression”), the Ordinal Hyperplane Loss (OHPL) was developed by addressing the 

following algorithm goals for a current ordinal labelled class of the training data:  

1) develop a Neural Network to define a nonlinear mapping of the data into a vector valued 

output space  

2) train the network to establish and maintain the ordering of the classes  

3) “drawing” like labelled samples closer together  

This formulation maintains the ordering without imposing assumptions regarding the distance 

between different classes (e.g., as would be imposed by using ordinary least-squares regression 

analysis). At the same time, the algorithms that are developed from this approach can be applied 

to very large classification problems. 

The remainder of the thesis is organized as follows. Chapter 2 reviews relevant work and 

existing algorithms, that attempt to solve the ordinal classification problem. Chapter 3 provides 
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a review of Deep Learning including variants of Artificial Neural Networks and related 

considerations in using Deep Learning algorithms to solve classification problems such as Ordinal 

Classification. Chapters 4 and 5 cover the geometric and mathematical framework for the 

development of Ordinal Hyperplane Loss (OHPL). Chapter 6 documents experimental results for 

the original OHPL work. OHPLall is the culmination of work that’s focused on improving upon the 

original OHPL methodology for application to very large datasets. These advances are reported 

in Chapter 7. A successive series of algorithm strategies that were designed and tested to improve 

algorithm performance both in terms of speed and accuracy of predictions are reported in 

Chapter 8. Chapters , while Chapters 8 through 10 review three different applications of OHPL 

and OHPLall. Chapter 11 contains conclusions from this work.  
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Chapter 2. LITERATURE STUDIES 

In January 2016, Gutierrez, et. al. published an extensive examination of solutions to the 

Ordinal Classification problem [9], including benchmark performance metrics versus a set of 

standard datasets that were included in the work of Chu and Ghahramani [8]. In their review 

Gutierrez et. al. grouped the existing top performing methodologies into three categories that 

address the Ordinal Classification problem: 1) Naïve Approaches, 2) Ordinal Binary 

Decompositions and 3) Threshold Models. While their work attempts to provide a framework for 

three distinct classes of models, the team acknowledges that many of the most common 

approaches could be classified into more than one category. Unless specifically attributed to a 

different researcher, the content of the remainder of this section is attributed to the work of 

Gutierrez, et. al. [9].  

Naïve approaches use an appropriate simplifying assumption to re-cast the problem in such a 

manner that existing methodologies can be applied. If the researcher assumes that the difference 

in classes is “close” to uniform they may transform the classes into sequential integers and apply 

regression analysis like ordinary least squares, neural networks or SVR (Support Vector 

Regression). Cost sensitive methodologies which use different weights for different 

misclassification types also fall into this category. Another common naïve approach ignores the 

class ordering by applying nominal classification approaches like SoftMax regression or multi-

class SVM, to predict class membership.  

Cost sensitive classification is a more advanced naïve approach. In this approach, 

misclassification costs will differ between two or more classes, with a goal of maximizing accurate 
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classification of the most desired class. Support Vector Machines with Ordered Partitions 

(SVMOP) is a high performing algorithm that falls in this category [10]. The algorithm uses class 

differences, as weights, in an effort to not only provide correct classification, but to encourage 

misclassifications that are close in class number to the actual class (e.g., for an actual class value 

of ‘2’, the algorithm encourages a miss of ‘3’, instead of a ‘5’). 

The fundamental basis of binary decomposition is to recast the problem as a set of binary 

classification problems. The problem may be posed by comparing pairs of ordinal values with the 

higher value being assigned a value of 1 and then using either a single or multiple binary 

classification models. In the case of multiple classifiers, the analyst may produce as few as k-1 

classifiers for k ordered classes or as many as &𝑘2( =
*
+
𝑘 ∗ (𝑘 − 1) classifiers (i.e., all ordered 

pairs). An appropriate decision rule is then applied to the set of classifiers. In the k-1 case, each 

adjacent ordered pair is analyzed as a binary problem. One popular process examines the highest 

value in a sequence of values that meet a minimum model value threshold. For example, assume 

that we have five ordinal classes: ‘1’, ‘2’, ‘3’, ‘4’ and ‘5’. If the first three classifiers (‘1’ vs ‘2’,  ‘2’ 

vs ‘3’ and ‘3’ vs ‘4’) estimate values of 0.5 or higher, but the fourth (‘4’ vs ‘5’) does not, it results 

in a classification of the highest of the first three classifiers (or ‘4’, in this example). If the first 

binary classifier value does not meet the threshold of 0.5, then the record is classified as the 

lowest ordinal value (’1’ in the example). Similarly, the analyst may choose to group classes based 

on classes (e.g., ‘1’ vs ‘2’-‘5’, ‘1’ & ‘2’ vs ‘3’–‘5’, ‘1’-‘3’ vs ‘4’ & ‘5’ and ‘1’-‘4’ vs ‘5’).  

The earliest ordinal binary decomposition approaches used Ordinal Logistic Regression [11], 

employs logistic regression to estimate the binary probabilities for class ordering (e.g., probability 
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that the label for a given record is ‘3’ or higher). More recent binary decomposition strategies 

use machine learning approaches like Support Vector Machine (SVM) algorithms to create 

individual binary classifiers, combined with classification strategy using the binary classifiers. 

Deep Neural Networks allow of the output of multiple estimates. These estimates may be used 

to create class probabilities for all classes in a single model. Some approaches endeavored to use 

non-parallel hyperplanes, in an SVM framework, but at a high cost of increased model 

complexity. Note that SVMOP would fit into the binary decomposition category but is more 

appropriately classified as a cost sensitive methodology, within naïve approaches. 

A new variant of Ordinal Regression was proposed by Cheng et. al., in 2007. In this approach, 

a single Deep Neural Network is used to predict the classes. Their approach is very similar to a 

multilabel classification problem using a DNN, where multiple outputs are estimated with all 

elements of the output layer being the value from a sigmoid function [12]. To set up the analysis 

for k ordinal classes, the label value for each record is recoded into a k-1 length vector. For a 

given class value, ‘a,’ all index values of the vector with position value (using the standard 0 index 

value for the 1st position in the vector) that are less than ‘a’ minus the minimum ordinal value are 

coded with a 1. All other values are coded with a zero [12]. 

The three ordinal class case, with ordinal values ‘1’, ‘2’ and ‘3’, is illustrated in Table 1. For the 

three-class problem, the neural network essentially estimates two binary models. The first output 

predicts the likelihood that the label is greater than ‘1’, and the second one predicts the likelihood 

that the label is greater than ‘2.’ Once the algorithm converges or reaches a predefined stopping 

point, a classification rule, typically whether or not the value is greater than 0.5, converts each 

output vector into a binary array that is similar to the one used for training. Ordinal classes are 
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assigned based on which encoded vector matches the binary output. If the first position is zero, 

then the record is assigned the value of the minimum label [12]. 

 

Table 1 Ordinal Regression Three Class Label Encoding 

Label Vector 

1 [ 0, 0 ] 

2 [ 1, 0 ] 

3 [ 1, 1 ] 
 

It should be noted that, while the vast majority of class predictions will conform to one of the 

vector values of the encoded ordinal classes, it is possible for vector values that do not conform 

to exist. In the three-class problem, it is possible to have a prediction of ‘[ 0, 1 ]’ from applying 

the resulting model to a data record (either in the training set, a test or validation set or to 

completely new data). It is left to the analyst to determine how to classify these nonconforming 

results.  

Threshold models are comprised of a large number of methodologies including: 

1. Cumulative Link Models: Traced to the Proportional Odds Models that were originally 

created in the 1980s. Cumulative Link Models map the input data into a one dimensional 

(i.e., a number line). This number line is appropriately partitioned, to provide class 

predictions.  

2. Support Vector Machines: In 1999, Herbrich et. al. developed single model SVM approach 

that transformed the input data by calculating the difference between pairs and used the 

sign of the ordinal class differences. Other applications involve pointwise approaches that 
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produce k-1 hyperplanes, to classify k ordinal classes. Given the simple ordering 

information that is available, with ordinal data, the problem lends itself well to algorithms 

that uses distance learning principles. In 2005, Chu & Keerthi developed two SVM 

algorithms that specifically address the ordinal classification problem through the 

estimated multiple hyperplanes that maintain the sequential ordering of the classes [5]. 

While successful in application to small datasets, their algorithm converts the original SVM 

proposed by Vapnik et. al., that has a unique individual constraint, for every record, in the 

dataset, into an optimization problem that has (k-1)*n constraints. Keerthi et. al.’s more 

effective algorithm, which they call ’IMC,’ has a problem size of (k-1)*n, while the ‘EXC’ 

variant scales to a problem size of 2n+k [5]. The most efficient SVM algorithms have a 

computational cost of 𝒪(𝑛+). This computational cost tends to make SVMs impractical 

with large datasets. Scaling the problem size by a factor of two would quadruple compute 

cost. For problems with 10 or more classes, the cost for IMC would increase by a factor of 

100 or more.  

3. Discriminant Learning: The models maximize between class differences and minimize 

within class differences using the variance-covariance matrix and the Rayleigh coefficient. 

To adapt discriminant analysis to the ordinal classification problem, an ordering constraint 

is applied over the contiguous classes. SVM falls under a broader context of kernel 

methods. Cardoso et. al., in 2012, developed a set of three Kernel Discriminant Analysis 

(KDA) base ordinal classifiers [13]. One of the classifiers extends the work Frank and Hall, 

in 2001, which employs a series of binary classifiers [14]. The second uses the data 

replication strategy of Pinto da Costa, et. al., in 2005 [15]. The third strategy involves the 
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development of a modified Kernel Discriminant Analysis which applies an ordering 

constraint on the projected means.  

4. Augmented Binary Classification: The general framework includes the development of 

multiple samples from the original sample, including a weighting of the samples. A binary 

classifier is then developed using the full set of multiple samples (any binary classification 

algorithm can be used). Lastly, a ranking process is constructed using the output of the 

binary classifiers. Pinto da Costa et. al. developed a data replication strategy to design an 

ordinal classifier that utilizes Deep Neural Networks (DNNs) [15]. In their work they utilized 

an additional data dimension that represented the sample orderings (e.g., ‘0’ vs ‘1’ and 

higher has a value of 0, in the additional dimension while ‘0’ & ‘1’ vs ‘2’ and higher had a 

value of 1). In work that was published in published in 2010, the researchers successfully 

extended their work data replication strategy, into SVM applications [16]. One of the most 

common of the distance learning methodologies is Support Vector Machines, which seek 

to identify hyperplanes that separates classes, in a higher dimensional space. As such they 

are a natural machine learning methodology to apply to ordinal classification problems.  

5. Ensemble Models: The RankBoost algorithm attempts to improve a set of confidence 

functions, that maximize an ensemble of binary classifiers. Similarly, the ORBoost 

algorithm applies the same concepts to develop improved performance from ordinal 

regression models. The basic framework for the creation of ensemble models is the 

development of “weak” classifiers, that are combined to produce an algorithm that 

outperforms each of its components. Ensemble methods have a documented history of 

outperforming competing single model solutions. The weak classifiers may be generated 
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by using a subset of available features, a subset of records (usually bootstrap sampling) or 

some combination of the two. Instead of determining an optimal combination from a full 

set of weak classifiers, boosting algorithms begin with an initial classifier, then add 

additional weak classifiers until incremental classifier improvement (e.g., improvement in 

model accuracy, on the training set), becomes zero (or approaches zero). 

6. Gaussian Process: GPOR uses a Bayesian framework to model a latent function via 

Gaussian Processes. Prior and posterior probabilities for class membership are estimated 

for a set of latent functions of the input features. Optimization with respect to the 

hyperparameters results in probability estimates of class membership, based on the input 

record. GPORs include an optimization algorithm that discovers the ideal thresholds for 

classifying data records based on the output metric, from the gaussian process. GPOR is 

an example of an analytic framework that could fit into multiple categories. 

In late 2016, Hamsici and Martinez proposed a Support Vector Machine based algorithm that 

attempted to maximize the margins between adjacent classes [17]. The authors apply Sequential 

Minimal Optimization (SMO), to efficiently and simultaneously solve k-1 problems, where k is the 

number of ordinal classes. Their algorithm is similar to that Keerthi and Chu, but with the notable 

and meaningful difference that their algorithm does not assume equal margins between adjacent 

classes. In addition, their algorithm includes weight parameters, that enable the prioritization of 

one or more of the individual algorithms, over others. This prioritization weighting allows a 

researcher to focus on a specific pair of ordered classes (e.g., a medical researcher may want the 

classifier to have the best possible classification of stage two cancer versus stage three, while still 
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effectively classifying five different ordinal classes). Weighting can also be used to address 

unbalanced classes within the data (i.e., unbalance records counts for the classes).  

In 2017, Wang, et. al. used a nonparallel hyperplane assumption for the development of a 

specialized Support Vector Machine (SVM) algorithm to address the Ordinal classification 

problem [7]. For k ordinal classes, their algorithm estimates k-1 hyperplanes. For each, they 

include constraints which ensure that like-labelled samples are within a prescribed margin of the 

hyperplane, while unlike-labelled samples are one or more units away. They also include 

constraints to ensure the ordering of the hyperplanes reflect the ordering of the classes. The use 

of nonparallel hyperplanes may result in classification issues, if data points map into a region 

near the crossing of two hyperplanes.  

These algorithms exhibit mixed performance across the standard test data sets that are used 

to benchmark performance of ordinal classifiers. Many are benchmarked using 20 or more small 

datasets, with performance that represents modest improvements, when the algorithm actually 

outperforms other classifiers. While these incremental improvements are notable, they are being 

benchmarked against current “best in breed” classifiers, so as a rule, it is rare to find one that 

outperforms best benchmark classifier by 10% or more in terms of decline in classification error. 

It is worthy of note, because the solution that is reported in Chapter 5 has an accuracy 

improvement of fourteen percent or more on two out of seven benchmark datasets, when 

compared to four of the highest performing algorithms. 

In February 2018, Nguyen et. al. incorporated “Triplet Loss” based constraints to an algorithm 

that is similar to SVM optimization [3]. Their algorithm employs triplet loss-based constraints, on 

local clusters of data points. The researchers produced a linear version of their algorithm, as well 
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as a version that employs the kernel trick to produce a nonlinear mapping of the data into a 

higher dimensional space. Within their work, the algorithm produced solid results with mixed 

performance where the linear version outperformed the nonlinear version roughly half of the 

time. Given the researcher’s stated algorithm compute cost of 𝒪(𝑛3), while their solution is 

successful with relatively small datasets (e.g., under 25,000 records), it may not be viable for 

larger datasets. In the future, they could conceivably develop a new version that uses SMO to 

solve the problem, once the constraints are developed. Doing so should broaden the applicability 

to larger datasets, but still may not be viable if the number of records exceeds 100,000 by a 

significant amount. 

Triplet Loss is a term that was first used in the ground-breaking FaceNet solution to the ReId 

(reidentification) problem [18]. In developing FaceNet, Schroff et. al. leveraged the foundational 

work in Large Margin Nearest Neighbor (LMNN) Classification published by Weinberger and Saul 

[19]. The essence of the FaceNet process is to train a Convolutional Neural Network (CNN) to 

produce an N-dimension embedding, that is optimized based on relative distances of similar and 

dissimilar pairs of data points. A margin, that is analogous to the margin found in a Support Vector 

Machine, is used to ensure that similar pairs (those with the same label) being “closer” than 

dissimilar pairs (those with different labels) is based on a difference in distances that is not trivial 

(i.e., not arbitrarily close to zero). This process produces what is commonly called a “triplet loss” 

function (discussed further in Chapter 4) that is based on linear distance comparisons. As the 

following general triplet loss function demonstrates, the loss function uses a fixed margin that is 

strictly greater than zero, to ensure that a point, 𝒙5, is closer to the positive anchor, 𝒙6 (same 
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class), than it is to the negative anchor, 𝒙7 (different class from 𝒙5) and the difference, 𝛿, is fixed 

and not trivially close to zero [18]. 

𝑡𝑟𝑖𝑝𝑙𝑒𝑡	𝑙𝑜𝑠𝑠 = maxF𝑑F𝑥6, 𝑥5I − 𝑑(𝑥7, 𝑥5) + 𝛿, 0I					(1) 

Triplet loss puts a significant burden on the analyst to devise a reasonable strategy for 

identifying triplets for use in estimating function error, since the number of possible triplets grows 

as a cubic function of dataset size [20]. The framework of triplet loss provides a mechanism for 

applying a distance comparison between points without requiring the underlying distance 

assumptions of regression analysis. This framework of triplet loss makes it well suited to the 

ordinal classification problem, but triplet loss cannot be used because it does not guarantee that 

the ordering information is utilized nor that the ordering of classes is guaranteed (it only 

guarantees that different classes are separated). While it cannot be directly applied, triplet loss 

provides some of the intuitive motivation for methodology reported in Chapter 4.  

Triplet loss effectively addresses the ordering, but only as it relates to an identified triplet of 

data points. In developing LODML, Nguyen et. al. developed a useful geometric representation 

of the goal of their use of triplet-based constraints. In a two-dimensional representation of a 

neighborhood, they illustrate the goal of classes falling in ‘distance band’ radiating out from the 

center of the neighborhood with the center being a chosen data point (Figure 1, below) [3]. In 

comparing a nominal problem, to an ordinal problem their graphic illustrates that the ‘distance’ 

frame of reference must be rotated, to ensure that the ordering of classes to be properly 

maintained. Without loss of generality, these distances could easily be mapped to a continuous 

scalar scale. In doing so, the ordered classes would occur in clusters along the number line.  
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Figure 1 Local Neighborhood Ordered Classes vs Nominal Classes  

The image on the left illustrates distance metric learning for the nominal classification 
problem. The image on the right illustrates the ordinal classification problem [3] 
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Chapter 3. DEEP LEARNING 

Deep Learning falls under the broad class of Artificial Neural Networks (ANNs), which have 

origins that date back to the 1800s [21]. With its origins from simple Multi-Layer Perceptrons, 

Deep Learning is one of the primary Machine Learning strategies that are in wide use throughout 

the world with a history of solving a broad variety of data analysis and classification problems. 

Deep Learning is made up of a number of specialized classification strategies that have been 

derived from Deep Neural Networks (DNNs) which may also be called Artificial Neural Networks 

(ANN). DNNs originate from the Multi-Layer Perceptron, with the DNNs primary distinction as 

having a greater degree of complexity due to having more hidden layers and more nodes. 

Like other machine learning methodologies, the application of Deep Learning algorithms falls 

into two general categories based on the “goal” of the application. Supervised applications have 

a targeted outcome that the algorithm attempts to predict based on other existing data. This 

targeted outcome is separate from the data that is being used for prediction. Examples of 

supervised problems are the prediction of category (class) membership (e.g., predict whether or 

not a picture has a dog in it) or predicting a volumetric outcome (e.g., how much money will a 

customer spend in the future). Unsupervised applications focus on the development of insight or 

understanding of the data without having a specific target with which the outcome may be 

compared to determine the accuracy of the mathematical model that is developed. Examples of 

unsupervised applications are data reduction techniques (e.g., autoencoders) which attempt to 

capture as much “information” from the existing data in a significantly fewer number of data 

elements. Unsupervised applications also include various forms of cluster analysis, which attempt 
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to group data records into homogeneous sets while providing maximum separation between the 

groupings [21]. 

 

3.1. THE MULTI-LAYER PERCEPTRON 

  Figure 2 is a basic visual representation of a Multi-Layer Perceptron (MLP). The columns of 

circles are called a “layer” and each circle is called a “node.” The arrows that connect the nodes 

represent numerical weights, that are calculated during the model estimation process. The 

dashed arrows represent a feedback process, that incrementally updates the weight values, 

through a process called “Back Propagation.” 

 

 Figure 2 Simple Multi-Layer Perceptron with weight updates 

 

The nodes also represent a nonlinear transformation of the input data, called the “activation 

function”, after they are multiplied by their respective weights and summed. The activation 

functions provide the nonlinearity to the algorithm’s learning process. Ideal activation functions 
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are sufficiently simple and well behaved to allow the numerical estimation and update processes 

that are required for learning. Figure 3 includes the graphical representation of three of most 

common activation functions [22]: 

Sigmoid	Function	(AKA	Logistic	Function):												
1

1 + 𝑒Z[ 							(2𝑎) 

																									Rectified	Linear	Unit	(ReLU):								max(𝑥, 0)								(2𝑏) 

																											Hyperbolic	Tangent	(tanh):								
𝑒[ − 𝑒Z[

𝑒[ + 𝑒Z[ 										(2𝑐) 

 

 

Figure 3 Plot of three common activation functions, found in Deep Neural Networks 

 

As a general rule, Neural Networks, including MLPs, are initialized with small random weights. 

Each record of data is then fed through each node, by applying the corresponding weights, 

summing and then applying the activation function for the node. This process occurs in each 
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node, layer by layer until the final output (output layer) is reached. At this point, the loss (i.e., 

classification error) value is calculated by comparing the output value to the “ground truth” that 

is represented by the label or target value for the individual data record. One of the most 

common loss functions is the summed squared error. If we denote the algorithm output as 𝑦l  and 

the ground truth value as 𝑦 then the summed squared error for a DNN that is applied to dataset 

D, would be:  

𝑆𝑢𝑚𝑚𝑒𝑑	𝑆𝑞𝑢𝑎𝑟𝑒𝑑	𝐸𝑟𝑟𝑜𝑟 = 	r(𝑦5 −	𝑦l5)+
5∈t

																(3) 

The weight values within each of the nodes are then updated via backwards propagation, 

represented by the curved dashed arrows, in  Figure 2. The numerical basis for the weight 

updates is based on Stochastic Gradient Descent (SGD), which calculates the optimal update 

value via the application of partial derivatives, with respect to the respective weight values for 

the composition of activation functions that lead from the node to the output layer. Unlike Total 

Gradient Descent, which applies updates after all training records are fed through the neural 

network,  Stochastic Gradient Descent, updates with each record [23]. However, in most cases 

today, SGD is applied to mini-batches of records to promote stability in estimating the gradient  

[21]. An explicit example of this weight update process is given in the Exclusive OR section (see 

Section 3.2). 

When applied to data, SGD is calculated by using the sum of values across a sampling of the 

data. In real applications, SGD is not what is used in most Deep Learning algorithms [22].  Newer 

methodologies like Adam have a foundation in SGD, but address some of the issues of applying 

SGD to small batches and combining the result with prior weight update values, which leads to 

faster convergence of algorithms [24]. After the weights are updated, the process repeats.  
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One of the outputs of successive iterations of a DNN is a sequence of scalar value, that 

represents the total cost (error in estimation) for the iteration.  

Definition1:	𝐹𝑜𝑟	𝑎7 ∈ 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒	𝐴, 𝑖𝑓	𝑡ℎ𝑒𝑟𝑒	𝑒𝑥𝑖𝑠𝑡𝑠	𝑎∗	𝑤ℎ𝑒𝑟𝑒	𝑓𝑜𝑟	𝑔𝑖𝑣𝑒𝑛	𝜀 > 0		𝑎𝑛𝑑	 

𝑎𝑙𝑙	𝑖 ≥ 𝑛	𝑎𝑏𝑜𝑣𝑒	𝑎	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, |𝑎5 − 𝑎∗| < 	𝜀, 𝑡ℎ𝑒𝑛	𝑡ℎ𝑒	𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒	𝑖𝑠	𝑠𝑎𝑖𝑑	𝑡𝑜	𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒	 

𝑡𝑜	𝑎∗	[25]. 

 

From a practical application, individual machine learning algorithms are not tested for this 

formal version of convergence, but the basic principle is applied. When the algorithm reaches 

the point that improvement in the cost function value ceases to occur or improvements are 

trivially small, the algorithm is said to have converged.  

 

3.2. THE EXCLUSIVE OR PROBLEM (XOR) 

The Exclusive OR (XOR) problem represents one of the simplest classification examples, where 

the labeled outcomes are not linearly separable in the space of available predictive attributes. 

The problem has four records with two attributes, 𝑥* and 𝑥+ [26]. The labels of ‘AND’ represent 

combinations of 𝑥* and 𝑥+ that are equal, while the desired labels of ‘OR’ will have a value of ‘1’ 

for 𝑥* or 𝑥+, but not both and ‘0’ for the non-one (see Table 2). Geometrically speaking, the four 

records represent the corners of a box in two-dimensional space. In Figure 4, the desired ‘OR’ 

cases are represented by solid dots, while the ‘And’ case are circles. As illustrated in the figure, a 

circular shaped threshold provides the separation of the cases that is desired for the problem 

[26]. 
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Table 2 XOR Data 

Label 𝑥* 𝑥+ y 

AND 0 0 0 

OR 1 0 1 

OR 0 1 1 

AND 1 1 0 
 

 
Figure 4 XOR Plot 

 

To solve the problem, the labels are converted to binary 0 and 1 values (i.e., the ‘y’ values in 

the table), since algorithms cannot use text directly. It can also be noted that  

𝑦 = 𝑓(𝑥*, 	𝑥+) = 1 − (𝑥* + 𝑥+ − 1)+								(3) 

provides a perfect solution to the problem, but the vast majority of classification problems 

cannot be solved via simple visual inspection and educated guessing of a solution. If traditional 

statistical methodologies were used to attempt to provide a numerical formula to solve the 

problem, the analyst may attempt to fit a function of the form  

					𝑦 = 𝑓(𝑥*, 	𝑥+) = 𝑎𝑥*+ + 𝑏𝑥++ + 𝑐𝑥*𝑥+ + 𝑑𝑥* + 𝑒𝑥++ g 								(4) 

where ‘a’-‘e’, ‘g’ in (4) represent the unknown coefficients that the methodology would 

attempt to estimate to improve model fit. This framing of the problem results in four data points, 

with six unknowns, so no unique solution is possible. As such, classical statistical methodologies 

that are commonly applied would not work for solving the problem. As a direct consequence, the 

XOR problem may be the simplest problem that requires the nonlinear estimation power that is 

presented by ANNs.  
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Figure 5: Fully Annotated XOR Neural Network Graph 

 
Figure 5 represents the fully annotated network graph for solving the XOR problem. The boxes 

with 1’s represent the constant or “bias” terms (	𝑤�′s) that need to be estimated along with the 

weights for the data elements. They were omitted from Figure 2, to provide a simplified visual 

introduction to neural networks. To solve the XOR problem, the process starts by using random 

values for the weight and bias. After each submission of the data points through the neural 

network is completed, the “loss” value, 𝐿  is calculated, by summing the squared difference 

between the predicted value 𝑦l and the correct label 𝑦 as the error value [22] 

																			𝐿 = r(𝑦 − 𝑦l)+. 													(5) 

The gradients that are used for the weight updates are the partial derivatives with respect to 

the given weight and bias value. The sigmoid function is used as the node activation function 

(nodes 𝑦*	and	𝑦+) and is represented as 𝜎*	and	𝜎+ in equations (6) and (7). For each weight or 

bias value and for each data record 𝑛 (represented by row number) the ANN update process uses 

the partial derivatives with respect to the weight (or bias value). The update for the output layer 

is [22] 
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For 𝑖 ∈ {0, 1, 2} representing the hidden layer node:  

																														
𝜕𝐿
𝜕𝑤5	

= r
𝜕(𝑦7 − 𝑦l7)+

𝜕𝑤5	

�

7�*

= r2(𝑦7 − 𝑦l7)
�

7�*

𝑦�,7																																													(6) 

The updates for the hidden layer (nodes y1 and y2) are a little more complicated (see equation 

(7)).  

For 𝑗 ∈ {0, 1, 2}	and	𝑖 ∈ {1, 2} , representing the data source and hidden layer nodes, 

respectively:  

𝜕𝐿
𝜕𝑤�,5	

= r
𝜕(𝑦7 − 𝑦l7)+

𝜕𝑤�,5	

�

7�*

= r2(𝑦7 − 𝑦l7)
�

7�*

𝜕𝜎5,7
𝜕𝑤�,5	

= r2(𝑦7 − 𝑦l7)𝜎5,7F1 − 𝜎5,7I𝑥�,7

�

7�*

									(7) 

 

Note that equation (7) is effectively equation (6) with an added term, to represent the gradient 

from the output of the hidden layer to the input layer of the data. This chaining of gradient 

components has potentially serious implications if a large number of hidden layers are used in 

the neural network.  

 The gradients represent the direction and magnitude for increasing value at the current state 

of the system. To reduce the error terms the gradients are subtracted from the weights. As a 

general rule, a step size or “learning rate” is applied to the gradient before it is subtracted from 

the weight. Adjusting the step size can lead to a more efficient convergence to an optimal 

solution. Note that excessively large step sizes may even prevent the algorithm from achieving 

an optimal solution. 
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3.3. DEEP NEURAL NETWORKS 

The most basic form of Deep Learning is a form of supervised learning called Deep Neural 

Networks. They are distinguished from simple MLP’s in the number of hidden layers that are 

utilized.  This deeper architecture comes with its own challenges. The calculated gradients may 

explode in size or vanish, if the multiplicative chain in the calculation has sufficiently large or 

small values, respectively, at each point in the chain [21]. 

 

 
Figure 6 DNN Representative Graph 

 

There are a number of strategies that may be employed to address this issue. For a period of 

time, the pretraining of network layers, using unsupervised learning techniques to establish initial 

weights then using back propagation to refine the weights for the full network was a useful 

strategy. More current architecture designs use Rectified Linear Units (ReLU) as the activation 

function to address the problem. In addition to minimizing the likelihood of vanishing/exploding 

gradients, the use of ReLU as the activation function in DNN nodes has also been demonstrated 

to improve algorithm performance [21]. 
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For extremely deep neural networks, the use of ReLU activation functions does not always 

solve the vanishing/exploding gradient problem. Residual Neural Networks include additional 

connections in the graph that skip layers. These networks were used to handle very deep image 

classification problems with exceptional performance [27]. 

 

 
Figure 7: Residual Neural Network Graph 

 

Deep neural networks are also applied to more challenging problems like image classification. 

The most obvious challenge in attempting to classify images, is the structure of the data itself. 

Images are two-dimensional if grey scale or three-dimensional if they are in color (e.g., a color 

image with red, green and blue layers). Reformatting an image to a one-dimensional array 

removes a significant amount of information from the data.  

The standard approach to address image classification is the use of a Convolution Neural 

Network (CNN). In this approach, images are analyzed by systematically assessing small 

overlapping “patches” of the image (two-dimensional subsets of the image; if color then three-

dimensional). Much like the input to output process for a DNN node, a set of weights is applied 

to the data, in the patch, which are summed, and a nonlinear activation function is applied. Each 
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set of weights and activation function that is applied, in a pass over an image is called a “filter” 

to create a two-dimensional output. The application of multiple filters results in multiple two-

dimensional outputs (called “channels”). A single “convolution” layer applies multiple filters 

producing a three-dimensional data object that is many times deeper than the original image (or 

prior layer output; see Figure 8). The data are then “pooled”, typically by taking the maximum 

value of a patch of the output channels (which may differ in size from the convolutional layer 

patches), to reduce the volume of data. Each patch is applied independently in a convolutional 

layer. Weights for the filters are updated across the entire layer (and mini-batch). Multiple 

iterations of convolutions and pooling may occur within an algorithm. At the end of these 

iterations, the data are reformed into a one-dimensional vector (the “Embedding” in Figure 8), 

that is then fed into a standard DNN layers [28]. 

 

 

 
 

Figure 8 Basic Convolutional Neural Network Graph 

 
 

A number of highly successful, general purpose CNNs are available for image classification. 

These CNNs are pretrained on very large image datasets and can be used to simply preprocess 
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image data into the final one-dimensional layer or may be used as a pretrained CNN that refines 

the network weights through a training session. Examples of these pretrained CNNs are VGG16, 

ResNet50, AlexNet, GoogleNet and InceptionV3 [27, 29, 30, 31, 32]. 

The next generation of ResNet image classifier called “ResNeXt” [33]. Figure 9 comes from the 

publish paper by Xie, et. al. A key differentiator of ResNeXt and ResNet is the use of multiple 

parallel paths, which contain their own convolution and pooling layers as well as the inclusion of 

a residual path (essentially a second independent path of hidden layers from some output layer 

that is rejoined later in the neural network) [33]. The residual path may have the same 

architecture as the other path(s), but it also may differ. Before the two paths are joined their data 

structures must match, so great care must be taken in creating the residual paths [33]. 

 
Figure 9: ResNeXt versus ResNet Architecture Fundamental Differences 

Left: A block of ResNet. Right: A block of ResNeXt with cardinality=32. Layers 
shown as: # in channels, # out channels. Complexity is essentially equal [33] 

 

One of the most complex Deep Learning algorithms is the Recurrent Neural Network or RNN. 

From a basic design point, the RNN graph is similar to a DNN. The difference in design comes 

from the recurrent connections which feed data backwards to an earlier layer within the network 

(Figure 10). This recurrence process makes RNNs well suited to handling time series or sequence 
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data. The RNN may have a full DNN as the last layers of the network, or it may have a last layer 

that simply feeds the output layer [34]. 

 

 
Figure 10 Recurrent Neural Network Graph 

 
 
 

A useful type of unsupervised learning that comes from the Deep Learning is the Autoencoder. 

The goal of these neural networks is to reduce data dimensions (number features).  They take an 

input dataset and process it through one or more hidden layers, that have significantly fewer 

nodes than the number of input features. The output layer has the same number of nodes as the 

number of input features. The input and output nodes are paired one to one. The loss function 

is the sum of the squared differences for the pairings [21]. Since the goal of the process is to 

reduce data dimensions, the number of nodes is usually significantly smaller than the number of 

input features. When training is completed, the layer with the smallest number of nodes 

represents the reduced data dimensions. Figure 11 is a simple representation, but auto encoders 

may have a deep architecture, particularly for extremely large data sources.  
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Figure 11 Simple Autoencoder 

 

 

3.4. MINI-BATCH PROCESSING 

Deep neural network algorithms have a computation complexity of 𝒪(𝑛�) [35]. As data set 

size, increases to today’s “Big Data” levels of millions or billions of rows of data, the computation 

complexity, in submitting the entire dataset, in a single pass through the DNN is not possible. 

DNNs almost always use some form of small batch or mini-batch submission process. For a batch 

size b, that is significantly smaller than the full dataset size, the computation complexity of 

submitting a single batch is 𝒪(𝑏�). To submit all of the data in a data set with n records, 𝑐𝑒𝑖𝑙(𝑛/𝑏) 

submissions must occur, so the computation complexity of submitting the full dataset, one time 

using mini-batchers is 

					𝒪(𝑏�) ∗ 𝑐𝑒𝑖𝑙 &
𝑛
𝑏( ≈ 𝒪(𝑛𝑏�) = 𝑏�𝒪(𝑛)																										(8) 
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𝒪(𝑏�) is a constant, meaning the use of mini-batches takes an algorithm that has a computation 

complexity of 𝒪(𝑛�) and makes the problem linear in terms of number of records, 𝒪(𝑛). In 

addition, the use of mini-batches has demonstrated improved generalizability of deep neural 

network models [36]. 

 

3.5. HINGE LOSS 

Support Vector Machines were introduced by Vapnik et. al. in the mid 1990’s [37]. While the 

name did not originate until sometime later, they created the concept of “hinge loss”. For the 

vast majority of datasets that are not perfectly separable, the “soft margin” version was 

introduced that introduced a constraint of the form:  

										𝑦5(𝒘�𝒙5 + 𝑏) ≥ 1 −	𝜁5, 𝜁5 ≥ 0															(1) 

Where 1, on the right-hand side, is the “margin” associate with the loss function (the margin 

can be set to a value of 1, without loss in generality). A more general version of this inequality, 

with nonzero margin, 𝛾, could be expressed as:  

𝑦5(𝒘�𝒙5 + 𝑏) ≥ 𝛾 −	𝜁5, 𝜁5 ≥ 0, 𝛾 > 0			(2) 

It can be shown that this system of inequalities is equivalent to:  

𝜁5 = max(𝛾 − 𝑦5(𝒘�𝒙5 + 𝑏), 0)																	(3) 

This equation is the essence of the Hinge Loss function, where loss is zero, for function values 

below zero and loss contribution occurs when the function is above zero. For at least the past 

decade, Hinge Loss is one of the most common loss functions used in deep learning algorithms. 

This functional form is important in the creation and application of Ordinal Hyperplane Loss 
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(OHPL), where a simple linear difference of scalar values contributes to algorithm loss (error). If 

the value of the difference is positive the loss is set to that value. If not, it is set to zero. This 

function is continuous for all 𝒙 and differentiable for all 𝒙, except when 𝒘�𝒙5 = −𝑏. Triplet Loss 

is a special application of Hinge Loss, that uses the difference in distance from a single point 

(called the positive anchor) to two other points, one of which has the same label as the positive 

anchor and the other has a different label. The value is zero unless the point with the unmatched 

label is not sufficiently further away from the anchor point, than the matched label point, by a 

preset margin. This function provides an easy way to focus deep net training, on “hard cases” 

that are a significant distance from the desired goal, while setting the distance, for cases that are 

close to the goal, to a value of zero. In developing OHPL, the underlying principles of Triplet Loss 

and Hinge Loss are combined, to develop a special loss function that directly addresses ordinal 

classification problem.  
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Chapter 4. ORDINAL CLASSIFICATION PROBLEM DESCRIPTION 

This chapter covers the proposed solution to the Ordinal Classification problem that utilizes 

deep learning to directly develop a classification metric, a relatively intuitive mathematical and 

geometric motivation for the solution. The proposed strategy employs a commonly applied 

functional form that is used to develop large margin classifiers in machine learning. Conceptually, 

these frames of reference provide a foundation for the development of a unique loss function, 

that enables the application of virtually any deep learning architecture (DNN, CNN, RNN, etc.) to 

solve ordinal classification problems [38]. 

4.1. FUNDAMENTAL ORDINAL CLASSIFICATION PROBLEM 

The proposed solution focuses on the identification or estimation of a nonlinear mapping, 

𝜙(𝑥), that provides an optimal separation of classes, with three fundamental properties.  

1.  Different classes must be properly ordered. Numerically, they can be separated in 

either increasing order or decreasing but they must be properly ordered. In ensuring 

this property, the solution requires an assumption of monotonically increasing 

ordering without imposing an unnecessary and limiting restriction on distances 

between adjacent classes. Note that if ordering in the mapped space is naturally 

decreasing based on the optimal weights a simple multiplication of the output by -1 

would ensure increasing ordering, so without loss in generality, the increasing ordering 

is set as the goal.  
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2. Borrowing generalizability benefits of large margin classifiers (per Vapnik et. al. [37]), 

the distances between classes must be non-trivial (i.e., not arbitrarily close to 0). Note 

that setting a minimum distance between classes does not impose regression like 

distance assumptions where the distance between two adjacent classes must be 

exactly one, since any non-zero distance may be rescaled to the minimum value while 

other distances would increase to a value greater than one. The simple multiplication 

of a constant would have no impact on classification. At the same time, some degree 

of regularization (upper bound or error penalty on the weights, a la Ridge Regression, 

Lasso Regression and SVM) must be employed to ensure that the minimum margin is 

not a simple rescaling of a trivial margin. Setting a minimum value avoids the challenge 

of implementing a rescaling component to the algorithm. No other distance 

assumptions that restrict relative class distances are applied.  

3. Depending on the specific execution of the first two fundamental properties, it is 

possible that the group centers perfectly adhere to the minimum distance 

requirement, but the classifier behaves no better than random guessing. To avoid this 

scenario, the algorithm must learn a mapping that forms homogeneous sample classes 

clusters (i.e., provide for a clustering of the data, in the mapped space, that has 

homogeneous clusters, in terms of class). If the problem is not completely separable, 

then this property becomes a requirement of “near” homogeneous (or as close as 

possible to homogeneous). Under ideal circumstances, the results of these three 

strategy properties will provide a mapping, 𝜙(𝒙),	as illustrated in Figure 12.  
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Figure 12 Ordered Separation of Classes 

 

The goal of this research is to solve the ordinal classification problem by developing a deep 

learning strategy that can learn such an optimal mapping as described above from training data. 

Current best in breed algorithms that attempt to solve the ordinal classification problem use a 

predetermined function or set of functions and optimize a set of weights that minimize an 

associated cost function. Deep learning algorithms use the available data to learn highly complex 

nonlinear functions, without imposing a limitation of predefining the functional form. These 

nonlinear functions are most likely estimations of more complex functions, within the space that 

is represented by the available data.  

Current ordinal classification applications using deep learning apply binary classification 

neural networks to develop a set of solutions to alternate problems. These strategies either 

classify one class versus another by analyzing multiple pairs of classes or one class versus all 

others (exhaustively using each class as the base class in at least one binary classifier). 

Additionally, they may employ a repeated sampling of available data with changes in the relative 
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binary classes. In the case of the multiple classifiers, the models are then combined into a single 

ordinal classifier through an aggregation strategy (e.g., simple sums or weighted sums). Deep 

learning algorithms within a single model architecture (e.g., DNN, CNN) that solve different 

problems (e.g., regression, nominal classification) differ in their loss functions. This loss function 

may be applied across multiple model architectures. Developing a loss function that meets the 

problem requirements would not only enable the development of DNNs to develop ordinal 

classifiers but may also be broadly applied to other deep learning model architectures. This loss 

function forms the mathematical and algorithmic solution to the deep learning solution to the 

ordinal classification problem. 

 

4.2. GEOMETRIC MOTIVATION 

In developing Ordinal Hyperplane Loss (OHPL), a similar representation of data, that Ngyuen 

et. al. used in Figure 1, provides a geometric representation of the ordinal classification problem. 

In a fully separable problem, the perfect solution would to be a transformation 𝜙(𝒙) (usually 

nonlinear, but could be linear, if appropriate) that maps the unseparated classes into a new 

space. Figure 13, below represents a simple three class problem, represented and separated, in 

two-dimensional space. This illustration assumes a goal that is similar to that of the application 

of triplet loss, but with ordering of classes requirements. The goal of such an algorithm would be 

to “pull” all of the points in a single class as close as possible to the cluster center, while 

maintaining the ordering of the clusters. From this representation, the vector between points in 

adjacent classes, can be parsed into two components: 1) the component parallel to the vector 
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between adjacent class cluster centers (solid lines) and 2) a component that is perpendicular, to 

the vector between the class cluster centers (dashed/dotted lines).  

 

Figure 13 Separable Mapping 𝜙:ℝ+ → ℝ+. 

Solid lines represent vectors between class cluster centers. Dotted lines are perpendicular to the 
vector between Class 1 and Class 2 cluster centers. Dashed lines are perpendicular to the vector 
between Class 2 and Class 3. 

 

If the algorithm improves loss (error), in terms of pulling points closer to the cluster center, 

but does not improve error between classes (aggregate distance of all points in adjacent classes, 

from each other) or the movement is large for trivial improvement in error between classes, the 

movement is essentially perpendicular to the vector between the cluster centers (i.e., movement 

parallel to the dashed/dotted lines, in Figure 13). Not only does this “improvement” in terms of 

distance loss (error) not improve classification, but it may contribute to the over fitting of the 

model, in terms of its ability to generalize, to other datasets. This perpendicular direction 

introduces a hyperplane that may better represent the data, in terms of class membership as 

determined by point distances. If the parallel hyperplanes, going through the two cluster 

centroids, are used, to represent the cluster, then the distance from points, to these hyperplanes, 
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defined as the length of a perpendicular line segment that connects a point to the hyperplane, 

would represent distances and direction where a potential change in the position of a point 

would guarantee improvement in the separation of the two classes.  

Similarly, hyperplanes between other adjacent class pairs would provide significant benefit in 

truly separating other class pairs. In aggregate, this process introduces a new potential issue. If 

the hyperplanes are not parallel, then it is possible that when the algorithm is applied to a new 

data set, values near the intersection of two of the hyperplanes may be misclassified even though 

they have zero contribution to the loss function value that is used to estimate weights in the 

model. To address the possible issue of intersecting hyperplanes causing classification problems 

for points near the intersection, a requirement of parallel hyperplanes (see Figure 14) is applied. 

In doing so, reducing loss (error) that is in the direction of the solid line should provide an 

effective separation of classes. In addition, using position along a single vector reduces the loss 

(error) calculation to a simple difference of scalar values. Ensuring class ordering and reducing 

the distance from the class centroid may be efficiently addressed by an algorithm. 
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Figure 14 Parallel Hyperplanes.  

For the same separable mapping, dotted lines represent parallel hyperplanes 
through the cluster centers, to which the solid line is perpendicular. Distance 
between hyperplanes, represent distance between points (e.g., dashed lines), 
that is aligned with the separation of all classes.  
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Chapter 5. OHPL – ORDINAL HYPERPLANE LOSS 

This chapter reviews the novel loss function called Ordinal Hyperplane Loss (OHPL) which is 

specifically designed for predicting ordinal classes. OHPL enables deep learning techniques and 

strategies to be applied to the ordinal classification problem. The more complete application of 

OHPL within a deep neural net context is appropriately named OHPLall. More specifically, by 

minimizing OHPL, a deep neural network learns to map data to an optimal space where the 

distance between points and their class centroids are minimized while a nontrivial ordinal 

relationship among classes are maintained.  

Class centroids, based on simple averaging of data values in the mapped space, provide a 

framework for imposing the fundamental property of class ordering and a mechanism for 

measuring distances between classes as well as a numerical framework for estimating loss/error 

contribution, due to inefficient class ordering. These class centroids can therefore be used to 

enable algorithm “learning” (i.e., improvements in performance/fit). Class distance may be 

defined distance between two class centroids. Setting a minimum distance threshold ensures 

that a non-trivial distance between centroids is created and maintained, while not imposing rigid 

regression like distance assumptions [38]. 

Once class ordering is established, data point distances from class centroids are used to ensure 

that points are closer to their class centroid than to unlike class centroids. Large margin 

methodology ensures “closer” does not mean trivially closer. Given the multi-dimensional nature 

of data, not all “distance” from a centroid that exceeds a threshold, is “error” in terms of class 

separation and classification. Decreasing the distance that is perpendicular to the line connecting 
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the centroids of two classes, does not improve the separation of classes. Using parallel 

hyperplanes to define the class centroids ensures that the algorithm prioritizes individual point 

transformations that contribute to class cluster separation. In addition, this use of hyperplanes 

enables the use of scalar distances in a loss function [38]. 

The development of an efficient algorithm, based on this set of requirements, introduces the 

ability to apply deep learning to a broad set of core problems using structured data, in DNNs as 

well as Deep and Wide Networks. This new loss function provides a foundation for single image 

classification using CNNs including but not limited to primary problems of age estimation and 

medical classification (e.g., using MRI’s to determine cancer stage). It would also enable more 

advanced applications like RNN which examine time series data, text (short statements or full 

documents) or possibly spatially sequential MRI images. In essence it provides a fundamentally 

new methodology for developing ordinal classifiers. 

OHPL is an aggregation of two key components [38]: 

1. Hyperplane Centroid Loss (HCL), which applies a large penalty within the algorithm, for 

violations of the ordering and minimal distance assumptions  

2. Hyperplane Point Loss (HPL), which provides an error value, for points that violate the 

large margin boundary around the class Hyperplane Centroid, that is proportional to 

the distance from the boundary.  

Based on the proposal of OHPL, a researcher may design a deep learning strategy that learns 

an optimal dimensional space where OHPL is minimized.  

 



 
 

41 

5.1. LINEAR HYPERPLANES 

A given point 𝒙 is a point on the hyperplane, defined by 𝒘	and	𝑐, if 𝒙 satisfies equation (2), 

where 𝒘 and 𝒙 are vector valued and 𝑐 is a scalar constant. 

𝑓(𝒙) = 𝒘�𝒙 + 𝑐 = 0					(2) 

A set of different parallel hyperplanes of this form will have the same coefficient vector, 𝒘, 

and differ in their constant value 𝑐 . The absolute value of 𝑐  represents the ‘distance’ of the 

hyperplane, expressed as the minimum distance of the points on the hyperplane, from the origin. 

This concept of distance can be applied to two parallel hyperplanes (note that two nonparallel 

hyperplanes will intersect and therefore will always have a distance of zero). Given hyperplanes:  

 

𝐻* = {𝒙:	𝒘�𝒙𝒊 = 𝑏*}					(3𝑎) 

and  

𝐻+ = �𝒙:	𝒘�𝒙𝒋 = 𝑏+�		(3𝑏) 

       where 𝑏* ≠ 𝑏+       	(3𝑐) 

 

For a point, 𝒙𝟏 , on 𝐻*  hyperplane, the ‘distance’ to a second, parallel hyperplane, is the 

minimal distance of the point, to any point on the hyperplane. By shifting the frame of reference 

for 𝒙𝟏 and the hyperplane as follows, to create 𝒙𝟏¢ 	and	𝐻*¢ :  

											𝒙𝟏¢ = 𝒙𝟏 − 𝒙𝟏							(4) 

𝐻*¢ = 𝐻* − 𝑏* = {𝒙:	𝒘�(𝒙𝒊 − 𝒙𝟏) = 𝑏* − 𝑏* = 0	}							(5) 

𝒙𝟏¢  is the origin and sits on a hyperplane through the origin that is parallel, to 𝐻+. Define 𝐻+¢  by 

applying the same transformation to 𝐻+, to arrive at:  
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𝐻+¢ = �𝒙:	𝒘�(𝒙𝒋 − 𝒙𝟏) = 𝑏+ − 𝑏* = 	𝑏+′	�								(6) 

The absolute value of 𝑏+′ is the distance of the hyperplane 𝐻+¢  from the origin and  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝒙𝟏, 𝐻+) = 𝑏+¢ = |𝑏+ − 𝑏*|						(7) 

To generalize:  

								∀	𝒙𝒊 ∈ 𝐻*, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝒙𝒊, 𝐻+) = |𝑏+ − 𝑏*|							(8) 

 

The distance between the two hyperplanes, 𝐻*, and	𝐻+ can be defined as follows:  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐻*, 𝐻+) = |𝑏+ − 𝑏*|							(9) 

 In general, for a mapping, 𝝓(𝒙), this concept of distance can be applied to two points, that 

respectively sit on hyperplanes, 𝐻¦	and	𝐻§, in the mapped space:  

𝝓(𝒙𝒊) ∈ 𝐻¦ = {𝒘�𝝓(𝒙) = 𝑏¦}								(10) 

and  

𝝓F𝒙𝒋I ∈ 𝐻§ = {𝒘�𝝓(𝒙) = 𝑏§}								(11) 

Then the distance, 𝑑, between 𝝓(𝒙𝒊) and 𝝓F𝒙𝒋I: 

𝑑 &	𝝓(𝒙𝒊), 𝝓F𝒙𝒋I( = |	𝐻¦ − 𝐻§| = |𝑏¦ − 𝑏§|					(12)	 

For the purposes of writing a loss function, (12), for a computer algorithm application of the 

Hinge Loss function allows for the use of an algorithmically simple function as follows: 

𝑑 &	𝝓(𝒙𝒊), 𝝓F𝒙𝒋I( = max(𝑏¦ − 𝑏§, 0) + max(𝑏¦ − 𝑏§, 0)						(13) 

 

Similarly, OHPL is actually the combination of two loss functions, that utilize the distance 

between hyperplanes, as well as the specific distance function in (13). The algorithms use the 

concept of the “hyperplane centroid” as the fundamental definition of a class centroid, from which 
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data points may be assessed, in terms of proximity to the centroid. In (14), the hyperplane centroid 

for class k and a given 𝒘 is defined to be the mean value of all 𝑏5  for all i, in class k, where 𝒘�𝒙𝒌𝒊 =

𝑏¦5. For 𝑛¦ samples in class k, the hyperplane centroid for class k, 𝐻𝐶¦,	is:  

𝐻𝐶¦ =
1
𝑛¦

r 𝒘�𝒙𝒌𝒊
ª«�¦

= 𝑏¦¬¬¬											(14) 

 

5.2.  HYPERPLANE CENTROID LOSS 

First the component of the OHPL function, ensures that the hyperplane centroids are properly 

ordered, per the ordering of the classes. This ordering can be expressed as a difference in adjacent 

hyperplane centroids. If adjacent hyperplane centroids are properly ordered, then the transitive 

property ensures that all hyperplane centroids are properly ordered. For the purposes of 

developing a useful algorithm, not only do we need to achieve the ordering, of the hyperplane 

centroids for adjacent classes, but it is more desirable for the spacing be non-trivial. For fixed 𝛿 >

0 and two adjacent hyperplane centroids, 𝐻𝐶¦­*	and	𝐻𝐶¦, where the higher subscript denotes 

the higher class:  [38] 

𝐻𝐶¦­* − 𝐻𝐶¦ > 𝛿											for	fixed	𝛿 > 0		(15) 

Within the OHPL algorithm, adjacent classes k and k+1, and 𝛿 = 1, the Hyperplane Centroid 

Loss contribution of 𝐻𝐶¦ relative to 𝐻𝐶¦­* is:  

HC	Loss¯,¯­* = max(𝐻𝐶¦ − 𝐻𝐶¦­* + 1, 0)						(16) 

If 𝐻𝐶¦­*	is	at	least	𝛿	𝑑istance	from	𝐻𝐶¦, then the ordering is correct with sufficient distance 

between the adjacent classes. For the k ordinal class problem, the Hyperplane Centroid Loss (HCL) 

is:  
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HCL = rmax(𝐻𝐶5 − 𝐻𝐶5­* + 𝛿, 0)
¦Z*

5�*

								(17) 

In the actual OHPL loss algorithm, HCL is coded as the multiplication of three matrices with 

hyperparameter 𝛿 (usually set to 1) added to each element of the resulting k x 1 vector. Negative 

values in the resulting vector are set to zero, then the elements of the vector are summed to arrive 

at a total HCL loss value. This formulation of HCL is important when assessing the viability of 

applying OHPL to large data sets (e.g., 250,000 or more records) since it may be one of the limiting 

factors in the algorithm [38]. 

In the initial formulation, of OHPL, the hyperplane centroid ordering is applied to the full data 

training set, in batch within each iteration, through a data set. In the initial work, weighting is used 

to prioritize these relationships over the point loss effort to move points close to their 

corresponding hyperplane centroid. Experimental tests indicate very minor violation of the 

hyperplane centroid minimum distance requirement (less than 1%), but in all cases the distance 

between hyperplane centroids, can be demonstrated to be a nontrivial distance from zero [38]. 

 

5.3.  HYPERPLANE POINT LOSS 

The second component of OHPL is “Hyperplane-Point Loss” (HPL). In calculating this loss 

component, individual data points are compared to their corresponding Hyperplane Centroids. 

The primary goal is to “draw” points closer to their corresponding Hyperplane Centroid. This 

component of the algorithm provides a natural “regularization” of the model which limits the size 

of the weights. HPL is actually the sum of two analogous loss functions that work in different 
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“directions” a la the formulation of (6) (see Figure 15 and Figure 16). This process is effectively an 

application of L1 distance (absolute value of the differences) which works effectively within the 

algorithm [38]. 

 

 

Figure 15 Hyperplane Point Loss - Increasing Direction.  

Solid parallel lines represent adjacent Hyperplane Centroids. Dashed line 
represents the upper margin for the lower value ordinal class. In the increasing 
direction, points above the upper margin have nonzero contribution to the total 
loss [38]. 

 

For the points in a given class, “looking” in the “increasing” direction (corresponding to an 

increase in ordinal class value), the points that are higher than their respective hyperplane 

centroid may potentially contribute to the loss (those below will be examined later). For points 

that are above their hyperplane centroid, but are already sufficiently close to their hyperplane 

centroid, to result in a proper classification, drawing them closer to the hyperplane centroid won’t 

improve classification, so their loss contribution is set to zero. As a minimum, these points with 

zero contribution to the HPL must be closer than their distance to the next highest HC. Based on 
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the success of other large margin classifiers, the HPL algorithm uses a margin that ensures that 

points are closer to their hyperplane centroid than the midpoint between the hyperplane centroid 

and the adjacent hyperplane centroid [38]. 

 

Figure 16 Hyperplane Point Loss - Decreasing Direction.  
Solid parallel lines represent adjacent Hyperplane Centroids. Dashed 
line represents the lower margin for the upper value ordinal class. In 
the decreasing direction, points below the lower margin have nonzero 
contribution to the total loss [38]. 

 

In Figure 16, the circled points are lower than the margin below their hyperplane centroid, so 

it contributes to the total HPL value. Note that the dotted margin line/threshold is closer to the 

hyperplane centroid, than to the adjacent hyperplane centroid. Similarly, when we look in the 

decreasing direction, points that are further from their hyperplane centroid, than the margin, will 

contribute to the HPL total. In Figure 17, below, the seven circled points contribute nonzero values 

to HPL [38]. 
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These two components of point related loss combine to produce a simple loss calculation, 

based on the subtraction of scalar values, combined with the application of the maximum 

function on two scalar values, creating a piecewise linear function, with two pieces. Figure 17 

demonstrates the application of HPL to a simple three ordinal class example, in two 

dimensions [38]. 

 
 
 

 
Figure 17 HPL for Three Ordinal Class Case.  

Solid parallel lines represent adjacent Hyperplane Centroids. Long dashed 
lines represent the margins for Class 1 and Class 3. Short dashed lines are 
the margins for Class 2. Circled points contribute to HPL and total OHPL [38]. 

 

As discussed in the Hyperplane Centroid Loss section, the distances between adjacent 

hyperplane centroids is not fixed. In fact, within the algorithm, they are not guaranteed to be 

greater than the set margin value. If not, the value contributes to the overall loss within the 

algorithm and are heavily weighted, so losses from this violation tend to be minor. On the other 
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hand, there is no upper bound on the distance between adjacent hyperplane centroids. In these 

cases, a larger absolute margin may be used, leading to better algorithm efficiency. To account for 

the desired nonequal nature of the distances between adjacent hyperplane centroids, the HPL 

algorithm uses a fixed proportion of the distance between adjacent HCs [38]. 

The two components of the HPL algorithm (an increasing and a decreasing) are summed to 

arrive at the total loss contribution. To illustrate the “increasing” case set 𝛾  to be desired 

proportion of distance between adjacent hyperplane centroids then then let 𝐻𝑃𝐿­represent the 

HPL for the direction of increasing class value.  For point 𝒙𝒊, in dataset S, and its corresponding 

hyperplane centroid, 𝐻𝐶and the adjacent hyperplane centroid 𝐻𝐶­ which is above 𝐻𝐶 [38]: 

																																																									for	0.5 < 𝛾 < 1.0																																													(18) 

																																										𝑝𝑜𝑖𝑛𝑡	𝑚𝑎𝑟𝑔𝑖𝑛 = 	𝛾(𝐻𝐶­ − 𝐻𝐶)																																(19) 

𝐻𝑃𝐿5­ = max	((𝑓(𝒙𝒊) − 𝐻𝐶) − (𝐻𝐶­ − 𝐻𝐶) + 𝛾(𝐻𝐶­ − 𝐻𝐶), 0)																(20) 

																				= max(𝑓(𝒙𝒊) − 𝛾𝐻𝐶 − (1 − 𝛾)𝐻𝐶­, 0)																																												(21) 

Similarly, for the decreasing case, 

																					𝐻𝑃𝐿5Z = max(𝛾𝐻𝐶 − 𝑓(𝒙𝒊)) + (1 − 𝛾)𝐻𝐶Z*, 0)																												(22) 

																																								𝐻𝑃𝑃𝐿 = r𝐻𝑃𝐿5­ + 𝐻𝑃𝐿5Z

𝒙«∈±

																																														(23) 

 

In the initial work, the two components of Ordinal Hyperplane Loss are combined, to arrive at 

the total loss. A weight 𝜂 is applied to the HCL component of the loss calculation, to ensure a 

prioritization of class ordering over the reduction in point distance from the hyperplane centroid, 

to arrive at:  

𝑂𝐻𝑃𝐿 = 𝜂𝐻𝐶𝐿 + 𝐻𝑃𝑃𝐿												(24) 
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OHPL is applied within Deep Neural Network to create OHPLnet. Subsequent research, using 

OHPLnet, a found evidence that dynamically maintaining the hyperplane centroid distances was 

in direct conflict with the goal of drawing points closer to their hyperplane centroid. The evidence 

was mostly anecdotal in that some datasets experienced good results early on that were on par 

with other executions of the algorithm on the dataset. Then progress would stop well before 

achieving the minimum loss value and training set classification accuracy of other submission of 

the algorithm. The breakthrough that lead to the initial OHPLall variant (covered later) is the most 

compelling evidence that there was internal conflict between maintaining the hyperplane 

centroids and reducing point distances from the respective hyperplane centroids.  

 

5.4. DEEP LEARNING STRATEGY BASED ON OHPL 

Deep Neural Networks require structured data with a single 1 X m vector, per data record. 

Since OHPLnet addresses the specific error calculation requirements for ordinal classification 

tasks, it can be easily added to DNNs. The design is identical to any other DNN with the notable 

difference that the DNN maps the data into a new multi-dimensional space (𝝓(𝒙)).  From that 

point optimal weights, 𝒘	and	constant	term	𝒃 , that define the hyperplanes is estimated to 

produce with a scalar output value. The scalar output is used to calculate prediction error (Figure 

18). At that point, model estimation error, based on the OHPL design principals are used, instead 

of using another existing methodology to calculate error.  
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Figure 18 OHPL as a Deep Neural Network:  

Design is identical to other DNNs with the exception of the linear output 
𝑓(𝝓(𝒙)), which is used to calculate HCL and HPL loss components. 

 

 

Similarly, an OHPL can be included as the DNN component of CNNs, to facilitate the analysis 

of images. Example problems would include:  

* medical images that have ordered labeling (e.g., cancer stage)  

* age recognition for facial images 

* Facial emotional intensity 

* Weather (e.g., satellite images to predict storm severity classes) 
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Figure 19 Convolutional Neural Network Graph with OHPLnet Neural Network Layers 

 
 

The response value of Net Promoter survey responses has been linked to the recency of 

interaction of the respondent with the company’s offering. ) [39]. RNNs, with an OHPLnet layer 

could be employed to not only better predict customer response, gain insight into the ‘drivers’ 

of the response value, by removing the time component of response and then conducting a driver 

analysis, to identify key product attributes, that relate to rating.  

 

 

 
 

Figure 20 Recurrent Neural Network Graph with OHPLnet Neural Network Layers 
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In all cases, it is conceivable that, in these more complex neural networks (e.g., RNN, CNN, 

ResNet), the layer that “feeds” the OHPLnet is a scalar value, that has a nonlinear activation 

function, prior to output. In this case, the hyperplane centroids would simply be a point on the 

number line.  

As the use of Deep Learning expands, more complex and varied neural network designs are 

being created. Since OHPLnet does not depend on the architecture that precedes the output 

layer, it is well suited to being applied to new network designs as they are developed.  

 

OHPLnet ALGORITHM: Iterative Algorithm 
Hyper-Parameters:  
h – number of hidden layers 
lh – number of nodes per layer  
𝛼 – prioritization weight for HCL 
lr – learning rate 
m – HC margin 
γ– point margin proportion 
bs – batch size 
Input: Rescaled training data {(xi,yi )|i=1,…,n} 

Parameters h, lk, 𝛼, lr, {lk = 1,…h} 
Begin: 
 Randomize weight (W) and bias (b) in each DNN node 
 While not converged do 
   OHPL = 0, HPL = 0, HCL = 0 
  Feed full dataset through selected ANN 

From ANN Output, Calculate HCL:  
Calculate difference in adjacent centroids  
Subtract m 
Sum positive values, as HCL 

  Select mini-batch (bs) 
Calculate mini-batch output from network 
Calculate distances from respective hyperplane centroids 
Sum positive values, as HPL 

OHPL = HPL + 𝛼*HCL 
  Calculate Stochastic Gradient Descent (SGD) 
  Update W and b via SGD and lr 
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 Repeat until training sample exhausted 
 Check convergence 
End: Output W and b 
 
 
 

5.5.  SCALING TO LARGE DATASETS 

Truly large ordinal datasets, while real, have not been tested with algorithms for which 

benchmark performance can be found. For this reason, experimental results for the performance 

of OHPLnet  on large datasets (100K+ records) is not available. An effort was made to include the 

largest datasets that have been tested with other algorithms. The largest of these has fewer than 

25000 records [38]. 

Heuristically speaking, OHPLnet  should be scalable to any dataset that can be analyzed using 

a DNN. The HPL component is applied to mini batches, a process that allows DNNs, to be applied 

to very large datasets. This leaves HCL is the potential limiting factor [38]. 

Per the HCL algorithm discussion, the loss is calculated using simple matrix multiplication, to 

calculate means by class. If a data set is so large that it cannot be computed within a single 

computer the algorithm allows for breaking up the processes into as many pieces (submatrices) 

as necessary (e.g., parse the matrix, by row into sizes that can be computed). Summaries by class 

are calculated for each of the submatrices, then those resulting vectors are summed (position by 

position). The elements of the resulting vector are divided by the sample counts for the 

corresponding class. While breaking up the problem would be less than ideal, since there are 

computational costs for doing so, it is a viable process that could be run in parallel on multiple 

processors [38]. 



 
 

54 

OHPLnet  was developed to allow the application to large datasets. In this case, we define 

“large” as 200000 records or more. The benchmark algorithms reported by Gutiérrez, et. al. and 

the very recently reported algorithm that was developed by Nguyen, et. al., use estimation 

processes like SVM or Gaussian Processes (or algorithms that are very similar to the point that 

their estimated computational complexity is 𝒪(𝑛+) for the most efficient algorithms), making 

them potentially unsuitable to apply to datasets that are appreciably larger than 100K records 

(or require complex processing strategies, to do so). An example application is reported in the 

OHPLnet  results section. 
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Chapter 6. EXPERIMENTAL RESULTS FOR OHPLNET 

Experimental tests used Python version 3.6.3, in Jupyter Notebook 5.0.0. with Google’s 

Tensorflow 1.5.0 [40] and several packages from Sci-Kit Learn (e.g., StratifiedKFold and shuffle) 

[41], Numpy [42] [43] and Pandas [44]. Development and analysis work were split between a 

MacBook Pro (Retina, 15-inch, Mid 2015) and a desktop with an AMD FX-8350 processor, 12GB 

of DDR3 RAM and a Nvidia GEFORCE GTX 1080ti GPU. Classification datasets were chosen from 

datasets that are found in a number of related studies. For benchmark purposes, with the 

exception of the LODML linear classifiers produced by Nguyen et. al. [3], the results that are 

reported by Gutiérrez, et. al. are used [9].  

 

6.1. EXPERIMENTATION: STANDARD TEST DATASETS 

OHPLnet was tested against seven ordinal classification datasets that are found in a number 

of related studies. For benchmark purposes, the results that were reported by Gutiérrez, et. al. 

are used [9]. The Cars and Red Wine datasets contain typical ordinal classes, for ~1,600 records. 

They come from the UCI (University of California Irvine) dataset repository [45].  

From the from the Chu and Ghahramani research, [8] the CPU Small and Census 10 datasets 

are used. These datasets are among the largest for which benchmark results are available. They 

represent a very difficult problems where the ordinal classes are created by producing equal size 

binning of records using a sorted continuous variable (or as close as possible, given 10 bins and a 

number of records that are not a multiple of 10). For both datasets, continuous values were split 
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into 10 bins, representing ordinal response classes. Chu and Ghahramani provided a MatLab 

script that allows prospective researchers to create an identical binning [46].  

The ERA (Employee Rejection/Acceptance), LEV (Lecturers Evaluation) and SWD (Social 

Worker Decisions) datasets were introduced by David [47] and can be found at http://mldata.org. 

 

Table 3 Test Dataset Key Characteristics 

 # Records # Features # Classes 
Average 

# Records per 
Class 

Class Distribution 

CPU Small 8,192 12 10 819.2 ~820 per class 

Census 10 22,784 16 10 2,278.4 ~2,278 per class 

Cars 1,728 6 4 432 (1,210, 384, 69, 65) 

Wine-Red 1,599 11 6 266.5 (10, 53, 681, 638, 199, 18) 

ERA 1,000 4 9 111.1 (92, 142, 181, 172, 158, 118, 88, 3, 18) 

LEV 1,000 4 5 200 (93, 280, 403, 197, 270) 

SWD 1,000 10 4 250 (32, 352, 399, 217) 
 

 

6.2. ALGORITHM ASSESSMENT 

There are two standard assessment tests that are used to assess performance in attempting 

to predict ordinal classification data. The MZE test is also used to test classification of nominal 

data. For ground truth values, 𝑦5  and prediction values 𝑦l5 , the test reports the proportion of 

misclassifications when scoring the validation samples. MZE is explicitly computed as:  

 

𝑀𝑍𝐸 =
1
𝑁r(𝑦5 ≠ 𝑦l5) 	=

1
𝑁r(𝑦5 ≠ 𝑦l5) +

1
𝑁r(𝑦5 = 𝑦l5) 	−

1
𝑁r(𝑦5 = 𝑦l5)										(26𝑎) 
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= 1 −
1
𝑁r(𝑦5 = 𝑦l5) 	= 1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦															(26𝑏) 

 

Mean Absolute Error (MAE) is the standard measure of closeness that is used to assess the 

performance of ordinal classifiers. Not only may MAE be a more meaningful metric for special 

cases, it also may be a more meaningful way to access model performance in general. In 

calculating MAE, for each record the absolute difference between actual class and predicted class 

is calculated. The mean of these values becomes the MAE score for the algorithm, when applied 

to the given dataset, as follows:  

𝑀𝐴𝐸 =
1
𝑁r

|𝑦5 − 𝑦l5|												(27) 

As a minimum, MAE is a powerful way to distinguish among models that have comparable 

MZE performance. It should be noted that the MAE metric was a primary motivating factor in 

deciding to use a variant of the L1 norm for OHPL, instead of the L2 norm, that is more commonly 

used in data analysis and machine learning methodologies.  

Figure 12 provides a visual illustration of the fundamental difference between MAE and MZE. 

A standard methodology to assess classifier performance is the use of a “confusion” matrix. The 

basic principle is to use the classifier to score a dataset that has known labels, giving each record 

an actual and a predicted class value. The actual values correspond to the rows of the matrix and 

the predicted classes are represented in the columns. Every record is an ordered pair that occurs 

within the matrix. Cells of the matrix are filled with counts of the corresponding ordered pairs. 

Assuming that the row and column sequence is the same, then the diagonal (darkest colored cells 



 
 

58 

in the matrix below) represents the correctly classified counts, which sum to the MZE value, 

before dividing by the total number of records.  

 

 
 Figure 21 Color Coded Confusion Matrix.  

Entries are counts for ordered pairs of actual and predicted classes. 
Darker colored cells represent “closer” agreement of actual and 
predicted values.  

 

As you move further from the diagonal of the matrix, the values get lighter in color (further in 

color from the diagonal). This color change represents increasing error, in the classification and 

the lighter the color, the higher the error for points that are represented in the cells. An ideal 

classifier, that is not a perfect classifier will have zeros in the three lightest colors in the Color-

Coded Confusion Matrix (Figure 21). 

 

6.3.  BENCHMARK ALGORITHMS 

The POM algorithm had slightly better results on the CPU Small data set (0.580 vs 0.588 for 

the GPOR algorithm), but the algorithm performed so poorly on the other datasets, that it was 

removed in favor of the GPOR. In addition, the results for the POM algorithm were excluded from 
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the mean* of the algorithms reported by Gutiérrez, et. al. (a total of 15 algorithms were included 

in the mean calculation, reported in Figures 5 & 6 of the paper) [9].  

An additional motivation for including the GPOR is its overall status as the best performing 

algorithm across the 41 benchmark datasets that Gutiérrez, et. al. examined. The ORBoost and 

SVMOP are selected due to their excellent performance across the seven included datasets.  

Four Benchmark Algorithms : 

1. Support Vector Machines with Ordered Partitions (SVMOP): The algorithm converts a 

problem with k classes into k-1 binary classification problems. SVM classifiers are 

estimated for each problem, using an error weighting that is proportional to the absolute 

difference in classes. In specifying the classifier that discerns whether the label for record 

𝒙5  is larger than p, the error weight for the record is abs(𝑦5 − 𝑝 + 1) [14]. From that point, 

a standard strategy for using k-1 classifiers is employed (e.g., assess the classes in order, 

then choose, one class prior to the first instance of a positive objective score) 

2. GPOR is Wie and Ghahramani’s Gaussian Process for Ordinal Regression [8]. Their 

algorithm uses a Bayesian framework to estimate latent functions {𝑓(𝒙5)}. Mercer kernel 

functions are used to explicitly define the covariance of 𝒙5	and	𝒙�, in the Gaussian kernel 

as:  

𝐶𝑜𝑣¹𝑓(𝑥5), 𝑓F𝑥�Iº = 𝒦F𝑥5, 𝑥�I = exp¼−
𝜅
2rF𝑥5

¾ − 𝑥�
¾I
+

¿

¾�*

À										(28) 

making the prior probabilities, of {𝑓(𝒙5)}, a multivariate Gaussian:  

𝒫(𝑓) =
1

(2𝜋)
7
+|𝛴|

*
+
exp Ä−

1
2𝑓

�𝛴Z*𝑓Å , 𝛴	is	nxn	with	elements	defined	in	(20) 
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 The joint probability is written:  

										𝒫(𝒟|𝑓) =È𝒫(𝑦5|𝑓(𝒙5))
7

5�*

																													(29) 

By Bayes’ theorem, the posterior probability is:  

𝒫(𝑓|𝒟) =
1

𝒫(𝒟)È𝒫(𝑦5|𝑓(𝒙5))𝒫(𝑓)
7

5�*

																	(30) 

The kernel parameters 𝜅 , in (28), the threshold parameters ( {𝑏*, Δ+ …ΔËZ*} ) and 

Gaussian noise (assumed to have 0 mean and unknown variance) can be collected into 

the hyperparameter vector, 𝜃, meaning the normalization factor 𝒫(𝒟) is more precisely 

stated as 𝒫(𝒟|𝜃) (called the “evidence for 𝜃“. Monte Carlo methods could be used to 

integrate over the 𝜃 -space but are considered to be too compute expensive for 

applications to most real datasets. Instead, Wie and Ghahramani use two approaches to 

determine the optimal values for 𝜃 : 1) Laplace Approximation and 2) Expectation 

Propagation. For optimal hyperparameters 𝜃∗ , prediction of ordinal class is explicitly 

stated as:  

𝑦l� = 𝑎𝑟𝑔𝑚𝑎𝑥	𝒫F𝑦� = 𝑖|𝒙�, 𝒟, 𝜃∗I																(31) 

3. Ordinal Regression Boosting (ORBoost) with “All Margins” (ORBALL) was developed by Lin 

and Li [48]. Per the authors, ORBoost is essentially an extension of the RankBoost 

algorithm developed by Freund, et. al [49]. Their algorithm estimates a set of “ordered” 

weak binary classifiers (binary variable is set to mimic, label ordering) based on subsets 

of the feature set. The classifiers are iteratively accumulated using weighting to maximize 

classification accuracy within the training set. Training is stopped when addition of new 
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weak classifiers fails to make meaningful improvements in training set classification 

accuracy. 

4. For LODML, training samples are segmented into “target neighborhoods” with as many 

as q samples in each target neighborhood, triplet loss constraints are developed to 

preserve the class ordering of labels, within the target neighborhoods [3]. For the 

constraints, Nguyen et. al. use a Mahalanobis distance metric of the form:  

𝑑𝑴+ F𝒙5, 𝒙�I = F𝒙5 − 𝒙�I
𝑻𝑴F𝒙5 − 𝒙�I = 〈𝑴, F𝒙5 − 𝒙�IF𝒙5 − 𝒙�I

𝑻〉												(32) 

	where	𝑴  is symmetric, positive semidefinite. For ℛ , the set of constraints, their 

algorithm solves the problem:  

											min 𝛼	tr(𝑴) +
1
𝑚 r 𝜉5,�,§

(5,�,§)∈ℛ

																(33) 

𝑠. 𝑡. 𝑑𝑴+ (𝒙5, 𝒙§) − 𝑑𝑴+ F𝒙5, 𝒙�I ≥ 1 − 𝜉5,�,§ 									(34) 

																				𝜉5,�,§ ≥ 0, (𝑖, 𝑗, 𝑙) ∈ ℛ																							(35) 

																																				𝑴 ≽ 0																																(36) 

Nguyen et. al. also produced nonlinear versions of these algorithms which employ the kernel 

trick, much like SVM. LODML performs on par with the nonlinear version and has test results that 

span a large number of test datasets, so LODML is used in this assessment. 

 

6.4.  BENCHMARK RESULTS 

Fig 5 compares MZE for OHPLnet versus the top performers for the individual data sets. The 

OHPLnet  results are based on executing the algorithm using a five-fold cross validation strategy. 

Because neural network solutions are dependent on their starting weights, a researcher will 
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typically develop multiple models, then use a predetermined selection criterion to choose the 

best model. The initial variant of OHPLnet tended to have inconsistent results. For every good 

model result, there tended to be a result that was disappointing. For this exercise, the algorithm 

was executed 50 times, on each fold and the 20 best results, based on training set MAE, was 

selected.  

For the small “traditional” ordinal data sets (i.e., not “CPU Small” or “Census 10”), OHPLnet 

performs on par with the more complex algorithms. It is the larger data sets with larger numbers 

of ordinal classes where OHPLnet  achieves demonstrably better results. When applied to the 

CPU Small OHPLnet  improves MZE by 27% over GPOR (the second-best performing algorithm; 

26% over POM).  

 

Table 4 MZE Results for OHPLnet versus Benchmark Algorithms 

 SVMOP GPOR ORBALL Mean* LODML OHPL 

CPU Small 0.631 0.588 0.654 0.634 0.569 0.428 

Census 10 0.771 0.749 0.774 0.774 0.7373 0.635 

Cars 0.003 0.037 0.012 0.038 0.028 0.024 

Wine-Red 0.358 0.394 0.334 0.374 0.432 0.431 

ERA 0.745 0.712 0.760 0.752 0.828 0.722 

LEV 0.367 0.388 0.391 0.381 0.490 0.399 

SWD 0.424 0.422 0.439 0.437 0.529 0.422 

 

Table 2 compares MZE for OHPLnet versus the top performers. When applied to solve the 

Census 10 problem, OHPLnet improves MAE by 16% over GPOR (and 18.3% over the mean score). 

OHPLnet performs even better when using MZE, where the score improves by almost 50% versus 



 
 

63 

the best benchmark algorithms (both are either best of the 16 reported or differ from best by 

less than 1%). The  

When MZE scores differ as much as reported for the CPU Small and Census 10 data sets, it  

should be expected to see improved MAE values, since there are significantly fewer values, that 

have a nonzero MAE contribution.  

 

Table 5 MAE Results for OHPLnet versus Benchmark Algorithms 

 SVMOP GPOR ORBALL Mean* LODML OHPL 

CPU Small 1.06 0.92 1.04 1.05 0.895 0.735 

Census 10 1.64 1.64 1.51 1.683 1.597 1.247 

Cars 0.003 0.04 0.01 0.04 0.034 0.024 

Wine-Red 0.41 0.42 0.37 0.42 0.516 0.488 

ERA 1.61 1.24 1.25 1.366 1.836 1.610 

LEV 0.40 0.42 0.43 0.418 0.622 0.438 

SWD 0.45 0.44 0.46 0.464 0.616 0.459 

 
 

It can be useful to combine MZE and MAE, into a single metric by taking the ratio of the two 

(MAE/MZE; see Table 6). This new metric is essentially equivalent to a conditional error (error for 

incorrect classifications). For the CPU Small, this ratio is 1.16 (so MAE is 16% above MZE). The 

same ratio for the mean of the 15 models is 1.66 and the best ratio of the four top algorithms is 

1.56 (so 56% above the MZE). Equivalently, on the Census 10 dataset, the MAE/MZE ratio for 

OHPLnet is 1.15, while the best ratio for the four benchmark algorithms is 1.95. For these larger 

datasets, even when restricting the assessment to mean error of misclassified records, OHPLnet 
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represents a significant improvement over the best existing algorithms. For some applications of 

ordinal classes, ranges of values are group into important classes. Net Promoter Score reviewed 

in Chapter 8 is a good example of this process. In those cases, the error in misclassification has a 

very high degree of importance, since it should lead to better results in the grouped classes. 

 

Table 6 MAE/MAE Results for OHPLnet versus Benchmark Algorithms 

MAE/MZE SVMOP GPOR ORBALL Mean* LODML OHPL 

CPU Small 1.680 1.565 1.590 1.656 1.573 1.099 

Census 10 2.127 2.190 1.951 2.174 2.166 1.121 

Cars 1.000 1.081 1.000 1.053 1.183 1.000 

Wine-Red 1.145 1.066 1.108 1.123 1.194 1.159 

ERA 2.164 1.742 1.645 1.816 2.217 1.034 

LEV 1.090 1.082 1.100 1.097 1.269 1.098 

SWD 1.061 1.043 1.048 1.062 1.158 1.088 
 

During follow up analysis, it was discovered that while the OHPLnet algorithm did achieve the 

0.745 MZE and 0.769 MAE scores on the ERA dataset that  were reported in Ordinal Hyperplane 

Loss [38], these scores were invalid due to the algorithm failing to establish and maintain the 

proper ordering of classes (the highest class had a hyperplane centroid value that was lower than 

the prior hyperplane centroid). The correct values are reported in Table 4 and Table 5.  
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6.5. APPLICATION TO LARGE DATASETS 

To illustrate that OHPLnet is capable of analyzing large datasets, an 80% training sample from 

the Census 10 dataset was replicated 11 times to create a training dataset of 200,464 records. 

The first replication was used as is. For each of the other 10 replications, a small amount of 

gaussian “noise” was added to ensure that the algorithm did not achieve an artificially fast 

convergence to an optimal solution due to the fact that the dataset had 11 identical records for 

each record from the original set (doing so would effectively mean the algorithm was executing 

11 iterations through the dataset, with each iteration over the derived dataset). The algorithm 

was set to complete a comparable number of iterations that resulted from the development of 

the regular sample classifier for the Census 10 dataset. When processing on the same computer, 

the algorithm scaled linearly in terms of time to converge, taking roughly 11 times the average, 

for each fold of the 5-fold cross validation, of the Census 10 dataset. In terms of classifier MZE 

and MAE, the results were virtually identical to the results for the 5-fold cross validation. This 

test effectively confirms the ability to scale DNNs to address very large ordinal classification 

problems [38]. 
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Figure 22 Time to Complete 500 Epochs by Number of Records (K records) 

 

As can be seen in Figure 22, OHPLnet scales linearly with batch size, as would be expected 

from a DNN.  
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Chapter 7. EVOLUTION OF OHPLNET 

7.1. MINI-BATCH OHPLNET 

The initial work on OHPLnet provided a meaningful improvement over the best ordinal 

classifiers that are available today, but the methodology had some concerns that needed to be 

addressed. All of the benchmark data sets were small in size, so the initial algorithm design was 

able to use the entire dataset, for calculating the hyperplane centroids for each batch submission. 

Since the design for that part of the algorithm used straightforward matrix operations on 

structured data, the conceptual investigation could be conducted without concern for that the 

standard benchmark datasets that were too large to run in a single pass. To apply the original 

version to a very large dataset (e.g., one million records), algorithmic changes were going to be 

required (e.g., incorporate efficient matrix multiplication, that may be distributed to multiple 

computing nodes).  

A primary example of a dataset that could not be analyzed using OHPLnet as it was originally 

constructed would be medical image files. To test the practical threshold of the OHPLnet design, 

a simple classification of medical images was examined. A fully dedicated computer, with an 

NVIDIA 1080 ti GPU that has 10 GB of GPU memory, could not process 2,000 medical images, 

through a Convolutional Neural Network, in a single batch. The practical limit for grey scale images 

that were 176 by 176-pixels was 500 images in a single batch.  

In addition, the planning phase of the additional research included three different strategies 

for addressing the requirement to establish hyperplane centroids and allow them to update as the 

algorithm progressed, without the requirement of processing the entire dataset in a single 
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execution and update of the DNN. Each strategy provides marginal success in the goal, but overall 

the algorithms did not perform as well as expected on one of the benchmark datasets (Red Wine 

Rating), indicating that there may be a unique challenge within that dataset, that needed to be 

overcome.  

The first approach was the development of a simple mini-batch variant of the original OHPLnet.  

This approach was chosen as the first attempt due to the pervasive use of mini-batch processing 

within the Deep Learning community, but more importantly, that mini-batch  based deep neural 

nets have a solid history of providing improved generalizability. As such, the approach may 

overcome the limitation of OHPLnet on the one dataset where it under performed, making it an 

algorithm that provide better generalization than OHPLnet. Developing the new variant required 

the restructuring of the HCL estimation to enable it to use small batches instead of the full dataset. 

These small batches may not include data from all class labels. 

Many datasets are unbalanced in terms of the counts of records by class and frequently 

researchers must deal with highly unbalanced data. All of the benchmark datasets have some 

degree of imbalance in the class labels so they made appropriate test cases to ensure the new 

algorithm would properly address imbalances. To address this issue, the data labels were used to 

calculate an integer “distance” between adjacent hyperplane centroids that were present in the 

mini-batch, where the difference in label value is more than 1. For example, if the full dataset 

contained six distinct class labels, ‘0’-‘6’, but the mini-batch only contained records with values ‘2’ 

and ‘4’, then instead of requiring a minimum one-unit distance between the respective 

hyperplane centroids, the threshold was set to (4 − 2) ∗ 1.  
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OHPLnet Mini-Batch ALGORITHM: Iterative Algorithm 
Hyper-Parameters: h – number of hidden layers 
lh – number of nodes per layer  
𝛼 – prioritization weight for HCL 
lr – learning rate 
m – HC margin 
γ– point margin proportion 
bs – batch size 
Input: Rescaled training data {(xi,yi )|i=1,…,n} 

Parameters h, lk, 𝛼, lr, {lk = 1,…h} 
Begin: 
 Randomize weight (W) and bias (b) in each DNN node 
 While not converged do  

OHPLnet = 0, HPL = 0, HCL = 0 
  Select mini-batch and one hot encode mini-batch labels  

Feed mini-batch through selected ANN 
From ANN Output, Calculate HCL:  

Adjacent Distance: Calculate difference in adjacent centroids  
Adjacent Margin: Calculate adjacent label and multiply by m 
Calculate HC error: Adjacent Distance – Adjacent Margin 
Sum positive values, as HCL 

From ANN Output, Calculate HPL: 
Calculate distances from respective hyperplane centroids 
Sum positive values, as HPL 

OHPLnet = HPL + 𝛼*HCL 
  Calculate Stochastic Gradient Descent (SGD) 
  Update W and b via SGD and lr 
 Repeat until training sample exhausted 
 Check convergence 
End: Output W and b 
 
 

The resulting algorithm had highly mixed results when applied to the benchmark datasets. It 

performed extremely well on the Cars dataset that has a very high accuracy rate for virtually every 

ordinal classification methodology. On the more challenging data sets, the results were very 

sporadic. Not only was classification accuracy not as high as for OHPLnet, there was a very high 

degree of variability in results across repeated executions of the algorithm at the point that the 
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algorithm reached its stopping criteria. Part of the issue is that the algorithm struggled to establish 

the proper ordering of the hyperplane centroids.  

In addition, the total training error (loss) at the end of an iteration through the data, does not 

have the desired correlation with classification accuracy (both in terms of MZE or MAE values for 

the training set).  Figure 23 is a simple plot of Training MZE and MAE versus total training error, 

for 20 consecutive model developments. The dataset is split into 80% training and 20% validation, 

with the same partitioning used for all 20 models. Note that this analysis did not include the model 

selection criterion that were used to benchmark the initial variant of OHPLnet. For that effort, a 

100-sample test set was randomly selected from the training sample and used to select the best 

candidates for inclusions. The point of this effort is to demonstrate lack of relationship between 

the available model metrics and the scoring of a completely independent set of data. It does not 

require sophisticated statistical analysis to determine the lack of relationship between total error 

and classification error (see Figure 23).  
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Figure 23 SWD Training Dataset: MZE and MAE vs Total Training Error 

 

As would be expected, the same story holds true for the relationship between training error 

and validation set classification error. The slight increasing slope in the Validation set trend line in 

Figure 24, is not sufficient information to make the determination to use training error to choose 

the best model.  

 



 
 

72 

 
Figure 24  SWD Validation Dataset MZE and MAE vs Total Training Error 

 

The other option is to use Training MAE or MZE to select the best classifier from a set of models 

that are generated from successive executions of the OHPLnet Mini-Batch algorithm. As can be 

seen in Figure 25 and Figure 26, the same lack of relationship holds true.  
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Figure 25 SWD Validation Dataset MZE and MAE vs Training Dataset MAE 

 

 

 

Figure 26 SWD Validation Dataset MZE and MAE vs Training Dataset MZE 
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It is highly plausible that the mini-batch variant was successful in uncovering local ordered 

relationships in the mapped space, but some of those local relationships negated each other, 

resulting in a model that fit the ordering of the most “localities” with the same or similar 

directional ordering. A key anecdotal point of evidence to supports this conclusion is the dramatic 

increase in total loss after a sort of the data. 

 

7.2. TWO-STAGE  OHPLNET 

The initial version of OHPLnet was designed to create the proper ordering and spacing of the 

hyperplane centroids in stage one. In stage two, the algorithm fixes the hyperplane centroid 

values and passes the model weights and centroid values to a separate algorithm. In addition, 

the new algorithm provides results that have a strong relationship between the training set MAE 

values and the values for the validation set. Figure 27 plots MZE and MAE for the Census 

validation dataset. As can be seen there exists a strong relationship where a low training set MAE 

indicates a low validation set MAE. The MZE trend isn’t as steep, but the extremely low variation 

from the trend line suggests that the trend, while smaller is still reasonably reliable.  
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Figure 27 Validation Set MZE and MAE versus Training Set MAE 

 

OHPLnet Two Stage ALGORITHM: Iterative Algorithm 
Stage 1 – Hyperplane Centroid Ordering 
Hyper-Parameters:  
h – number of hidden layers 
lh – number of nodes per layer  
𝛼 – prioritization weight for HCL 
lr – learning rate 
m – HC margin 
bs – batch size 
Input: Rescaled training data {(xi,yi )|i=1,…,n} 
 Weights (to handle imbalanced labels) 
 One hot encoded labels 

Parameters h, lk, 𝛼, lr, {lk = 1,…h} 
Begin: 
 Randomize weight (W) and bias (b) in each DNN node 
 While ordered spacing less than 1 
   OHPL = 0, HPL = 0, HCL = 0 
  Select large batch 
   Calculate large batch output from network 
                            Calculate HCL:  

Adjacent Distance: Calculate difference in adjacent centroids  
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Adjacent Margin: Calculate adjacent label and multiply by m 
Calculate HC error: Adjacent Distance – Adjacent Margin 
Sum positive values, as HCL 

 Repeat until training sample exhausted 
 Check convergence 
End: Output W and b 

 
Stage 2 – Minimize Point Distance 
Hyper-Parameters:  
h – number of hidden layers 
lh – number of nodes per layer  
lr – learning rate 
γ– point margin proportion 
bs – batch size 
Input: Rescaled training data {(xi,yi )|i=1,…,n} 
 Weights (to handle imbalanced labels) 
 One hot encoded labels 
 Stage 1 model weights 
 Hyperplane Centroids 

Parameters h, lk, 𝛼, lr, {lk = 1,…h} 
 
 

  Select mini-batch (bs) 
Calculate mini-batch output from network 
Calculate distances from respective hyperplane centroids + γ 
Sum positive values, as HPL 

Calculate Stochastic Gradient Descent (SGD) 
  Update W and b via SGD and lr 
 Repeat until training sample exhausted 
 Check convergence 
End: Output W and b 
 
 

Since the initial hyperplane centroid solution may not be optimal after a number of iterations 

of reducing point distance error, the algorithm needs to be able to update the hyperplane 

centroids, finding a potentially new solution that uses the current state as a starting point. The 

final two-stage version of OHPLnet was developed performs the same two-stage process, but 

also tracks model development performance. If performance does not improve within a 

prescribed number of iterations, the algorithm attempts to re-estimate the hyperplane centroids.  
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In current design of OHPLnet, the hyperplane centroids are estimated on the entire dataset, in 

a full batch processing, when possible. For very large datasets or large image files that cannot be 

processed in a single batch, a “maximum” batch strategy is employed.  In experiments, the ordinal 

class ordering is established very quickly, but subsequent updates, when needed, will progress 

more slowly, taking a significantly larger number of epochs to reach a solution. For some datasets, 

this re-estimation of the hyperplane centroids required so may iterations that a processing limit 

was added. If the re-estimation does not occur in the allowed number of epochs, then the 

hyperplane centroids, that were in use prior to the attempted re-estimation are used. During 

experimentation, results suggest that reaching a point where hyperplane centroids cannot be re-

estimated are indications that the algorithm has reached a local minimum and the condition may 

need to become one of the stopping criteria, for the algorithm.  

 

7.3. OHPLALL 

The simple mini-batch OHPLnet algorithm provides mixed result when applied to the same 

benchmark dataset found in Chapter 6 experimental results. In Chapter 10, OHPLall is used to 

predict the classification of medical images. The image sizes were very large (1 MB each) and 

could not be compressed without risking the loss of important detail, that is required for 

classification. In order to complete the analysis, a new mini-batch version of OHPLnet was 

needed. In addition, the original Mini-Batch OHPLnet required a sort of each mini-batch (labels 

and training data), before submitting the data for processing by the neural network. While this 

process could be repeated for the new algorithm, one goal for this research was to improve 
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OHPLnet by simplifying the algorithm and remove unnecessary processing steps. Sorting small 

batches does not require high compute time but running over 1,000 sorts per iteration through 

the data does have an impact. This new variant of OHPLnet is called OHPLall. 

To provide a natural prioritization on the hyperplane centroid ordering the new algorithm 

changed the HCL loss component to compare all classes that were represent in the mini-batch to 

each the other classes. The margin must be appropriately adjusted to account for ordinal label 

differences that are greater than 1 (i.e., cases were the labels differ by more than 1). For each 

mini-batch, the new mathematical formula for HCL is found in equation (37). 

 

𝐻𝐶𝐿 =rmaxF𝐻𝐶5 − 𝐻𝐶� + (𝑗 − 𝑖) ∗ 𝛿, 0I
5Ô�

												(37) 

 

OHPLall ALGORITHM: Iterative Algorithm 
Hyper-Parameters: h – number of hidden layers 
lh – number of nodes per layer  
𝛼 – prioritization weight for HCL 
lr – learning rate 
m – HC margin 
γ– point margin proportion 
bs – batch size 
Input: Rescaled training data {(xi,yi )|i=1,…,n} 

Parameters h, lk, 𝛼, lr, {lk = 1,…h} 
Begin: 
 Randomize weight (W) and bias (b) in each DNN node 
 While not converged do  

OHPL = 0, HPL = 0, HCL = 0 
  Select mini-batch and one hot encode mini-batch labels  

Feed mini-batch through selected ANN 
From ANN Output, Calculate HCL:  

All HCL Distances: Calculate distances for all pairs of centroids  
All HCLs Margin: Calculate label differences and multiply by m 
Calculate HC error: Adjacent Margin – Adjacent Distance 
Sum positive values, as HCL 



 
 

79 

From ANN Output, Calculate HPL: 
Calculate distances from respective hyperplane centroids 
Sum positive values, as HPL 

OHPL = HPL + 𝛼*HCL 
  Calculate Stochastic Gradient Descent (SGD) 
  Update W and b via SGD and lr 
 Repeat until training sample exhausted 
 Check convergence 
End: Output W and b 

 

 

7.4. EXPERIMENTAL RESULTS FOR NEW VARIANTS OF OHPLNET 

In testing the centroid ordering was attained with minimal priority weighting of hyperplane 

centroid loss components. The experimental results demonstrate that the new variants of 

OHPLnet, particularly OHPLall, perform well on the benchmark data sets that we examined in 

Chapter 6. Two-Stage OHPLnet and OHPLall perform well across the seven benchmark datasets. 

While Two-Stage OHPLnet consistently provides the top performance, OHPLall comes in at an 

admirable second place for 6 of the seven datasets.  

 

 

 

 

 

 

 

 



 
 

80 

Table 7 MZE Results for New OHPLnet versus other OHPL Base Algorithms 

 OHPL OHPLnet 
Mini-Batch 

Two-Stage 
OHPL OHPLall 

CPU Small 0.542 0.518 0.573 0.516 

Census 10 0.646 0.723*  0.701 0.681 

Cars 0.024 0.012 0.003 0.014 

Wine-Red 0.444 0.542 0.358 0.418 

ERA 0.772 0.790 0.709 0.755 

LEV 0.412 0.544 0.362 0.412 

SWD 0.427 0.492 0.371 0.407 

* - Five of the 20 scores for Census 10 would have been rejected, if the goal were 
focused on best performing model. Their training set MZE and MAE scores were 
essentially equal to random assignment. If those values are removed, the resulting 
MZE and MAE values would be 0.665 and 1.170, respectively.  

 

The development of new OHPLnet variants lead to new algorithm, based on the same design 

principles with improved results. In addition, the new variants are more capable of analyzing very 

large datasets. 
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Table 8 MAE Results for New OHPLall versus other OHPLnet Base Algorithms 

 OHPLnet 
OHPLnet 

Mini-
Batch 

Two-Stage 
OHPLnet OHPLall 

CPU Small 0.763 0.701  0.814 0.709 

Census 10 1.267 2.002* 1.207 1.199 

Cars 0.024 0.012 0.003 0.014 

Wine-Red 0.520 0.539 0.384 0.457 

ERA 1.790 1.447 1.272 1.543 

LEV 0.460 0.677 0.382 0.442 

SWD 0.473 0.560 0.386 0.425 

 

 

 

  



 
 

82 

Chapter 8. OHPLNET ANALYSIS STRATEGIES 

In addition to designing two new very capable OHPLnet algorithms, this research includes the 

development and assessment of sampling strategies that could be valuable approaches to 

analyzing extremely large datasets. Each of the three strategies uses a sampling process designed 

to reduce the compute cost calculating and updating the hyperplane centroids, by reducing the 

size of the data sample that is used to calculate and update the hyperplane centroids. These 

strategies should also provide an opportunity for significant improvements in processing time on 

very large datasets.  

 

8.1. DOUBLE-BATCH SAMPLING STRATEGY 

With the inclusion of a two-tiered batch selection framework, the algorithm for OHPLnet 

Double-Batch is a modification of the original OHPLnet work. The most significant limiting factor 

in applying the original OHPLnet to a very large data set (e.g., one million records or more) is the 

ability of the computer to process all of the data to establish the hyperplane centroids, in a single 

pass. In this strategy, large batches of records (e.g., 10,000 records each) are chosen, without 

replacement. The large batch is used to calculate the hyperplane centroids each time a mini-batch 

is processed. Mini-batches sampled, without replacement, from the large batch and submitted for 

processing. In essence, the large batch is treated as though it were the full training set for the 

processing. Subsequent large batches are submitted and processed until all data within the 

training data set are processed. If the large batch size (number of records) is set to that of the 

training set size then the algorithm the same as using OHPLnet. 
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OHPLnet Double Batch ALGORITHM: Iterative Algorithm 
Hyper-Parameters:  
h – number of hidden layers 
lh – number of nodes per layer  
𝛼 – prioritization weight for HCL 
lr – learning rate 
m – HC margin 
γ– point margin proportion 
bs – batch size 
Input: Rescaled training data {(xi,yi )|i=1,…,n} 

Parameters h, lk, 𝛼, lr, {lk = 1,…h} 
Begin: 
 Randomize weight (W) and bias (b) in each DNN node 
 While not converged do 
   OHPL = 0, HPL = 0, HCL = 0 
  Select large batch and one hot encode large batch labels 

Feed large batch through selected ANN 
From ANN Output, Calculate HCL:   

Adjacent Distance: Calculate adjacent centroids distance 
Adjacent Margin: Calculate adjacent label, multiply by m 
Calculate HC error: Adjacent Distance – Adjacent Margin 
Sum positive values, as HCL 

  Select mini-batch (bs) within the large batch 
Feed mini-batch through selected ANN 

From ANN Output, Calculate HPL:   
Calculate distances from respective hyperplane centroids 
Sum positive values, as HPL 

OHPL = HPL + 𝛼*HCL 
  Calculate Stochastic Gradient Descent (SGD) 
  Update W and b via SGD and lr 

 Repeat until training sample exhausted 
 Check convergence 
End: Output W and b 
 

 

8.2. SINGLE STRATEFIED  SAMPLING STRATEGY 

The single stratified sampling variant employs a single stratified sample of the training set, at 

initialization of the algorithm. The same sample is used for all epochs (a single full iteration 
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through the training set) within the execution to termination. It is assumed that with a sufficient 

sample size (e.g., 10,000 records per class), that the hyperplane centroid solution would be a 

sufficient representation of the full dataset. In employing a single sampling for the entire 

execution of the algorithm, there is a risk that a rare event occurs, and the sample is not truly 

representative of the entire data, which could lead to reduced or even poor generalizability of the 

algorithm.  Since there is a single sampling event and the hyperplane centroids are estimated on 

a small sampling of the full dataset, relative to the full training set size. This speed consideration 

makes the development of this variant a worthwhile endeavor.  

 

OHPLnet Single Stratified ALGORITHM: Iterative Algorithm 
Hyper-Parameters:  
h – number of hidden layers 
lh – number of nodes per layer  
𝛼 – prioritization weight for HCL 
lr – learning rate 
m – HC margin 
γ– point margin proportion 
bs – batch size 
Input: Rescaled training data {(xi,yi )|i=1,…,n} 

Parameters h, lk, 𝛼, lr, {lk = 1,…h} 
Begin: 
 Randomize weight (W) and bias (b) in each DNN node 
 Select stratified batch and one hot encode batch labels 

OHPL = 0, HPL = 0, HCL = 0 
 While not converged do 

Iterate through dataset 
Feed stratified batch through selected ANN 

From ANN Output, Calculate HCL:   
Calculate difference in adjacent centroids  
Calculate adjacent label and multiply by m 
Calculate HC error: Adjacent Distance – Adjacent Margin 
Sum positive values, as HCL 

  Select mini-batch (bs) from full training set 
Feed mini-batch through selected ANN 
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From ANN Output, Calculate HPL:   
Calculate distances from respective hyperplane centroids  
Sum positive values, as HPL 

OHPL = HPL + 𝛼*HCL 
  Calculate Stochastic Gradient Descent (SGD) 
  Update W and b via SGD and lr 

 Check convergence 
End: Output W and b 
 
 
 

8.3. EPOCH STRATIFIED SAMPLING STRATEGY 

Epoch Stratified Sampling variant creates a new relatively large stratified sample of the training 

set at initialization of the algorithm (though not as large as the Single Stratified Sampling Strategy). 

A new stratified sample is created at the start of each epoch within the execution of the algorithm. 

Since the sampling is repeated, smaller strata sizes are used (e.g., 1,000 records per class). In doing 

so, unless the number of epochs is set very low, a larger number of records are used at some point 

in the model creation. The use of a larger percentage of the full training dataset should mitigate 

risk an undue influence from a rare sampling events that may include an unusual number of 

outliers. Like the Single Stratified Sampling Strategy, the hyperplane centroids are estimated on a 

small sampling of the full dataset, but the sampling changes with each epoch so over the course 

of the full execution of the algorithm the hyperplane centroids are based on a larger proportion 

of the data. While the sampling at the start of each epoch this provides allows for very large 

datasets without overwhelming the computing system.  
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OHPLnet Epoch Stratified ALGORITHM: Iterative Algorithm 
Hyper-Parameters:  
h – number of hidden layers 
lh – number of nodes per layer  
𝛼 – prioritization weight for HCL 
lr – learning rate 
m – HC margin 
γ– point margin proportion 
bs – batch size 
Input: Rescaled training data {(xi,yi )|i=1,…,n} 

Parameters h, lk, 𝛼, lr, {lk = 1,…h} 
Begin: 
 Randomize weight (W) and bias (b) in each DNN node 
 While not converged do 

Select stratified batch and one hot encode batch labels at the start of the epoch 
   OHPLnet = 0, HPL = 0, HCL = 0 
  Iterate through dataset 

Feed stratified batch through selected ANN 
From ANN Output, Calculate HCL:   

Calculate difference in adjacent centroids  
Calculate adjacent label and multiply by m 
Calculate HC error: Adjacent Distance – Adjacent Margin 
Sum positive values, as HCL 

  Select mini-batch (bs) 
Feed mini-batch through selected ANN 

From ANN Output, Calculate HPL:   
Calculate distances from respective hyperplane centroids  
Sum positive values, as HPL 

OHPL = HPL + 𝛼*HCL 
  Calculate Stochastic Gradient Descent (SGD) 
  Update W and b via SGD and lr 

 Check convergence 
End: Output W and b 
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8.4. EXPERIMENTAL RESULTS FOR OHPLNET VARIANTS 

Artificial neural networks are prone to having high variation in results, leading to a strategy of 

developing multiple models, which are validated against a validation sample that is selected from 

the training data (i.e., not the testing or validation sample that is used to test the performance 

of the final model that is selected) [50]. This can lead to a bit of a serendipitous approach to 

model development. OHPLnet shares some similarities with triplet loss, which uses relative 

position of similar and dissimilar samples to determine the error contribution of a triplet of 

points, in the mapped space. The process requires the use of “hard triplets” to optimize model 

performance. The identification of these hard triplets can make triplet loss challenge effectively 

use [51]. 

Similarly, OHPLnet is reliant on the identification of hyperplane centroids. Unlike triplet loss, 

identifying them is not based on a strategy of searching for specific data records to use in the 

analysis. The algorithm finds a mapped space where the hyperplane centroids exist, with the 

proper ordering and proper minimal spacing. At the same time, the algorithm is attempting to 

minimize the distances of individual points. The relative “push” to gain appropriate ordering and 

spacing for the hyperplane centroids is in direct conflict of the “pull” on the points to minimize 

distance from the average value for the point’s class. This likely contributes to the high variability 

in results when OHPLnet is applied to some datasets.  

Even with high initial weighting on the establishment of the hyperplane centroids (in some 

cases on order of 10Õ ), the results could have more variance than desired. This led to the 

development of a variable weighting of the hyperplane centroid loss, for early iterations of the 

algorithm, followed by decreased weighting, but at a level to maintain hyperplane centroid 
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ordering and minimum distance. The variant with variable weighting had some success and was 

being used when the discovery that lead to OHPLall was uncovered.  

The data in Table 9 illustrate this phenomenon. The same algorithm that produced unit 

minimum distances for all other datasets, included in this report as well as at least a dozen others, 

consistently fails to do so with the ERA dataset. The minimum distance of under 0.3 is actually 

lower than the point margin that was initially used in the component of the algorithm that 

focuses on a point’s distance from its corresponding hyperplane centroid. Setting the margin for 

point distance to 0.1 or less does not change the result. More importantly, on an 800-record 

training set, the multiplier weight for hyperplane centroid distance was initially set to 1,000.  

 

Table 9 ERA Dataset Double Batch Results for 5 Algorithm Executions 

Training Set 
MZE 

Training Set 
MAE 

Validation 
Set 

MZE 

Validation 
Set 

MAE 

Minimum 
Hyperplane 

Centroid 
Distance 

0.753 1.434 0.746 1.541 0.212 

0.747 1.415 0.771 1.595 0.210 

0.743 1.429 0.727 1.493 0.259 

0.741 1.438 0.761 1.576 0.219 

0.756 1.418 0.746 1.517 0.202 
 

 

This finding presents a possible additional interpretation/application of OPHL base results. The 

ERA data set provides a scenario where extreme weighting is used to bias the loss almost 

exclusively on the ordering a minimum distance requirement for the hyperplane centroids. Some 
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degree of minimizing  point distance from the point’s corresponding hyperplane centroid, can be 

included. Otherwise, the algorithm may reach a solution where no points occur between 

hyperplane centroids, for the maximum and minimum  classes, which would effectively turn an 

ordered prediction of three or more classes into a binary prediction. In the ERA dataset, the 

predictive features don’t have sufficient “information” or “signal” to provide the desired 

separation of classes (hyperplane centroids). In a case like this, the results indicate that relative 

to the available set of predictive features, the classes may not be as distinct as the labels imply. 

In some scenarios, there may even be an argument for combining the two classes into one. An 

example of this last scenario is explored in Chapter 10. 

Through the evolution of the OHPLnet algorithms to the eventual development of OHPLall, 

algorithm accuracy in terms of MZE and MAE values for scored holdout samples did not 

necessarily change, but algorithm consistency did. The for the publication of Ordinal Hyperplane 

Loss, the benchmark testing relied on a separate 100 record test sample to identify versions of 

models that were generated using the same training set. For some datasets, like CPU Small and 

Census 10, the resulting model scores were relatively stable. For others like the Red Wine dataset, 

mean MZE was 0.444 with a standard deviation for 20 models of almost .11 (25% of the MZE 

score). The benchmark process selected the 20 best models from batches of five executions of 

OHPLnet , to arrive at the score, reported in the paper.  

Table 10 and Table 11 report mean MZE and MAE, respectively, for 20 iterations of each 

algorithm for the five variants of OHPLnet and OHPLall, across the seven benchmark datasets.. 

Unlike the process for the benchmarking, that was done for Ordinal Hyperplane Loss, these 
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results are reported without employing a selection process to choose a best model for a set of 

models. OHPLnet has consistently high performance across all seven datasets.  

 

Table 10 MZE Results for OHPL/OHPLall versus Analysis Strategies Using OHPL 

 OHPL 
OHPLnet 

Mini-
Batch 

Two-
Stage 

OHPLnet 
OHPLall 

OHPLnet 
Double 
Batch 

OHPLnet 
Epoch 

Stratified 

OHPLnet 
Single 

Stratified 

CPU Small 0.542 0.518 0.573 0.516 0.544 0.535 0.534 

Census 10 0.646 0.723*  0.701 0681 0.775 0.668 0.678 

Cars 0.024 0.012 0.003 0.014 0.002 0.007 0.011 

Wine-Red 0.444 0.542 0.358 0.418 0.531  0.446  0.459 

ERA 0.772 0.790 0.709 0.755 0.769 0.750 0.758 

LEV 0.412 0.544 0.362 0.412 0.558  0.417 0.422 

SWD 0.427 0.492 0.371 0.407 0.536 0.442  0.451 

* - Five of the 20 scores for Census 10 would have been rejected, if the goal were 
focused on best performing model. Their training set MZE and MAE scores were 
essentially equal to random assignment. If those values are removed, the resulting 
MZE and MAE values would be 0.665 and 1.170, respectively.  
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Table 11 MAE Results for OHPLall versus other OHPLnet Base Algorithms 

 OHPL 
OHPL 
Mini-
Batch 

Two-
Stage 
OHPL 

OHPLall 
OHPLnet 
Double 
Batch 

OHPLnet 
Epoch 

Stratified 

OHPLnet 
Single 

Stratified 

CPU Small 0.763 0.701  0.814 0.709 0.768 0.744 0.757 

Census 10 1.267 2.002* 1.207 1.199 1.779 1.199 1.162 

Cars 0.024 0.012 0.003 0.014 0.002 0.007 0.011 

Wine-Red 0.520 0.539 0.384 0.457 0.636 0.512 0.533 

ERA 1.790 1.447 1.272 1.543 1.660 1.564 1.619 

LEV 0.460 0.677 0.382 0.442 0.706 0.456 0.451 

SWD 0.473 0.560 0.386 0.425 0.644  0.493 0.498 

 

Like Epoch Stratified OHPLnet, Two-Stage OHPLnet has excellent consistency in performance, 

as demonstrated by the low standard deviation across the results of 20 iterations of the 

algorithms (see Table 12 and Table 13). The major difference in the performance of Epoch 

Stratified OHPLnet and Two-Stage OHPLnet comes in one of the experiments, discussed later. In 

that experiment, OHPLnet Stratified failed to consistently establish the hyperplane ordering for 

a very challenging dataset. It is this failure that lead to the change in design that differentiates 

Two-Stage OHPLnet from the other algorithms.  
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Table 12 Standard Deviations of MZE 

 OHPL 
OHPL 
Mini-
Batch 

Two-
Stage 
OHPL 

OHPLall 
OHPLnet 
Double 
Batch 

OHPLnet 
Epoch 

Stratified 

OHPLnet 
Single 

Stratified 
CPU 

Small 0.007 0.006 0.006 0.009 0.010 0.006 0.008 

Census 
10 0.009 0.102 0.012 0.007 0.018 0.007 0.007 

Cars 0.024 0.008 0.005 0.016 0.002 0.005 0.007  

Wine-
Red 0.0967 0.102 0.011 0.021 0.035 0.003 0.032 

ERA 0.036 0.021 0.016 0.009 0.017  0.010  0.014 

LEV 0.032 0.113 0.016 0.031 0.065 0.014 0.015 

SWD 0.018 0.184 0.011 0.018 0.069 0.016 0.016 

 

 

Table 13 Standard Deviations of MAE 

 OHPL 
OHPL 
Mini-
Batch 

OHPLall 
Two-
Stage 
OHPL 

OHPLnet 
Double 
Batch 

OHPLnet  
Epoch 

Stratified 

OHPLnet 
Single 

Stratified  

CPU Small 0.017 0.010 0.018 0.006 0.015 0.008 0.015 

Census 10 0.036 0.144 0.018 0.043 0.147 0.018 0.024 

Cars 0.024 0.008 0.016 0.005 0.002  0.005 0.007 

Wine-Red 0.071 0.156 0.024 0.012 0.056  0.003 0.041 

ERA 0.211 0.069 0.041 0.011 0.099 0.023 0.035 

LEV 0.047 0.113 0.034 0.018 0.122 0.014 0.016 

SWD 0.019 0.203 0.022 0.011 0.128 0.025 0.022 
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As reported in Table 14 Sample Strategy for Double Batch and Stratified Batches, the ERA 

dataset has the lowest number of records per class, at just over 111 records/class. Four other 

datasets have under 500 records/class. For these five datasets, the maximum number of records 

per class in the stratified data is set to ½ of their average number of records per class. For the 

other two, the maximum strata size is set to 10% of the average number of records per class, 

rounded up to the nearest integer multiple of 100. In each iteration, a new stratified sampling is 

generated. This strategy essentially ensures that a single poor sampling does not impact algorithm 

performance in terms of accuracy of prediction.   

To overcome this issue, multiple, independent sorted copies of the data were appended into a 

larger file and the algorithm fit a model without sorting. While this revised process provided 

stability, the solution was not much of an improvement over the regular mini-batch. It simply 

provided a more stable output, but rarely provided exceptional results. In addition, the replication 

data strategy is counter to the goal of analyzing large data sets in a minimal amount of time. While 

OHPLnet Mini-Batch is not an abject failure, it is not a desirable solution to address the inclusion 

of hyperplane centroids for analysis of large datasets. 

Closely related to the OHPLnet Mini-Batch strategy is the OHPLnet Double Batch strategy. The 

basic premise of this approach is to first select a relatively large sample from the available data 

(5,000-10,000 records depending on the number of labels), then run mini-batches of data in the 

large sampling to reduce distance to the hyperplane centroids that are determined by the larger 

batch. As documented in Table 1, only two of the datasets exceed 2,000 records in size. For the 

seven analyzed datasets, the “large” batches were set to be ½ of the number of records in the 

training sets. Each of the two datasets that exceed 2,000 records, also exceed 8,000 records, 
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meaning the training sets would exceed 6,400 records. For the two largest datasets, CPU Small 

and Census 10, the large batch size was set to 1,024 records (see Table 10).  

 

Table 14 Sample Strategy for Double Batch and Stratified Batches 

 
Number 

of 
Records 

Number 
of 

Classes 

Average 
# Records per 

Class 

Large 
Batch 
Size 

Maximum 
Strata 
Size 

CPU Small 8,192 10 819.2 1,024 100 

Census 10 22,784 10 2,278.4 1,024 300 

Cars 1,728 4 432 692 200 

Wine-Red 1,599 6 266.5 640 100 

ERA 1,000 9 111.1 400 50 

LEV 1,000 5 200 400 100 

SWD 1,000 4 250 400 125 

 

 

OHPLnet Double Batch is variant of OHPLnet that produced the top results for the Cars dataset 

(reported later, in Table 10 and Table 11). Though the results for the Cars dataset is not the 

compelling motivation for OHPLnet or OHPLall, the vast majority of algorithms that were tested 

by Gutierrez, et. al., performed very well on this dataset [9], so it any methodology that would be 

considered to be a top performer would likely perform very well on it, too.  

It also performed well on the other datasets with better consistency in results, but the 

occasional very poor result could still occur. The OHPLnet Double Batch algorithm provides a more 

stable diagnostic result for selecting the ‘best’ performing model from a set of trained models, 
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using the same training set. Across all seven benchmark datasets, summing training set MZE and 

MAE provide a good metric for selecting the best performing model out of a set of models. To 

illustrate, from 20 models, that were created using the same training and validation samples of 

the SWD data set. Summed training MZE and MAE are rescaled to a minimum value of zero and a 

maximum value of one for data.  Similarly, validation set MZE, validation set MAE and summed 

MZE and MAE, from the validation set were rescaled. The regression trend line for each of the 

validation metrics, regressed on the training set metric are virtually the same line and several of 

the data points are almost perfectly overlapped (see Figure 28). While OHPLnet Double Batch is 

not the winner across the board, in terms of model accuracy, the ability to confidently select a 

model that should generalize to other data, without the use of a separate test sample, is very 

compelling.  

 

 

Figure 28 SWD Dataset Validation MAE, MZE and MAE + MZE vs Training set MAE + MZE.  
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All values rescaled to a [0,1] interval.  
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Chapter 9. APPLICATION: CLASSIFICATION OF MEDICAL IMAGES 

The American Cancer Society reports that in 2017 over 300,000 people in the United States 

were diagnosed with breast cancer and over 40,000 people died from the disease [52]. Due to 

improvements in treatment and early detection, the death rates that are attributed to breast 

cancer have declined 39% from 1989 to 2015.  

Radiologists use the first six categories of the seven-point BI-RADS (Breast Imaging Reporting 

and Data System) rating system to classify mammography images.  The seventh category is used 

for images that are of breast images with a known malignancy, that was confirmed via a biopsy 

[53]. The zero category is used for images where classification is uncertain and additional 

information is required. Categories one through six are a sequence of ordinal classes.  

 

Table 15 BI-RADS Category Scale [53] 

Category Definition 

0 Additional imaging evaluation and/or comparison to prior mammograms is needed. 

1 Negative 

2 Benign (non-cancerous) finding 

3 Probably benign finding – Follow-up in a short time frame is suggested 

4 Suspicious abnormality – Biopsy should be considered 

5 Highly suggestive of malignancy – Appropriate action should be taken 

6 Known biopsy-proven malignancy – Appropriate action should be taken 
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The Cancer Imaging Archive (TCIA) is a public access database of curated medical images [54] 

[55], with accompanying annotations:  

 

Table 15: CBIS-DDSM Annotations [54] [56] 

Annotation Relation 
to Scan Event 

Definition/Values 

Side Prior to Left or right breast 

View Prior to CC - craniocaudal 
MLO - mediolateral oblique 

Density Rating Prior to Breast density rating 

Abnormality Type After Calcification (2 annotations) – Type and distribution 
Mass (2 annotations)  – shape and margin 

Assessment After BI-RADS rating (0, 2-5) 

Pathology 
After Image 
Assessment 

Benign Without Callback 
Benign 
Malignant 

 

The CBIS-DDSM (Curated Breast Imaging Subset of DDSM) is found within the TCIA and 

contains over 2,600 images that are selected by a trained mammographer [55, 56]. The data were 

released in 1997. Even though they are more than 20 years old, they remain a valid source of 

curated mammography data for researchers [57]. Several studies analyzing the CBIS-DDSM data, 

have been published in the past year or two [58, 59]. 

In a very recently published paper (Feb 10, 2019), Agarwal et. al. used pretrain VGG16, 

ResNet50 and InceptionV3 to produce classifier models to detect abnormal masses, in 

mammograph images. The work examined confirmed abnormal masses found in the CBIS-DDSM 

database.  Their research reported a true positive rate classification of 0.98 when using the 
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classifier that was built using the InceptionV3 algorithm [60]. After training the classifier, they 

scored 224 by 224-pixel image patches from the full mammography data in INbreast database 

[61] to determine the generalizability of their models [60]. 

Shen et. al. built a successful classifier that detected malignant abnormalities within full 

mammography scans. They trained their classifier on reduced size mammography images from 

the CBIS-DDSM database, with an average size reduction of approximately .29 (average reported 

image size of approximately 4,000 by 3,000 pixels reduced to 1,152 by 896 pixels). Patches of 224 

by 224 pixels were generated from the reduced images. They used a sampling strategy to select 

malignant, benign, and background patches for training their classifier using Resnet50 and 

VGG16.  The classifier was then used to  [58] classify images from the INbreast database.  

Li et. al. used Radiographic Texture Analysis combined with CNN based classifier, examining 

only the  craniocaudal images, in an effort to predict the presence of unilateral breast cancer 

[62]. Their Radiographic Texture Analysis employed a stepwise feature selection using Support 

Vector Machines. Their research demonstrated meaningful improvement, in prediction AUC 

using the combination of the two classifiers, over-using either classifier on its own.  

The goal of this research is to analyze mammography images from the CBIS-DDSM database 

that have been classified by radiologists, to build an image classification model predicts BI-RADS 

categories two through five. The CBIS-DDSM database contains images that in the DICOM format 

and classified to have suspicious masses or calcifications with provided labels.  
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There are three types of images, that differ by size:  

1. Full mammography images 

2. Images that are cropped for standardization for use in computer-aided diagnosis and 

detection (CADx and CADe, respectively). Regions of interest are at the centroid of the 

image [57]. 

3. Regions of Interest (ROI) images are smaller images that focus more directly on the 

abnormality [57]. 

The calcification image data provides almost 230 more images than the mass abnormality 

data. Due to the larger sample of data, the calcification data are examined. Based on 

examination of the image data, the cropped images are relatively large images for the 

purposes of this type of classification. Row pixel counts are in the 4,000 to 7,000 range and 

column pixel counts of 2,000 to 4,500. Attempting to use these images, with the available 

computer resources would require that the images be reduce by a factor of seven. Malignant 

abnormalities tend to differ from benign abnormalities in their “mathematical geometry” [57]. 

Compressing images, to 1/30th of their current image size would likely remove distinguishing 

characteristics that would be critical in differentiating BI-RADS class.  
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 Figure 29 Distribution of Row Pixel Count 
for Cropped Calcification Images 

 

Figure 30 Distribution of Column Pixel Count 
for Cropped Calcification Images 

  

The Region of Interest scans vary in size from 70 pixels to 3,000 pixels but are heavily 

skewed to under 1,000 pixels per side. Due to their size these images are better choices for 

analysis, on a desktop or laptop. Many of the images would still need to be resized to a smaller 

pixel count but on an order of ¼ (or smaller) the size of the original image.  

 

 

Figure 31 Distribution of Row Pixel Count for 
ROI Calcification Images 

 

  Figure 32 Distribution of Column Pixel 
Count for ROI Calcification Images 

 

In examining the histograms in of pixel counts for rows and columns, there exists a clear break 

at 900 pixels for rows, but a meaningful number of additional images are in the 1,000-1,200-row 
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pixel range. The column pixel counts for the images with row pixel counts below 900 is skewed, 

similar to the full set, but the “skinny” part of the tail begins at roughly 1,200 pixels. Setting the 

column limit to equal the row, would exclude a relatively small number of images. 

 

 
 Figure 33 Distribution of row pixel count for 
ROI Calcification Images with row pixel count 

between 700 and 1,100. 

 
Figure 34 Distribution of column pixel count 

for ROI Calcification Images with column pixel 
count between 700 and 1,100. 

 

Figure 35 Distribution of column pixel count for ROI Calcification Images  

with row pixel count less than 900 
 

Figure 36-Figure 39 are a set of four sample images, select from the Calcification ROI Training 

set. In some cases, a single calcification is relatively large while in others there are multiple very 
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small calcifications or may even be a cluster of calcifications. Across the images a variety of 

background texture/noise can be seen.  

 

 
Figure 36 Sample Mammography Image 

View: Craniocaudal 
Distribution: ‘NA’ 
Pathology: Benign Without Callback 

 
Figure 37 Sample Mammography Image 

View: Craniocaudal 
Distribution: Clustered 
Pathology: MALIGNANT 

 
Figure 38 Sample Mammography Image 

View: Mediolateral Oblique (MLO) 
Distribution: Clustered 
Pathology: Benign 

 

Figure 39 Sample Mammography Image 

View: Mediolateral Oblique (MLO) 
Distribution: Segmental 
Pathology: Malignant 
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There are 71 images in the selected records of the combined in the Training and Test datasets, 

whose mammograms received a BI-RADS classification, indicating that additional tests and 

information was needed to be able to make an assessment. For the purposes of this analysis, 

these records are problematic, since the value ‘0’ is an inappropriate label for this ordered scale. 

Removing these records from the training set removes potential excessive error being introduced 

into training.  

These records also provide an opportunity for additional assessment of a classification. While 

the exact BI-RADS class in the ordered scale is unknown, the pathology finding for the patient is 

available. Almost 50% of the images with classification of ‘0’ were determined to have a 

malignant tumor (Table 16). If the model provides an appropriate ordered classification based on 

the abnormal classification the records with the higher predicted BI-RADS class would have a 

larger number of patients who had a malignancy. 

 

Table 16 Zero Assessment Patient Key Statistics 

Pathology 
Finding 

Number 
of Images 

BENIGN 38 

MALIGNANT 33 

Total Records 71 
 

In training set, the patients with a rating of ‘3’ have a higher incidence rate of a malignancy. 

While the difference is not statistically significant at the 90% level, given the fact that BI-RADS ‘4’ 

is supposed to be a higher risk group than BI-RADS ‘3’, this is a surprising finding. The high 

incidence of malignancy in these two groups also poses a bit of an issue when attempting to train 
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an order classifier. Based on the literature, the patients with a malignancy could be appropriately 

reclassified as BI-RADS category ‘6’, though developing a classifier that predicted values of ‘6’, for 

use as a secondary assessment for a radiologist, would be inappropriate since that class is 

reserved for confirmed malignancies from biopsies. 

Using the hypothesis that the patients with malignancy were appropriately labelled, based on 

a trained radiologist’s assessment, there may be an opportunity to classify the images of patients 

with a malignancy in separate classes, based on their initial BI-RADS rating. If successful, the 

finding would demonstrate that there are discernable differences in the images that can be 

detected by a classifier that is estimated using a convolutional neural network. 

In addition to providing are preselected training set of images, The Cancer Image Archive 

provides an independent set of test images. For the purposes of this research, 306 of the images 

qualified for inclusion (Table 17). The ‘3’ and ‘4’ class malignancy rates do not adhere to the 

percentages that are expected of effective BI-RADS ratings of mammography images. 

 

Table 17 Image Counts by BI-RADS Rating 

BI-RADS 
Rating 

Training Set 
Percentage 
Images with 
Malignancy 

Number 
of 

Images 

Test Set 
Percentage 
Images with 
Malignancy 

Number of 
Images 

2 0.2% 473 0.0% 71 

3 35.5% 84 69.6% 23 

4 39.9% 742 36.9% 176 

5 98.5% 124 100.0% 36 

Total 29.3% 1,423 38.2% 306 
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For benchmarking purposes, the algorithms that were used in Chapter 4 cannot be used for 

processing images.  The Ordinal Regression algorithm developed by Cheng et. al will be used since 

it is able to CNNs to analyze images [12]. 

While CNNs provide a powerful methodology for analyzing images, image classification 

requires a very significant amount of data processing. Unless large, powerful computing systems 

are available,  algorithms that solve image classification problems must use very small batches. 

For this research, the images were processed on two different computers. The first had a Nvidia 

GTX 1080 ti GPU, with 10 GB of memory. The second had a Nvidia RTX 2060 GPU with 6 GB of 

memory. Both GPUs provide significant processing improvement over using a CPU.  

With the exception of the Mini-Batch variant, all OHPLnet variants, including the two stage 

variants that identify the hyperplane centroids prior to executing the minimum point distance, 

require 30 or more samples per class, within the batch, to provide reasonably stable hyperplanes. 

The computational system requirement for analyzing images using CNNs are impacted by more 

than simple image size. Each filter that is applied within a layer resulting in a “channel” that is 

essentially an altered version of the image. Large CNNs that analyze massive image databases 

(e.g., ImageNet) use hundreds of filters per layer, resulting in hundreds of channels. This process 

effectively multiplies a single “data point” (image) hundreds of times. This same process is done 

for large numbers of layers, again resulting in a multiplicative effect on the size of the data being 

processed. System resource capacity can quickly be exceeded even with relatively small network 

architectures.  

For the purposes of the analysis of mammograms, the images were first compressed to 

expedite processing and to allow for appropriate identification of hyperplane centroids. The first 
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attempt used 1,200x1,200 pixel or smaller images that were compressed to 256x256 pixels. 

Images for under-represented classes were over sampled to create a balanced training dataset 

with 742 images for each class. Attempts to create a classifier were  modestly successful, with 

training set accuracy in the 30% to 32% range (versus 25% for random assignment). The lower 

memory in the Nvidia RTX 2060 GPU resulted in a system constraint in processing the images 

with a maximum of 64 per batch. The classifiers that were developed using this level of image 

compression performed poorly. 

The degree of compression was then reduced resulting in 512x512 pixel images. While 

processing time increased and the maximum batch size limit decreased to 24 per batch, results 

for this compression level weren’t much better than for the 256x256 pixels per image 

compression. More importantly, the results for this compression level had a high degree of 

variation in resulting model performance (MZE values between 0.40 and 0.70).  

The calcification spots on the images are quite small. As mentioned earlier, radiologists 

examine the nature of the edges of the calcifications to assess BI-RADS level. While compression 

of images may have worked for other researchers who focused on predicting a binary outcome,  

that was based on an objective biopsy result, the experimental results from the compression of 

images indicate that classifying the images into four somewhat subjective classes based on 

human interpretation of the images, isn’t appropriate. These less than desirable results may be 

an indication that compression of almost any level removes the fine details that could be 

important in determining BI-RADS rating class. The research proceeded using uncompressed 

images. The images that are more than 1,024 pixels on either side are cropped at the edges. Any 

image with a side that has fewer than 1,024 pixels are padded with zeros, which is consistent 
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with the padding that CNN algorithms use. The larger size results in a 12 images per batch 

limitation on for the CNNs that show early promise in performance testing.  

The 12 images per batch limitation required the use of the Mini-Batch OHPLnet variant. In the 

initial work, the variant that was outlined in Section 7.1 struggled to provide proper ordering of 

the hyperplane centroids for some datasets and results suffered if the data were sorted during 

processing. In the application of Mini-Batch OHPLnet when the ordering was not achieved, a 

single pair of adjacent hyperplane centroids were “inverted” (in the wrong order). If the 

algorithm compared these hyperplane centroids to all others, the error cost, in terms of the total 

loss would be significantly higher, so numerically they would have had higher “priority,” in the 

batch update.  This batch size limitation lead to the development of the OHPLall. 

Several dozen Convolutional Neural Network architectures were tested with the 1,024x1,024-

pixel images. While several architectures performed comparably, to each other, an algorithm 

with ten Convolutional layers and four DNN hidden layers (see Figure 40) performed well for both 

OHPLall and Ordinal Regression. 
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Figure 40 Convolutional Neural Network Architecture 

 
In evaluating model performance, the ability for a classifier to address this issue and return a 

distribution of malignancy rates that are more consistent with the BI-RADS definitions may be 

more important than actual accuracy and mean absolute error performance.  

Twenty OHPLall models were generated using both OHPLall and Ordinal Regression. For 

OHPLall, the mean batch training error, for an epoch is a reasonable metric to use for as a 

stopping criteria. As can be seen, in Figure 41, mean batch error values that are below 0.5 results 

in low test set MZE and MAE. While higher mean batch error values may have low test set MZE 

and MAE, they may also have higher than desired test set MZE and MAE values.  



 
 

110 

 

 
Figure 41 Training Data Mean Batch Error 

 
 

From the results in the test set it is clear that classifying mammography images into the 

somewhat subjective BI-RADS classes is a particularly challenging task (see Table 18). Ordinal 

Regression MZE and MAE are 25% and 43% higher, respectively, than OHPLall, on the mean 

values of 20 executions of each algorithm (see Table 18). In addition, the MAE values for Ordinal 

Regression had double the standard deviation for MAE as OHPLall.  

 
Table 18 OHPLall vs Ordinal Regression MAE and MZE Results 

Algorithm Metric MZE MAE 

OHPLall 
Mean 0.473 0.612 

Std Dev 0.033 0.046 

Ordinal 
Regression 

Mean 0.595 0.877 

Std Dev 0.041 0.099 
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In addition to assessing standard model performance metrics, it is also worthwhile to assess 

class predictions relative to biopsy results for the calcifications. For this evaluation, a single well 

performing model for each algorithm is examined. Table 19 reports the MAE and MZE for the 

selected models. If a model “struggles” to properly classify records within a given BIRAD rating, 

it is likely to be desirable for the errors to occur in the lower rating values and perform better in 

the higher ratings leading to early treatment for a malignancy. Both models perform poorly on 

BI-RADS ‘3’ and ‘5’ rated images. From the table it is clear to see that Ordinal Regression does a 

very good job, with BI-RADS ‘2’ rated records, but performs poorly, relative to OHPLall in the 

other three classes (to the point that MAE for OHPLall is roughly equal to MZE for Ordinal 

Regression). As mentioned earlier, these two metrics may not be the best assessment of model 

quality. 

 

Table 19 Rating Level Assessment for a High Performing OHPLall Model  

vs A High Performing Ordinal Regression Model 

BI-RADS OHPLall 
MZE 

OHPLall 
MAE 

Ord Reg 
MZE 

Ord Reg 
MAE 

2 0.408 0.732 0.211 0.338 

3 0.696 0.739 0.739 0.826 

4 0.324 0.386 0.574 0.767 

5 0.750 0.944 0.889 1.417 

Total 0.422 0.559 0.539 0.748 
 

Per the BI-RADS definitions it is expected that malignancy rates would increase with BI-RADS 

score. The algorithm that produces models that best meet this expectation would provide higher 
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quality predictions. Ordinal Regression predicted a significant shift in BI-RADS rating, towards the 

low end of the scale, resulting in very good MZE and MAE values for the ‘2’ class, but poor results 

for the other classes.  In addition, images classified as a ‘5’ by OHPLall have over three times the 

Malignancy Rate (percent of images that were ultimately classified as malignant) as Ordinal 

Regression. Early identification of malignancy is critical in treating breast cancer, so this skew 

towards lower values versus OHPLall is less desirable for a model that is intended to be used as 

a diagnostic tool.  

 

Table 20 Detailed Results for a High Performing Ordinal Regression Model 

BI-RADS* 
Actual 

Malignant 
Counts 

OHPLall 
Malignant 

Counts 

Ord Reg 
Malignant 

Counts 

Actual 
Malignancy 

Rate 

OHPLall 
Malignancy 

Rate 

Ord Reg 
Malignancy 

Rate 

2 0 7 44 0.0% 12.5% 42.7% 

3 16 28 29 69.6% 48.3% 35.8% 

4 65 69 40 36.9% 38.8% 37.4% 

5 36 13 4 100.0% 92.9% 26.7% 

Total 117 117 117 38.2% 38.2% 38.2% 
* - Value for reported BI-RADS rating source, per column heading 

 

The image database also contained a number of images with a BI-RADS classification of ‘0’. 

This class is designated as “Additional imaging evaluation and/or comparison to prior 

mammograms is needed”. While a specific rating value is not available, the models can be 

assessed based on the malignancy rates for the predicted classes. As was the case for the test 

dataset, relative to OHPLall, Ordinal Regression shifts cases to the lower end of the rating scale. 

This skew towards the lowest available BI-RADS class includes a shift of nine malignant cases, to 
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the ‘2’ class, giving this Ordinal Regression a higher malignancy rate than the rates for the other 

three classes. OHPLall classifies two malignant cases into class ‘2’. OHPLall classifies over 2/3 

malignant cases into classes ‘4’ and ‘5’, while Ordinal Regression classifies just over half of the 

malignant cases into class ‘4’ and no malignant cases into class ‘5’. The OHPLall results are more 

consistent with the overall definitions of the BI-RADS measurement system.  

 

Table 21 Results For ‘0’ Rated Cases 

BI-RADS OHPLnet 
Counts 

OHPLnet: 
Malignant 

Counts 

Ordinal 
Regression 

Counts 

Ordinal 
Regression 
Malignant 

Counts 

2 2 2 15 9 

3 14 8 15 7 

4 42 16 40 17 

5 13 7 1 0 

Total 71 33 71 33 
 

For the classification of the available mammography images into BI-RADS rating, a 

Convolutional Neural Network that uses OHPLall loss provides better results than a Convolutional 

Neural Networks that use Ordinal Regression. Not only does it provide better overall results, but 

in the critical secondary assessment OHPLall works well in predicting images that have a 

malignancy into higher BI-RADS classes.  
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Chapter 10. APPLICATION: MULTI-CLASS  SENTIMENT ANALYIZER 

In late 2003 Frederick Reichheld originally proposed Net Promoter in a famous Harvard 

Business Review article [63]. In the intervening years, Net Promoter Score (NPS) became a widely 

used client feedback system to assess overall perception of a company’s products and services.  

The basis of Net Promoter measurement systems is a survey program that captures responses 

from a company’s customers who are asked to estimate their likelihood of recommending the 

company, its products, or its services to a friend or colleague [64]. The responses are given on a 

10 or 11-point scale (‘1’-‘10’ or ‘0’-‘10’), with ‘10’ being “extremely likely” and the lowest value 

being “extremely unlikely.” The values are recoded into a 3-point semantic scale (see Table 22) 

[64]: 

 

Table 22 Net Promoter Value to Semantic Label Recode 

Response 
Value 

Semantic 
Label 

‘9’-‘10’: Promoter 

‘7’-‘8’: Passive 

‘0’-‘6’: Detractor 
 

The Net Promoter Score is calculated by subtracting the percentage of respondents who are 

Detractors from the percentage who are Promoters, to create a metric that has a scale of -100 to 

100 [64]. Many companies use a variety of customer touchpoints for their NPS measurement 

system [65]. Some companies are so committed to their NPS program that they are  embedding 

the system into all facets of their business. In addition to being surveyed on overall company 
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performance, customers are asked to rate specific product and service offerings. Processes that 

are internal to the company (e.g., helpdesks that employees use for workstation issues) are also 

measuring NPS [65]. The ability to assess likely Net Promoter Score in text, in social media 

(Twitter, Facebook, etc.), blogs (e.g., technical review sites), and customer surveys, provides 

multiple additional touchpoints for the company to assess. A text based NPS metric may even be 

viable for rating competitor’s Net Promoter Scores.  

Current state of the art sentiment analyzers use numerical word embeddings to represent the 

words in the analyzed text. A word embedding is a numerical vector representation of words, 

where each word in the corpus (aggregate body of text) is associated a unique vector [66]. Words 

that are close in semantic/contextual meaning have similar vector values.  

Not only do Net Promoter responses provide valuable insights to the company, to provide 

qualitative interpretation to response scores but they also provide an opportunity to develop a 

“sentiment” like classifier for short text messages or responses. Companies like Uber, Facebook, 

and Twitter employ very sophisticated sentiment analysis process to better understand customer 

attitudes [67]. For a company that is making Net Promoter Score a core KPI (Key Performance 

Indicator), the ability to correctly and efficiently classify social media comments and survey 

responses without the need for manual evaluation may open new areas of business analysis and 

measurement that are not currently available.  

The survey database for the IT company that provided the NPS data for analysis has over 

60,000 completed surveys with short responses that are linked to a respondents NPS score. This 

data includes responses from customers across the globe. In the cases where responses are 

provided in a language other than English, Watson Language Translator was used to provide 
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English versions of the response. It should be noted that the data have not gone through a 

secondary screening to validate the class labels. Respondents are free to enter any text response 

that they choose. In some cases, respondents offer reasons as to why the rating was a ‘9’ and not 

a ‘10’, so the response may appear to be negative or similar to negative comments that 

correspond to low rating values. In other cases, a low rating may be provided, and the respondent 

decided to focus on a positive attribute of a call (e.g., the agent was polite and worked hard to 

resolve a problem) which may be very similar (or even identical) to a response for a very high 

rating. In other cases, the respondent may list the technical components/processes that resulted 

in a problem and a positive or negative sentiment is not clear. In spite of these inconsistencies in 

some records, there is sufficient data for the algorithm to be able to discern patterns that are 

associated with each response class, but the pure accuracy likely would not reach that of well 

documented binary sentiment analyzers that can be found on-line.  

This real-world application is a test of OHPLall in analyzing text. While this is a test of verbatim 

responses of no more than 500 characters, other text applications may be quite large, so this test 

will use the OHPLall to assess performance. An example application on a very large corpus might 

be the development of letter grade classifier predicting grade on a corpus of 1,000+ term papers 

that are each 25 pages in length. Assuming 300 words per page, a single document would have 

approximately 7,500 words per document (double spaced). If one of the larger word to vector 

embeddings, with vector length of 100, is used the size of a single document would be almost 

100,000 values. While the data used for this application isn’t this large, the text is a valid 

assessment of real data that is produced by real activities in businesses.  



 
 

117 

An appropriate benchmark algorithm must be able to take advantage of the power of word 

embeddings as well as the ability to analyze word sequences that is offered by RNNs and CNNs. 

An Ordinal Regression with at least one Gated Recurrent Neural Network layer is a good choice 

that meets these requirements.  

If sufficient data sample is available, an analyst may choose to develop a unique word 

embedding for the corpus of documents that they are analyzing. For smaller projects, particularly 

those that have a large number of words that have the same meaning as a common body of 

documents, the analyst may choose to use a word to vector database like GloVe [68] or 

Word2Vec [69]. These databases provide pretrained word embeddings for 400,000 to several 

million English words. In developing the word embedding databases, a very large corpus of 

documents (e.g., Wikipedia) is analyzed to identify word-word “co-occurrences” (frequencies at 

which two words occur adjacent to each other in the text).  

In generating the GloVe database, Stanford researchers identified the 400,000 most common 

English words and developed a word-word occurrence matrix. To generate the embedding 

vectors, the log of the values in the word-word occurrence matrix is decomposed resulting in a 

unique 50-dimensional representation of each word [70]. Two words that frequently occur with 

the same set of thirds words will have very similar vector representations.  

A researcher may also choose to employ a transfer learning approach by using data from one 

of the word embedding databases as the initial embedding in a deep learning model and enable 

the model to update the embedding values to maximize the predictive abilities of the classifier. 

This strategy may be particularly useful when analyzing a corpus of documents from a single 
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topical area where word meanings are different that more common meanings (e.g., the use of 

the word “default” for software settings versus for credit accounts).  

Since word sequences provide important context for the sentiment or attitude of the message, 

the words in a document are converted to sequences of numerical vectors. These vectors can 

then be analyzed using either a Recurrent Neural Network or by employing a Convolutional 

Neural Network that uses one-dimensional filters. Training of the network proceeds as with any 

other DNN. 

The goal of this sentiment analysis effort is to simulate a real-world application of OHPLall to 

develop a sentiment classifier based on raw survey data. Text records that are single word values 

and have no expected association with the responder’s attitudes towards the company (e.g., 20 

occurrences of the single word “on”) and responses that do not contain any actual English words 

(e.g., four occurrences of the digit ‘1’) are removed, leaving 60,593 records available for analysis. 

The data were split into Training, Test, and Validation sets using proportions of 80:10:10. Due to 

the unbalanced nature of the dataset, random sampling was employed to ensure that all eleven 

response classes were represented within each sample (see Table 23).  
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Table 23 NPS Sentiment Analysis Sample Counts by Response Class 

Response 
Class 

Training 
Set Counts 

Test Set 
Counts 

Validation 
Set Counts 

Percentage 
of Sample 

0 1,544 193 193 3.2% 
1 655 82 82 1.4% 
2 868 109 109 1.8% 
3 1,053 132 132 2.2% 
4 767 96 96 1.6% 
5 2,416 302 302 5.0% 
6 1,820 227 227 3.7% 
7 3,595 449 449 7.4% 
8 7,596 950 950 15.7% 
9 9,195 1,149 1,149 19.0% 

10 18,964 2,371 2,371 39.1% 
 

As is the case with virtually all predictive model development methodologies, deep neural 

networks struggle to provide desired classification when built on highly unbalanced datasets 

where the frequency of records for one or two classes are significantly higher than the others. In 

the case of the available NPS data, class ‘10’ represents 39% of the available data. In addition, 

class ‘9’ represents an additional 19% of the data  (see Table 23). In application, the eleven-point 

NPS scale is recoded into three classes where classes ‘9’ and ‘10’ are combined. In this final three 

class version, the highest class, represents 58% of the data (see Table 25).  

Unbalance datasets can lead to model results that are not only unusable but have the 

potential to provide incorrect insights leading to incorrect decisions. A simple Ordinal Regression 

model was created on the unbalanced training set for this research. The results for the training 

set provide a good illustration of the problems that may occur by analyzing a highly unbalance 

dataset, without addressing the imbalance. In Table 24, the dark cells provide the counts for the 

records that were properly classified, in the eleven-class case. The lighter shaded cells along with 
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the dark shaded cells provide the counts for the three-class grouping of the response values. The 

predictions skew heavily in the direction of the two largest classes (‘9’ and ‘10’), with the 

predictions of ‘9’ occurring 50% more frequently than their actual incidence rate in the dataset. 

In addition, no records are predicted to have a prediction of ‘0’. The model predicts the 

‘Detractor’ class (shaded upper left 6 cell by 6 cell section) at a rate that is similar to that found 

in the actual responses, but the ‘Promoter’ ratings would be 15% higher than actual if the model 

predictions are used. These results would tend to give the company a false read on how many of 

their customers were highly satisfied with their products and services and unjustly skew the NPS 

metric in the positive direction. 

 

Table 24 Confusion Matrix: Counts for Actual versus Predicted Classes 

 

 

As a standard practice weighting or oversampling of low frequency classes is employed to 

address this issue. In the case of NPS it may be inappropriate to employ either solution to the 

point that all eleven classes have equal representation when developing a model. Since the data 
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will ultimately be recategorized into three classes, it is more appropriate to use the proportions 

for the three-class version of the data, to address the imbalance (see Table 25). 

 

Table 25 NPS Three Class Counts by Class 

Semantic 
Response 

Response 
Class 

Training Set 
Counts 

Test Set 
Counts 

Validation 
Set Counts 

Percentage 
of Sample 

Detractor ‘0’ 9,123 1,141 1,141 19% 

Passive ‘1’ 11,191 1,399 1,399 23% 

Promoter ‘2’ 28,159 3,520 3,520 58% 
 

A simple oversampling strategy based on the frequency counts for the three-class semantic 

scale is employed. Differentiation within the classes in the three-class grouping is not an 

important result for the company. Therefore, no additional oversampling is performed within the 

three-class groupings of the 11-class responses. It is important for very low scores (e.g., 0 and 1) 

to be correctly classified as ‘0’ on the three-class scale whenever possible. To accommodate this 

requirement, an eleven-class model is specified instead of simply using the three-class labels for 

model development.  

OHPLall is used within a Gated Recurrent Neural Network (GRNN). Gated Recurrent Neural 

Networks were created to address the vanishing/exploding gradient problem that may occur in 

RNNs. A GRNN differs from an RNN in their basic nodes. In the RNN, information from a prior 

node is combined with the new input for the node both are subject to multiplication by weights 

and summarized before a nonlinear function is applied. In the GRNN, the GRU (Gated Recurrent 

Unit) receives the same inputs but two “gates” within the node impact behavior. The first gate 

decides what information from the prior hidden state (i.e., the memory from the prior state) is 
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accepted into the node.  The other determines what information from within the current node is 

passed to the next node [34]. The activation functions within these gates behave as on-off 

switches but are actually continuous functions, so the weights within them can update the same 

way that weights in a simple DNN node is updated [34]. GRNNs are useful in sentiment analysis, 

since they can selectively carry memory though the recurrent network so the specific positioning 

of key words (e.g. adjacent or two-words apart versus 20 words apart) does not critically hinder 

classification.  

For the current NPS classification problem a GRU layer with 128 outputs is used. The GRU layer 

is fed by the word embedding layer that is initialized with word embedding vectors from the 

GloVe database. Words that occur in the texts but are not found in the word embedding database 

are initialized with random values. Since the content of the text is specific to computers and the 

IT domain, the word embeddings are further trained to optimize their contribution within the full 

network. Two additional standard DNN layers are included before the standard scalar output for 

OHPLall (see Figure 42).  
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Figure 42 NPS GRNN Network Graph 

 

The neural network architectures are optimized by comparing model solutions training sample 

results against the results for the validation sample to arrive at a final network architecture. From 

that point, twenty models were estimated using the winning architecture for each algorithm. In 

addition to predicting the eleven ordinal classes, the predicted classes are reclassified into the 

three-class solution. Mean Zero One Error (MZE) and Mean Absolute Error (MAE) are calculated 

for each. In Table 26, bold values denote the best performance on the metric between OHPLall 

and Ordinal Regression. 

When NPS data were analyzed relative to customer behaviors and financial relationship with 

the company, OHPLall provided strong evidence that it would be appropriate to combine some 
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classes. Similarly, in the models that were developed for the NPS Sentiment Classifier, the ‘9’ and 

‘10’ classes weren’t separated by the desired one-unit distance. Distances were consistently in 

the 0.20 range. This result is additional confirmation that the grouping of the ‘9’ and ‘10’ response 

classes is an appropriate aggregation of those classes.  

 

Table 26 NPS Sentiment Analyzer Results For 20 Iterations of Each Algorithm  

  Three Class 
MZE 

Three Class 
MAE 

Eleven Class 
MZE 

Eleven Class 
MAE 

OHPLall 
Mean 0.320 0.370 0.652 1.281 

Std Dev 0.006 0.007 0.014 0.032 

Ordinal 
Regression 

Mean 0.360 0.406 0.724 1.352 

Std Dev 0.007 0.007 0.010 0.011 

Mean 
Comparison 

Percent 
Difference 13% 10% 11% 6% 

 

While neither algorithm achieves a stellar classification accuracy or mean error, OHPLall 

outperforms Ordinal Regression in both MAE and MZE for the eleven-class model. The 

performance differences are statistically significant at the 95% confidence level. The 

performance advantage of the eleven-class model in terms of MAE carries over to result in an 

even stronger performance in the three-class recode. As would be expected the performance 

difference for the three-class recode of the predictions is also statistically significant. 

Low accuracy rates for both methodologies is in part due to the inconsistencies in rating versus 

the content of verbatim responses. Table 27 provides a sampling of examples where the 

respondent’s rating is not consistent with his/her verbatim response. In the example cases, the 

verbatim comments would appear to be inconsistent with the rating while the predictions are 
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consistent with the text. While these cases are explicitly selected to illustrate the potential 

challenges of developing semantic analyzers based on survey data they suggest that even with a 

less desirable accuracy and higher mean absolute error than desired, the classifier may provide 

a good basis to enhance the company’s NPS program and associate KPI metrics.\ 

Table 27 NPS Responses That Are Inconsistent with Verbatim Comments 

Survey 
Response 

Three-Class 
Labels 

Prediction 
Three-Class 

Labels 
Verbatim Comments 

Detractor Promoter 1 experience 2 the support was fantastic 
Detractor Promoter because it was very carefully supported  
Detractor Promoter because of the quick response 
Detractor Promoter interface and graphics capabilities 
Detractor Promoter because we could respond promptly and as expected 

Detractor Promoter after calling we quickly arranged replacement parts and technical 
personnel it was very helpful to solve problems in a few hours  

Detractor Promoter good service 
Detractor Promoter quick response and accurate answer 
Detractor Promoter the positive experience prevails  
Detractor Promoter competent friendly patient  

Promoter Detractor 1 very long and complex bureaucratic procedures 2 long lead 
times for orders  

Promoter Detractor we had a performance issue not able to pinpoint that support has 
been able to come with  

Promoter Detractor because we cannot access the system without our pcomm in our 
pc os environment  

Promoter Detractor because the printing function of acs is not stable when it comes 
to printing it becomes pcomm which is the way to recommend it  

Promoter Detractor 
this pmr has been very long and has already had a predecessor 
pmr with the same problem which could not be solved at the 
time 

Promoter Detractor … price competitiveness is still weaker 

Promoter Detractor time did not change the quality of the system ie of its granite 
operating system  

Promoter Detractor vacations at grundfos and at … prolonged the handling time  
Promoter Detractor the solution was not satisfactory  
Promoter Detractor no good communication in this case  
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From a manual assessment of a sampling of 100 misclassifications, 44% of the misclassified 

cases in the test sample are cases where the NPS rating is not consistent with the entered 

score. The precise value is difficult to assess because the assessment can be very subjective for 

some of the examples. Using the midpoint of the range we would expect an accuracy rate 

above 80% for the classifier (MZE of 0.20) which is comparable to binary classifiers that are 

reported in published papers [71]. 
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Chapter 11. APPLICATION: OHPLNET FOR INTERPRETTIVE ASSESSMENT 

For decades businesses have used purchase RFM (Recency, Frequency and Monetary Value) 

to successfully engage with customers to successfully promote future spending.  Companies also 

report a linkage between recency of interaction with the company and Net Promoter Score (NPS) 

survey response rating (see 114) [39]. While it is not likely that the two are perfectly correlated, 

it is not unreasonable to expect RFM metrics correspond to NPS survey response ratings. The 

metric has been demonstrated to have a strong association with future company revenues [72]. 

Given the relationship with future revenues, it is not unreasonable to assume that there may be 

some association between Net Promoter rating and customer spend prior to survey response.  

A very large IT company with a large B2B (business to business) presence has a database of 

more than 400,000 NPS survey responses. Not all of the responses can be link to specific 

customer behavioral data, like products purchased and their timing, but a sufficient number can 

be linked to attempt to predict survey response, based on the pattern of customer purchase over 

the prior year. In the IT marketplace, “frequency” has dramatically different meaning for services 

than for hardware, both of which will have different meanings than for software. As such creating 

a purchase frequency metric across all purchases may be impractical to attempt. This company’s 

product portfolio is sufficiently complex, to the point that “frequency” is too difficult to provide 

a reliable metric, but a detail set of revenue data is available, across a broad timeline.  

Historically, predictive analysis using the company’s data, indicated that purchase behavior in 

a recent time frame (e.g., last month or quarter) as well as for more extended time periods (e.g., 

prior year or two prior years) have a strong correlation to future purchase. The company’s NPS 

data has an additional complication in that larger customers have a high likelihood of providing 
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multiple NPS survey responses, particularly when considering an extended period of time. This 

repeated response presents a significant complicating factor when attempting to build a model 

that predicts NPS response. To avoid cases where the same customer provided multiple, different 

responses, in the same time window (quarter), the most frequent response for the time period 

was chosen.  

For the analysis, just over 71,000 B2B response records were available with detailed revenue, 

firmographic (industry, number of employees, number of business locations, etc.) and company 

sales “coverage” (larger customers have dedicated sales teams, while small customers may only 

receive telephone sales support). Customer purchase data (revenues) were totaled by product 

purchase and time period (prior month, prior quarter, prior half year, prior year and prior two 

years). In total, over 2,600 data elements were available for classification NPS response, based 

on known customer behavioral attributes. 
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Table 28 Net Promoter Response Distribution 

Semantic 
Label 

Response 
Scale 

Response 
3-Point 
Rescale 

Record 
Count Percentage 

Detractor 0 0 2,798 3.9% 

Detractor 1 0 996 1.4% 

Detractor 2 0 1,170 1.6% 

Detractor 3 0 1,273 1.8% 

Detractor 4 0 1,075 1.5% 

Detractor 5 0 3,665 5.1% 

Detractor 6 0 2,756 3.8% 

Passive 7 1 5,863 8.2% 

Passive 8 1 11,672 16.2% 

Promoter 9 2 12,549 17.5% 

Promoter 10 2 28,085 39.1% 

 

A successful model that the company could use as part of customer advocacy and retention 

efforts could not be built since there does not appear to be sufficient “signal” in the available 

feature set that is related to NPS response score. While this application doesn’t provide sufficient 

predictive power to provide a usable classifier to determine an expected NPS classification based 

on company purchase behaviors, it does provide sufficient predictive benefit above a “rational” 

random assignment to do a different assessment of the results, that assessing pure accuracy 

metrics. The challenges in analyzing the data lead to two valuable results:  

1. OHPLnet experienced significant challenges in building a predictive model. The 

challenge lead to a significant revision of OHPLnet which became Two-Stage OHPLnet. 

During initial efforts to use OHPLnet the results, including multiple strategies outlined 
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in Chapter 8, the models demonstrated minimal benefit (incremental performance) 

over a rational random assignment because the algorithm could not consistently 

progress to the point of mapping to a new space that provided a proper ordering of 

the eleven response classes. 

2. While Two-Stage OHPLnet provides a small amount of lift in fit over random 

assignment, it also provided an insight into the traditional aggregation of NPS values 

in to the documented three-point semantic scale. Since the model cannot be deemed 

a “success”, this insight into the clustering of scores provides a heuristic reinforcement 

of part of the NPS process.  

The NPS responses were highly skewed towards the high end of the response scale (‘9’ and 

particularly ‘10’). To address this issue, multiple weighting schemes were tested. The “Weight 11 

Point Scale” is a simple ratio of the corresponding cell with the largest cell count. This weighting 

assumes an equal likelihood of response for all eleven classes. Since NPS scores are aggregated, 

into fewer scale points the equal likelihood assumption is not likely to be valid, but was used as 

a test effort to “force” the maximum number of records to be scored in classes ‘0’-‘6’ (the best 

unweighted model result was 0.11% of the validation sample in classes ‘0’-‘6’). The simple square 

root of the “Weight 11 Point Scale” value provided weighting that is close to the rescaling but 

provides differentiated weighting for cells within the normal rescale by frequency. Lastly, a 

weighting based on the normal three point rescale, using the same methodology as for the 

“Weight 11 Point Scale” (i.e., the largest value for the three cells is divided by the corresponding 

value for the three-point class).  
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Table 29 IT Company NPS Response Counts and Tested Weighting Scales 

Semantic 
Label 

Response 
Scale 

Response 
3-Point 
Rescale 

Record 
Count Percentage 

Weight 
11-Point 

Scale 

Weight 
Square Root 

11-Point 
Scale 

Weight 
3-Point 
Scale 

Detractor 0 0 2,798 3.9% 10.0 3.2 3.0 

Detractor 1 0 996 1.4% 28.2 5.3 3.0 

Detractor 2 0 1,170 1.6% 24.0 4.9 3.0 
Detractor 3 0 1,273 1.8% 22.1 4.7 3.0 
Detractor 4 0 1,075 1.5% 26.1 5.1 3.0 
Detractor 5 0 3,665 5.1% 7.7 2.8 3.0 
Detractor 6 0 2,756 3.8% 10.2 3.2 3.0 
Passive 7 1 5,863 8.2% 4.8 2.2 2.3 
Passive 8 1 11,672 16.2% 2.4 1.6 2.3 

Promoter 9 2 12,549 17.5% 2.2 1.5 1.0 

Promoter 10 2 28,085 39.1% 1.0 1.0 1.0 
 

Multiple DNN models were estimated on an 80% training set in an attempted to provide a 

classification of the eleven-point response that was an improvement over random assignment. 

Due to the highly skewed nature of the response data, assigning all values to the class ‘10’ 

provides the best MZE score of 0.609, with a corresponding MAE score of 2.01. Since the goal of 

the effort is to provide predictions for classes, the eleven-point classes that fall in each of the 

three-point classes, it is not reasonable to set the random threshold to that of simply labeling all 

records with a value of ’10.’ Instead, there must be some records that are in classes ‘0’-‘6’. Since 

‘6’ has the smallest absolute difference from ten, the random assignments will include random 

assignments in class ‘6’. The random assignment of records into classes ‘6’-‘10’, with ‘6’ assumed 

to have the frequency count of the classes ‘0’-‘6’, is referred to as the “rational random 

assignment”. In Table 30 Random Assignment of Classes, marginal probabilities for the classes 
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were used to estimate a random assignment across classes six through ten based on the 

proportion of classes in the data set that fall in these 5 classes. The MAE and MZE values for this 

test were 0.735 and 2.024, respectively. 

 

Table 30 Random Assignment of Classes 

 Randomly Assigned Label 
Actual 
Label 6 7 8 9 10 

‘0’ 534 228 454 488 1093 

‘1’ 190 81 162 174 389 

‘2’ 223 95 190 204 457 

‘3’ 243 104 207 222 497 

‘4’ 205 88 175 188 420 

‘5’ 700 299 595 640 1,432 

‘6’ 526 225 447 481 1,076 

‘7’ 1,120 478 952 1,023 2,290 

‘8’ 2,229 952 1,895 2,037 4,559 

‘9’ 2,397 1,023 2,037 2,190 4,902 

‘10’ 5,364 2,290 4,559 4,902 10,970 

Total 13,733 5,863 11,672 12,549 28,085 

 

 

Creating a classification model for these data were particularly difficult. Initially, the OHPLnet 

Double Batch algorithm, with 8 hidden layers and between 10 and 500 nodes per layer (inverse 

pyramid design with 500 in the first layer and 10 in the last, with a proportional decrease in node 

number in layers between the first and last) was used, but could not consistently achieve the 
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proper ordering of the hyperplane centroids, with a minimum distance of one unit between 

adjacent layers (even with a phenomenally high weighting value of one million, on the HCL 

component of loss). Multiple hyperplane centroids were ordered incorrectly at the completion 

of these tests. It was suggested that the algorithm be revised to focus on the ordering of the 

hyperplane centroids first, then allow the point loss component to be included. This suggestion 

lead to Two-Stage OHPLnet which represents a very meaningful breakthrough in algorithm 

speed, accuracy and consistency in models produced.  

The new algorithm was able to produce results MZE and MAE that were better than the 

corresponding values for the proposed a rational random assignment, but the improved 

predictions weren’t a major advancement over rational random assignment and a relatively small 

number of records were assigned to classes that fall into the “Detractor” classes. More notably, 

regardless of weighting, the hyperplane centroids that were generated by using the final results 

had class ‘1’ and class ‘2’ inverted (i.e., class ‘1’ had a larger hyperplane centroid value) with small 

distances between the two (approximately 0.1 unit or less). This “inversion” of hyperplane 

centroids  with small spacing in the final scoring suggested that classes ‘1’ and ‘2’ should be 

combined since the available feature set could not properly maintain the ordering, while 

minimizing the distances of the points from their hyperplane centroids. The collapsing of classes 

in the lower-class values that make up the “Detractor” class based on hyperplane centroid 

ordering (and small distances between the offending hyperplane centroids), continued until a 

seven-class solution was reached (see Table 31).  

This same sequence of collapse held true through five model development cycles for each 

weighting scheme at each level of collapse. Once the seven-class solution was reached, the class 
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ordering was maintained. Table 31 reports the mean MZE for five models produced using the 

same training and validation sets as well as the sequence of binning classes and related data. As 

would be expected, as the number of classes decreases, the accuracy metrics improve. At each 

step that combines two classes, the rational random assignment also improves. As the number 

of classes the MAE for the random assignment also improves, but not to as high a degree as the 

Two-Stage OHPLnet assignment improves (see Table 31).  The acceleration of improved MAE is 

strong evidence that the combining of classes is an appropriate step.  

 

Table 31 NPS Weighted Model Results with Binned Classes 

Number of 
Classes 

Inverted 
Classes MAE Random 

MAE 

Improvement 
Over 

Random 

Percent 
Improvement 

11 ‘1’ & ‘2’ 1.837 2.024 0.190 9.4% 

10 ‘4’ & ‘5’ 1.729 1.974 0.245 12.4% 

9 ‘1’/’2’ & ‘3’ 1.632 1.873 0.241 12.9% 

8 ‘0’ & ‘1’/’2’/’3’ 1.551 1.804 0.253 14.0% 

7 None 1.517 1.765 0.248 14.1% 
      

3 None 0.620 0.801 0.181 22.6% 

Based on Final Model Hyperplane Centroid Values 
 

At Since NPS scoring systems don’t utilize the eleven-point scale. They collapse the values into 

a three-point scale it is appropriate to attempt to produce a model that classifies the three-point 

scale. The problem remains an ordinal classification problem, but with fewer scale points. The 

results for the best performing model for the three-scale version are also reported in Table 31. 



 
 

135 

For consistency sake, the Weight 11-Point Scale results are reported. The other two weighting 

processes generated similar results.  

The feature set contained a very high degree of collinearity among the features. In addition to 

using standard DNN architectures, on the raw feature set two different Nonlinear Principal 

Components analyses were used. For Nonlinear Principal Components (NPC), a three hidden 

layer autoencoder was used to reduce the feature set dimensions. To create data reduction 

solutions with 300 and 1,000 components, respectively. Over 90% of the variance contained in 

the 2,600-feature set were retained in each NPC solution, with 98% retained in the 1,000-

component solution. The NPC versions of models did not perform as well as the models that used 

the raw data inputs, so they were abandoned. 

While this analysis effort did not produce a model that effectively predicted NPS response 

rating, to the degree that it could be used as a key part of the company’s NPS management 

system, it did provide a useful confirmatory insight for the company,  in terms of the  relationship 

of response ratings to the desired three-point semantic scale.  These results are specific to the 

available purchase data. The inclusion of additional data from other company systems may 

provide sufficient “signal” to result in stronger model performance. 
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Chapter 12. CONCLUSIONS 

This research takes a capable newly developed loss function for use in Deep Neural Network 

architectures and advances it to a more complete set of neural network strategies for solving 

ordinal classification problems. The original work that provided a complex loss function for 

ordinal classification problems was advanced by the development of multiple analysis strategies 

(Double Batch, Single Stratified, Epoch Stratified Batch). Ultimately OHPLall resulted from tests 

on a particularly difficult dataset where attempting to optimize Hyperplane Centroid ordering 

and distance at the same time as minimizing point distances from the point’s corresponding 

Hyperplane Centroids, ended, with results where Hyperplane Centroids were not properly 

ordered. Developing the ordering of the centroids first, then minimizing point distances relative 

to fixed Hyperplane Centroids, proved to be a successful strategy for the dataset. The strategy 

also provided improved results for standard benchmark datasets that are used to evaluate 

different ordinal classifiers.  

Applying OHPLall by attempting to predict Net Promoter Score (NPS) using customer purchase 

behaviors and customer attributes proved to be very difficult. The resulting models did not 

provide a significant improvement over using random assignment to a logical subset of the 

ordinal classes. It did however provide an insightful diagnostic, that verified the NPS assumption 

that the eleven-point scale could be reduced to a useful three-point scale, with effective class 

descriptions. The development of a successful “sentiment” type classifier of short verbatim text 

had significantly better results. While pure classification accuracy may not be as high as desired, 

a Gated Recurrent Neural Network using the new OHPLall variant performed well versus an 
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Ordinal Regression algorithm that used the same architecture. This performance advantage was 

achieved in spite of evidence that the data contained inconsistently labelled records that affected 

performance metrics. 

When applied to classify mammography images into the BI-RADS rating scale, OHPLall 

required some modifications of the original Mini-Batch variant, to allow very small batches of 

large images. OHPLall developed Convolutional Neural Networks that consistently outperformed 

Convolutional Neural Networks that were built using Ordinal Regression. Possibly more 

importantly, OHPLall provided an appropriate “shift” of images of calcifications that were tested 

to have a malignancy into higher BI-RADS classes than did the Ordinal Regression models.  

OHPLall is a powerful analytic tool that has been demonstrated to develop Deep Neural 

Network models of both structured and unstructured data. In “real world” applications, the 

algorithm performed better than benchmarks, even when presented difficult datasets that were 

filled with improper classifications or that hit system resource limitations. This work is a 

meaningful advancement in our ability to analyze an important class of predictive model 

development problems.  

The application to real world data suggests that in addition to providing strong accuracy in 

classification OHPLall may provide diagnostic information regarding the classes. In particular, the 

algorithm may suggest adjacent classes that may not differ to the degree expected for the rating 

system in general. 
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