3,402 research outputs found

    Plasmonic-photonic crystal coupled nanolaser

    Full text link
    We propose and demonstrate a hybrid photonic-plasmonic nanolaser that combines the light harvesting features of a dielectric photonic crystal cavity with the extraordinary confining properties of an optical nano-antenna. In that purpose, we developed a novel fabrication method based on multi-step electron-beam lithography. We show that it enables the robust and reproducible production of hybrid structures, using fully top down approach to accurately position the antenna. Coherent coupling of the photonic and plasmonic modes is highlighted and opens up a broad range of new hybrid nanophotonic devices

    Optical Responses of Localized and Extended Modes in a Mesoporous Layer on Plasmonic Array to Isopropanol Vapor

    Get PDF
    Mesoporous silica features open and accessible pores that can intake substances from the outside. The combination of mesoporous silica with plasmonic nanostructures represents an interesting platform for an optical sensor based on the dependence of plasmonic modes on the refractive index of the medium in which metallic nanoparticles are embedded. However, so far only a limited number of plasmonic nanostructures are combined with mesoporous silica, including random dispersion of metallic nanoparticles and fl at metallic thin fi lms. In this study, we make a mesoporous silica layer on an aluminum nanocylinder array. Such plasmonic arrangements support both localized surface plasmon resonances (LSPRs) and extended modes which are the result of the hybridization of LSPRs and photonic modes extending into the mesoporous layer. We investigate in situ optical re fl ectance of this system under controlled pressure of isopropanol vapor. Upon exposure, the capillary condensation in the mesopores results in a gradual spectral shift of the re fl ectance. Our analysis demonstrates that such shifts depend largely on the nature of the modes; that is, the extended modes show larger shifts compared to localized ones. Our materials represent a useful platform for the fi eld of environmental sensingEspaña MINECO grant MAT2017-88584-R

    Advances in small lasers

    Get PDF
    M.T.H was supported by an Australian Research council Future Fellowship research grant for this work. M.C.G. is grateful to the Scottish Funding Council (via SUPA) for financial support.Small lasers have dimensions or modes sizes close to or smaller than the wavelength of emitted light. In recent years there has been significant progress towards reducing the size and improving the characteristics of these devices. This work has been led primarily by the innovative use of new materials and cavity designs. This Review summarizes some of the latest developments, particularly in metallic and plasmonic lasers, improvements in small dielectric lasers, and the emerging area of small bio-compatible or bio-derived lasers. We examine the different approaches employed to reduce size and how they result in significant differences in the final device, particularly between metal- and dielectric-cavity lasers. We also present potential applications for the various forms of small lasers, and indicate where further developments are required.PostprintPeer reviewe

    Nanoscale magnetophotonics

    Get PDF
    This Perspective surveys the state-of-the-art and future prospects of science and technology employing the nanoconfined light (nanophotonics and nanoplasmonics) in combination with magnetism. We denote this field broadly as nanoscale magnetophotonics. We include a general introduction to the field and describe the emerging magneto-optical effects in magnetoplasmonic and magnetophotonic nanostructures supporting localized and propagating plasmons. Special attention is given to magnetoplasmonic crystals with transverse magnetization and the associated nanophotonic non-reciprocal effects, and to magneto-optical effects in periodic arrays of nanostructures. We give also an overview of the applications of these systems in biological and chemical sensing, as well as in light polarization and phase control. We further review the area of nonlinear magnetophotonics, the semiconductor spin-plasmonics, and the general principles and applications of opto-magnetism and nano-optical ultrafast control of magnetism and spintronics

    Boundary effects in finite size plasmonic crystals: Focusing and routing of plasmonic beams for optical communications

    Get PDF
    Plasmonic crystals, which consist of periodic arrangements of surface features at a metal-dielectric interface, allow the manipulation of optical information in the form of surface plasmon polaritons. Here we investigate the excitation and propagation of plasmonic beams in and around finite size plasmonic crystals at telecom wavelengths, highlighting the effects of the crystal boundary shape and illumination conditions. Significant differences in broad plasmonic beam generation by crystals of different shapes are demonstrated, while for narrow beams, the propagation onto the smooth metal film is less sensitive to the crystal boundary shape. We show that by controlling the boundary shape, the size and the excitation beam parameters, directional control of propagating plasmonic modes and associated beam parameters such as angular beam splitting, focusing power and beam width can be efficiently achieved. This provides a promising route for robust and alignment-independent integration of plasmonic crystals with optical communication components

    Tamm plasmon polariton in planar structures: A brief overview and applications

    Full text link
    Tamm plasmon provides a new avenue in plasmonics of interface states in planar multilayer structures due to its strong light matter interaction. This article reviews the research and development in Tamm plasmon polariton excited at the interface of a metal and a distributed Bragg reflector. Tamm plasmon offers an easy planar solution compared to patterned surface plasmon devices with huge field enhancement at the interface and does not require of any phase matching method for its excitation. The ease of depositing multilayer thin film stacks, direct optical excitation, and high-Q modes make Tamm plasmons an attractive field of research with potential practical applications. The basic properties of the Tamm plasmon modes including its dispersion, effect of different plasmon active metals, coupling with other resonant modes and their polarization splitting, and tunability of Tamm plasmon coupled hybrid modes under externally applied stimuli have been discussed. The application of Tamm plasmon modes in lasers, hot electron photodetectors, perfect absorbers, thermal emitters, light emitting devices, and sensors have also been discussed in detail. This review covers all the major advancements in this field over the last fifteen years with special emphasis on the application part
    • 

    corecore