1,158 research outputs found

    Improved speed estimation in sensorless PM brushless AC drives

    Get PDF
    The application of flux-observer-based sensorless control to permanent-magnet brushless AC motor drives is described. Current methods of speed estimation are assessed, both theoretically and experimentally, and an improved method, which combines the best features of methods in which speed is derived from the differential of rotor position and from the ratio of the electromotive force to excitation flux linkage, is proposed. Its performance is verified experimentally

    Improved signal injection based sensorless technique for PM brushless AC drives

    Get PDF
    The accuracy of rotor position estimation in the conventional signal injection based sensorless control of permanent magnet brushless AC drives depends on the load current. This paper proposes an improved method, which significantly reduces the estimation error by accounting for the cross-coupling effect between the d-and q-axes. The conventional and proposed methods are described and their performance is compared by both simulation and experiment

    Sensorless flux-weakening control of permanent-magnet brushless machines using third harmonic back EMF

    Get PDF
    The sensorless control of brushless machines by detecting the third harmonic back electromotive force is a relatively simple and potentially low-cost technique. However, its application has been reported only for brushless dc motors operating under normal commutation. In this paper, the utility of the method for the sensorless control of both brushless dc and ac motors, including operation in the flux-weakening mode, is demonstrated

    A new sensorless method for switched reluctance motor drives

    Get PDF
    This paper describes a new method for indirect sensing of the rotor position in switched reluctance motors (SRMs) using pulse width modulation voltage control. The detection method uses the change of the derivative of the phase current to detect the position where a rotor pole and stator pole start to overlap, giving one position update per energy conversion. As no a priori knowledge of motor parameters is required (except for the numbers of stator and rotor poles), the method is applicable to most SRM topologies in a wide power and speed range and for several inverter topologies. The method allows modest closed-loop dynamic performance. To start up the motor, a feedforward stepping method is used which assures robust startup (even under load) from standstill to a predefined speed at which closed-loop sensorless operation can be applied. Experimental results demonstrate the robust functionality of the method with just one current sensor in the inverter, even with excitation overlap, and the sensorless operation improves with speed. The method is comparable to the back-EMF position estimation for brushless DC motors in principle, performance and cost. A detailed operation and implementation of this scheme is shown, together with steady-state and dynamic transient test results

    High-frequency issues using rotating voltage injections intended for position self-sensing

    Get PDF
    The rotor position is required in many control schemes in electrical drives. Replacing position sensors by machine self-sensing estimators increases reliability and reduces cost. Solutions based on tracking magnetic anisotropies through the monitoring of the incremental inductance variations are efficient at low-speed and standstill operations. This inductance can be estimated by measuring the response to the injection of high-frequency signals. In general however, the selection of the optimal frequency is not addressed thoroughly. In this paper, we propose discrete-time operations based on a rotating voltage injection at frequencies up to one third of the sampling frequency used by the digital controller. The impact on the rotation-drive, the computational requirement, the robustness and the effect of the resistance on the position estimation are analyzed regarding the signal frequency

    State-of-art on permanent magnet brushless DC motor drives

    Get PDF
    Permanent magnet brushless DC (PMBLDC) motors are the latest choice of researchers due to their high efficiency, silent operation, compact size, high reliability and low maintenance requirements. These motors are preferred for numerous applications; however, most of them require sensorless control of these motors. The operation of PMBLDC motors requires rotor-position sensing for controlling the winding currents. The sensorless control would need estimation of rotor position from the voltage and current signals, which are easy to be sensed. This paper presents a state of art on PMBLDC motor drives with emphasis on sensorless control of these motors

    Improving the torque generation in self-sensing BLDC drives by shaping the current waveform

    Get PDF
    Brushless DC drives are widely used in different fields of application because of their high efficiency and power density. Torque ripple can be considered one of the drawbacks of these drives. This paper proposes a method to reduce the torque ripple in BLDC drives. For this reason, the current amplitude is adapted to the rotor position rather than to be kept constant as done in a conventional commutation method. This is done by computing an optimum reference current based on the phase back-EMF waveform. The proposed approach is implemented in a self-sensing drive so its applicability to self-sensing BLDC motor drives is verified. Simulation and experimental results are given and discussed to show that the proposed method actually is able to improve torque production

    Position estimation and performance prediction for permanent-magnet motor drives

    Get PDF
    PhD ThesisThis thesis presents a theoretical and experimental development of a novel position estimator, a simulation model, and an analytical solution for brushless PM motor drive. The operation of the drive, the position estimation model of the test motor, development of hardware, and basic operation of inverter are discussed. Starting with the well-known continuous-time model of brushless PM motor, a sampled-data model is developed that is suitable for th6, application of real-time position estimator. An analytical methodo f calculating the steady-stateb ehaviouro f the brushlessP M motor for 1200in verter operation is presentedT. he analysisa ssumesth at the machinea ir gap is free of saliency effects, and has sinusoidal back EMF. The analytical solution is derived for 60" electrical of the whole period. By experimental results, it is shown that the method of analysis is adequate to predict Ihe motor's performance for typical operating points including phase advance and phase delay operation. C) I A computer simulation model for prediction of the performance of brushless PM moto rs is presented. The model is formulated entirely in the natural abc frame of reference, which allows direct comparison of the simulation and corresponding experimental results. The equations and diagrams are put into a convenient form for the simulation and future developments and library modules. The simulation model and corresponding experimental data of the brushless PM motor drive is given. The thesis describes a modem solution to real-time rotor position estimation, which has been subject to intense research activity for the last 15 years. The implemented new algorithm for shaft position sensorless operation of PM motors is based on the flux linkage and line current estimation. The position estimation algorithm has also been verified by both off-line and on-line experiments (accomplished by a DSP, TMS320C30), and a wide range of steady-statea nd transient results have been 0gi0v en including starting from rest. The position estimation method effectively moves the position measurement point in the drive from the mechanical side to the motor's terminals. As well as eliminating the mechanical shaft position sensor, the investigated method can be used for high performance torque control of brushless PM motors. The thesis demonstrates that, in contrast to many other "sensorless" schemes, the new position estimation method is able to work effectively over the full operating range of the drive, and is applicable to a wide range of motor/converter types. Since the hardware is straightforward, only the new position estimation algorithm differentiates a system. Therefore, if a DSP control system is already implemented in the drive, the position estimator can be implemented at low cost.Istanbul Technical University and Higher Education Counci
    • …
    corecore