1,641 research outputs found

    Distributed Maximum Likelihood Sensor Network Localization

    Full text link
    We propose a class of convex relaxations to solve the sensor network localization problem, based on a maximum likelihood (ML) formulation. This class, as well as the tightness of the relaxations, depends on the noise probability density function (PDF) of the collected measurements. We derive a computational efficient edge-based version of this ML convex relaxation class and we design a distributed algorithm that enables the sensor nodes to solve these edge-based convex programs locally by communicating only with their close neighbors. This algorithm relies on the alternating direction method of multipliers (ADMM), it converges to the centralized solution, it can run asynchronously, and it is computation error-resilient. Finally, we compare our proposed distributed scheme with other available methods, both analytically and numerically, and we argue the added value of ADMM, especially for large-scale networks

    On Sensor Network Localization Using SDP Relaxation

    Full text link
    A Semidefinite Programming (SDP) relaxation is an effective computational method to solve a Sensor Network Localization problem, which attempts to determine the locations of a group of sensors given the distances between some of them [11]. In this paper, we analyze and determine new sufficient conditions and formulations that guarantee that the SDP relaxation is exact, i.e., gives the correct solution. These conditions can be useful for designing sensor networks and managing connectivities in practice. Our main contribution is twofold: We present the first non-asymptotic bound on the connectivity or radio range requirement of the sensors in order to ensure the network is uniquely localizable. Determining this range is a key component in the design of sensor networks, and we provide a result that leads to a correct localization of each sensor, for any number of sensors. Second, we introduce a new class of graphs that can always be correctly localized by an SDP relaxation. Specifically, we show that adding a simple objective function to the SDP relaxation model will ensure that the solution is correct when applied to a triangulation graph. Since triangulation graphs are very sparse, this is informationally efficient, requiring an almost minimal amount of distance information. We also analyze a number objective functions for the SDP relaxation to solve the localization problem for a general graph.Comment: 20 pages, 4 figures, submitted to the Fields Institute Communications Series on Discrete Geometry and Optimizatio

    On a registration-based approach to sensor network localization

    Full text link
    We consider a registration-based approach for localizing sensor networks from range measurements. This is based on the assumption that one can find overlapping cliques spanning the network. That is, for each sensor, one can identify geometric neighbors for which all inter-sensor ranges are known. Such cliques can be efficiently localized using multidimensional scaling. However, since each clique is localized in some local coordinate system, we are required to register them in a global coordinate system. In other words, our approach is based on transforming the localization problem into a problem of registration. In this context, the main contributions are as follows. First, we describe an efficient method for partitioning the network into overlapping cliques. Second, we study the problem of registering the localized cliques, and formulate a necessary rigidity condition for uniquely recovering the global sensor coordinates. In particular, we present a method for efficiently testing rigidity, and a proposal for augmenting the partitioned network to enforce rigidity. A recently proposed semidefinite relaxation of global registration is used for registering the cliques. We present simulation results on random and structured sensor networks to demonstrate that the proposed method compares favourably with state-of-the-art methods in terms of run-time, accuracy, and scalability

    Large-Scale Sensor Network Localization via Rigid Subnetwork Registration

    Full text link
    In this paper, we describe an algorithm for sensor network localization (SNL) that proceeds by dividing the whole network into smaller subnetworks, then localizes them in parallel using some fast and accurate algorithm, and finally registers the localized subnetworks in a global coordinate system. We demonstrate that this divide-and-conquer algorithm can be used to leverage existing high-precision SNL algorithms to large-scale networks, which could otherwise only be applied to small-to-medium sized networks. The main contribution of this paper concerns the final registration phase. In particular, we consider a least-squares formulation of the registration problem (both with and without anchor constraints) and demonstrate how this otherwise non-convex problem can be relaxed into a tractable convex program. We provide some preliminary simulation results for large-scale SNL demonstrating that the proposed registration algorithm (together with an accurate localization scheme) offers a good tradeoff between run time and accuracy.Comment: 5 pages, 8 figures, 1 table. To appear in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, April 19-24, 201

    Distributed Recognition of Reference Nodes for Wireless Sensor Network Localization

    Get PDF
    All known localization techniques for wireless sensor and ad-hoc networks require certain set of reference nodes being used for position estimation. The anchor-free techniques in contrast to anchor-based do not require reference nodes called anchors to be placed in the network area before localization operation itself, but they can establish own reference coordinate system to be used for the relative position estimation. We observed that contemporary anchor-free localization algorithms achieve a low localization error, but dissipate significant energy reserves during the recognition of reference nodes used for the position estimation. Therefore, we have proposed the optimized anchor-free localization algorithm referred to as BRL (Boundary Recognition aided Localization), which achieves a low localization error and mainly reduces the communication cost of the reference nodes recognition phase. The proposed BRL algorithm was investigated throughout the extensive simulations on the database of networks with the different number of nodes and densities and was compared in terms of communication cost and localization error with the known related algorithms such as AFL and CRP. Through the extensive simulations we have observed network conditions where novel BRL algorithm excels in comparison with the state of art

    Sensor network localization for moving sensors

    Get PDF
    pre-printSensor network localization (SNL) is the problem of determining the locations of the sensors given sparse and usually noisy inter-communication distances among them. In this work we propose an iterative algorithm named PLACEMENT to solve the SNL problem. This iterative algorithm requires an initial estimation of the locations and in each iteration, is guaranteed to reduce the cost function. The proposed algorithm is able to take advantage of the good initial estimation of sensor locations making it suitable for localizing moving sensors, and also suitable for the refinement of the results produced by other algorithms. Our algorithm is very scalable. We have experimented with a variety of sensor networks and have shown that the proposed algorithm outperforms existing algorithms both in terms of speed and accuracy in almost all experiments. Our algorithm can embed 120,000 sensors in less than 20 minutes
    corecore