
Sensor Network Localization for Moving Sensors

Arvind Agarwal∗, Hal Daumé III∗, Jeff M. Phillips† and Suresh Venkatasubramanian†
∗Department of Computer Science

University of Maryland, College Park, Maryland 20743
Email: {arvinda, hal}@cs.umd.edu

†School of Computing
University of Utah, Salt Lake City, Utah 84112

Email: {jeffp, suresh}@cs.utah.edu

Abstract—Sensor network localization (SNL) is the
problem of determining the locations of the sensors given
sparse and usually noisy inter-communication distances
among them. In this work we propose an iterative algo-
rithm named PLACEMENT to solve the SNL problem.
This iterative algorithm requires an initial estimation of
the locations and in each iteration, is guaranteed to reduce
the cost function. The proposed algorithm is able to take
advantage of the good initial estimation of sensor locations
making it suitable for localizing moving sensors, and also
suitable for the refinement of the results produced by
other algorithms. Our algorithm is very scalable. We have
experimented with a variety of sensor networks and have
shown that the proposed algorithm outperforms existing
algorithms both in terms of speed and accuracy in almost
all experiments. Our algorithm can embed 120,000 sensors
in less than 20 minutes.

Keywords-Embedding, sensor network localization;

I. INTRODUCTION

With the advancement of computer and wireless tech-

nology, wireless sensors are becoming smaller, more

computationally capable, and more inexpensive causing

wireless sensor networks to be commonplace. Wireless

sensors can be effectively used to measure temperature,

vibrations, sound, pressure, etc, and find applications in

many areas such as military applications, environment

or industrial control and monitoring, wildlife monitor-

ing, and security monitoring; however, in most appli-

cations, if the networks are to achieve their purpose,

locations of the sensors must be known. Yet, in many

networks, locations are given for a few of the sensors

(called anchors), and the locations of the remaining sen-

sors must be determined. Although Global Positioning

System (GPS) can be used to determine the locations,

GPS systems are usually bulky, consume too much

power, usually expensive compared to the sensors, and

can only be used outdoor. In such scenarios when GPS

cannot be used to find the locations, finding locations

by other means become important.

One way to find the locations of these sensors is

to use the intercommunication distances (sensor-sensor

and sensor-anchor), and treat the localization problem

as a distance embedding problem. Distances between

these sensors are usually measured by communicating

with only nearby sensors since further communication is

limited by sensor power. Such distance measurements

provide a sparse distance matrix. Sensor network lo-

calization (SNL) [1], [2], [3], [4], [5], [6], [7] is the

problem of determining sensor locations using known

anchor locations and (usually noisy) distance measure-

ments (i.e. sparse noisy distance matrix). This is a large,

non-convex, constrained optimization problem. Large

networks contain many thousands of sensors, whose

locations should be determined accurately and quickly.

In this work, we also consider a special case of the

SNL problem, when sensors are moving. This mov-

ing sensors scenario occurs in many applications e.g.,

wildlife tracking (animal networks), vehicle tracking

etc. In animal networks, sensors are installed on animals

to help them track. Although any algorithm that can

be used for stationary SNL problem can also be used

for moving case, one can do better if it takes into

account the movement of the sensors, and is able to

exploit the information available along the movement

trail. In this work, we present an algorithm that is

especially suitable for moving sensors. Although focus

is on moving sensors, there is no reason why one

cannot apply the proposed algorithm for stationary case,

however in our experiments, we found this algorithm to

be more effective for the moving case.

Our work is inspired by Agarwal et al. [8]. In their

work, they describe a distance embedding algorithm

where all pairwise distances are available and there are

no anchors. In this work, we modify this algorithm to

exploit the available anchors to position the remaining

sensors more accurately, and to handle the sparse and

noisy distance measurements. We experiment with the

moving scenario for a variety of networks, and show that

2012 IEEE 12th International Conference on Data Mining Workshops

978-0-7695-4925-5/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDMW.2012.123

202

2012 IEEE 12th International Conference on Data Mining Workshops

978-0-7695-4925-5/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDMW.2012.123

202

the proposed algorithm outperforms the existing state-

of-art SNL algorithms across almost all experiments.

Our algorithm comes with many attractive properties:

1) It is scalable. It is the first algorithm test on

more than 100,000 sensors with noisy distance

measurements. In particular we localize 120,000
sensors in less than 20 minutes.

2) It is decentralized. Each step can be run on each

sensor with only neighborhood information.

3) It is guaranteed to converge. The cost function

monotonically decrease after the initialization.

4) It can refine other algorithms’ outputs. The algo-

rithm can take advantage of a warm start, (e.g.

the output of another algorithm) and will quickly

converge to a local optimum.

5) It is effective for real-time tracking. It takes only

a fraction of second for a tracking problem with

1000 sensors; See results in Section IV-E.

6) It is general. It preserves all generalities of [8],

including for various spaces and cost functions.

II. RELATED WORK

In the last one decade, there has been a considerable

amount of work in stationary SNL, however we are not

aware of any algorithm that is especially designed for

moving sensors. In this section we discuss some of the

recent work for SNL problem, especially for the large
scale noisy problems. For more detailed discussion on

the related work, we refer readers to [9], [7]

The literature on solving SNL problems can fit in

two broad categories: ones that performs convex re-

laxation on the cost function (see equation (1) below)

using semi-definite programming (SDP); and ones that

directly minimizes the non-convex cost function using

multi-dimensional scaling (MDS)-style algorithms.

In the SDP-type algorithms, one of the most notable

work is of Biswas Ye [1]. They propose a semi-definite

relaxation of the SNL problem, now called Biswas-

Ye relaxation. Although effective, this relaxation can

only be used for small problems with exact distance

measurements. Authors later extended this work for

larger scale [10], [11] and noisy problems [2]. This was

further extended by Carter et al. [3] to solve the even

larger problems by breaking large problems into a series

of small sub-problems, each solved using an SDP.

To handle even larger problem using SDP relaxation,

Wang et. al. [12] proposed further relaxation of SNL

problem, where unlike the Biswas-Ye relaxation, one

does not require the entire distance matrix to be pos-

itive semi-definite. Instead, the problem is broken into

smaller subproblems, and the semideifinite constraint is

enforced only on the subproblems. They proposed two

such relaxations edge-based and node-based; the edge-

based (ESDP) appears more successful. Although con-

siderably faster than the original Biswas-Ye relaxation,

it still takes significant time compared to the other more

recent approaches. For n = 4, 000 sensors (and with

noise σ = 0.01, neighborhood radius R = 0.035 in

a unit cube) it took more than 10 minutes which is

slower than the some of the recent approaches [5], [6]

but better than the SOCP approach of [4] and Carter et.

al. [3]. A noise-aware version of ESDP called ρ-ESDP

was proposed by Pong and Tseng (2009) [5] in which

they use the Log-barrier Penalty Coordinate Gradient

Descent (LPCGD) method to solve the SDP relaxation

problem. In our experiments, we have found this to be

the best baseline among all competing algorithms both

in terms of speed and accuracy. Since the SNL problem

typically has sparse input, a sparse version of the

Biswas-Ye relaxation is proposed by [6] called SFSDP.

This allows one to handle the sparse noisy SNL problem

efficiently. In their work Kim et al. could handle the

problem up to 18,000 sensors and 2000 anchors in

less than 10 minutes. Some of the more recent work

in SNL world is done by Krislock [7] where smaller

SDPs are solved to embed the sensors in a successive

manner. This algorithms can handle enormous numbers

of sensors (experiments were performed on sensor sets

of size up to 100,000), and is remarkably fast and

accurate for the exact distance measurements, but when

there is a noise in the measurement, algorithms performs

very poorly, both in terms of time and accuracy (see

results in Section IV-C).

In the second category (MDS-style), the work that

is most related to us is by Costa et al. [13]. They

present a distributed algorithm dwMDS which uses

iterative refinement, and finds a minimum of a global

cost function using a majorization algorithm. Although

similar to our algorithm, its biggest limitation is that

it does not make smart use of available anchors, and

thus is not suitable when there are lots of anchors and

distance measurements are noisy. Another related work

in the MDS-style approaches is done by Moore et al.

[14] which is based on trilateralization. This requires

each node to have a degree or 10 or more between any

pair of neighbors, or more if the distance measurements

are noisy.

III. OUR APPROACH

Problem 1 (Sensor Network Localization (SNL)). Con-
sider a graph G = (V,E,D) with vertex set of size
|V | = n, where Dij is the estimated distance for each
edge (i, j) ∈ E, and where there are m anchor vertices
(vn−m+1, . . . , vn) with known and fixed locations. The

203203

Algorithm 1 PLACEMENT(D,X0, εx, εd, σ ,Nout, Nin)

X ← AddAnchors(D,X0, εx, εd, σ ,Nout, Nin)
for t = 1 to Nout do

for i = 1 to |X| do
U = {xj : (i, j) ∈ E}
S = {Dij : xj ∈ U}
xi ← place-center(xi, U, S,Nin, εx)

Return X

Algorithm 2 place-center(xi, U, S,Nin, εx)

for t = 1 to Nin do
xold ← xi
for j = 1 to |U | do
x′
j ← move xj ∈ U towards xi by Sj

xi ← Mean(x′
1 . . . x

′
|U |)

if ‖xi − xold‖2 < εx then
Return xi

Return xi

SNL problem seeks a mapping μ : V → R
d to minimize

∑
(i,j)∈E

(
‖μ(vi)− μ(vj)‖2 −Dij

)2

(1)

over all choices of μ that restricts anchor vertices to
their known locations (xn−m+1, . . . , xn). For notation,
we label X = {xi = μ(vi)} for all vertices.

We solve SNL problem directly without convert-

ing it into a related problem and without relaxing

any constraints. We propose an algorithm inspired by

[8], and call it PLAce CEnter with Missing ENTries

(PLACEMENT). Let X be d× n matrix such that the

last m columns of this matrix are anchors. Let X0 be

another d×n matrix that will be used to initialize X . Let

εx and εd be terminating parameters of the algorithm,

and Nin, Nout be the number of iterations. Let

Ci(x, U, S) =
∑

(i,j)∈E

(
‖x− μ(vj)‖2 −Dij

)2

be the embedding cost of one point vi at location x
where U ⊂ V is the set of neighboring of x and S ⊂ D
are the corresponding distances of x to its neighbors U .

The main algorithm is presented in Algorithm 1. This

algorithm consists of two stages. In the first stage, it

uses the existing anchors to find more anchors using

Algorithm 3. When it can no longer add anchors, it

invokes the second stage to embed the remaining points

and to refine their location. The significant difference

between this algorithm and that of Agarwal et al. is the

AddAnchors step. For sparse networks, the algorithm

Algorithm 3 AddAnchors(D,X0, εx, εd, σ ,Nout, Nin)

X ← X0

isAncr := |X0| × 1 vector, TRUE if xi is anchor.

for t = 1 to Nin do
for i = 1 to n do

if isAncr[i] = FALSE then
U = {xj | (i, j) ∈ E, isAncr[j] = TRUE}
if |U | ≥ d+ 2 then
S = {Dij : xj ∈ U}
c = 0
while isAncr[i] �= TRUE & c < 30 do
c = c+ 1
xi ← place-center(xi, U, S, t, εx)
if Ci(xi, S, U) < max(σ,ε d) then

isAncr[i] ← true
else

Reinitialize xi
Return X

proposed in Agarwal et.al is very susceptible to local

minima. This problem of local minima is alleviated

using the AddAnchors subroutine and a good initial-

ization. This AddAnchors subroutine is also critical to

give a faster embedding when the number of anchors is

large. Consider a case when 90% of the total sensors

are anchors, in such a case, algorithm would most

likely not enter the second step as all remaining sensors

would be found in the AddAnchors step. The part after

AddAnchors is same as in Agarwal et al., and we refer

readers to the original paper [8] for more details.

We now describe the AddAnchors algorithm (Al-

gorithm 3). It first considers points connected to at

least d + 2 anchors. Since we know the location of

the anchors, localizing a point with respect to anchors

is a relatively easy problem, and only minimizing the

distance with respect to the anchors should lead to a

better solution. All such points that are connected to at

least d+2 anchors are localized using place-center by

only considering the distances from anchors; and when

these points localized up to a user-defined tolerance

(max(σ,ε d)), they are added to the set of the anchors.

The process is repeated for Nin iterations.

A. MDS is Gradient Descent

We can show that the algorithm presented in [8] is

exactly a gradient descent algorithm with learning rate

λ = 1/2n. The cost function is for a point xi is

C(xi) =
∑
j

(
‖xi − xj‖ −Di,j

)2

204204

Taking the gradient with respect to xi

∂C(xi)

∂xi
=
∑
j

2
(
‖xi − xj‖ −Di,j

)∂‖xi − xj‖
∂xi

=
∑
j

2
(
1− Di,j

‖xi − xj‖
)
(xi − xj).

The new location of xi with learning rate λ = 1
2n is

x∗
i = xi − λ

∂C(xi)

∂xi

= xi − 1

2n

∑
j

2
(
1− Di,j

‖xi − xj‖
)
(xi − xj)

=
1

n

∑
j

(
xj + (xi − xj)

Di,j

‖xi − xj‖
)
=

1

n

∑
j

x̂j .

These x̂j are interpolated points between xj and xi at

the fractional distance q = Di,j/‖xi − xj‖. Although

this algorithm is simply the gradient descent with learn-

ing rate 1/2n, notably it always monotonically reduces
the cost, which is not true for general gradient descent

algorithms.

IV. EXPERIMENTS

We experiment with different sensor networks, and

show the behavior of our algorithm PLACEMENT
compared to the other algorithms. We only directly

compare against two algorithms Krislock (2010) [7]

and Pong and Tseng (2009) [5], since they have been

shown to dominate other algorithms (e.g. [2], [6], [12]),

and other popular algorithms (e.g. [15]) cannot handle

anchor points.

• Pong and Tseng (2009) [5] - This is the best

algorithm for dealing with noisy measurements.

• Krislock (2010) [7] - This algorithm is the most

scalable, but does not handle noise well.

For all of the baselines (including cited dominated

ones (e.g. [2], [6], [12], [15]) for which we do not

report numbers), we asked authors to provide their

code or downloaded publicly available code. We imple-

mented our algorithm in C. All the runtimes reported

in experiments are wall clock times. For baselines, all

the parameters were taken to be the default values or

whatever suggested by authors. For our algorithm, we

chose the following values of the parameters. εx =
1e-7, εd = 1e-5; Nout = 20, Nin = 10 for σ = 0,

otherwise Nout = 40, Nin = 5.

A. Data Generation

Following the previous work [12], [7], [5], [6], ar-

tificial data is generated by first generating n points

uniformly at random in [0, 1]2 box, and then selecting

m points uniformly at random as anchors. Call these

set of points as X0. Here 0 denotes the time. To

model moving points, we have them move in a random

walk described by a Gaussian distribution on each step.

Specifically, each step we generate the set Xt from

Xt−1 by Xt = Xt−1 + ηN(0, 1)), where η is the

perturbation factor and N(0, 1) is the Gaussian random

variable with 0 mean and unit variance. Only sensors

move, anchors locations remain fixed. For each set of

points except X0 which is used for initialization; edges

are generated based on the radio-distance R. Two nodes

are connected if their distance is less than radio-distance

D′
ij =

{ ‖xi − xj‖2, (i, j) ∈ E if ‖xi − xj‖2 ≤ R
unspecified otherwise.

Then we add Gaussian noise to each specified distance.

For all (i, j) ∈ E we set Dij = D′
i,j (1 + σN(0, 1)),

where σ is the noise factor. In the moving case, this σ-

error is added to the measurement after each time step.

B. Evaluation

We evaluate the algorithms based on their ability to

position sensors at their actual locations, (not based on

the cost function). We measure two quantities, RMSE

(Root Mean Square Error) and MAXERR (Maximum

Error) defined as:

RMSE =

√√√√ 1

n−m

n−m∑
i=1

‖xi − xtruei ‖2

MAXERR = max
i

‖xi − xtruei ‖
We perform two types of experiments. First, we con-

sider only one time step, where data is initialized at X0,

and after one step, we solve the SNL on X1 (each sensor

moves with ηN(0, 1)). Second, we consider the problem

over multiple time steps, e.g. at t = 1, 2, . . . , 20.

C. Results

In reporting results, there are five free parameters

to generate a problem i.e., n, m, R, σ and η. We

vary all five parameters, and for each set of parameters

we generate six random problems, and present the

mean. All of the above parameters control different

properties of the network. n and m and R control the

sparseness/density of the network. A higher value of R
means more edges and hence a dense graph. σ controls

the amount of noise in the distances while η controls

the movement of sensors (only speed). All times are

reported in seconds unless otherwise noted.

First set of results is reported in Table I. In this set

of results, we fix the network structure i.e., value of

m and R, but changes the amount of noise σ and the

205205

Table I
RELATIVE COMPARISON OF ALL THREE ALGORITHMS FOR DIFFERENT VALUES OF n,σ AND η

n m R σ η PLACEMENT Pong and Tseng (2009) Krislock (2010)
RMSE MAXERR Time RMSE MAXERR Time RMSE MAXERR Time

1000 20 0.06 0 0.01 2.29e-3 1.80e-2 0.54 7.67e-2 3.62e-1 12.75 8.44e-14 67e-13 0.87

1000 20 0.06 0 0.1 2.75e-2 1.39e-1 1.40 8.25e-2 3.73e-1 12.14 2.52e-13 4.20e-12 0.83

1000 20 0.06 0 0.2 4.10e-2 2.07e-1 1.49 7.18e-2 3.67e-1 10.44 1.66e-13 3.23e-12 0.87

1000 20 0.06 0.1 0.01 5.65e-3 3.60e-2 0.73 7.27e-2 3.49e-1 5.62 5.54e+1 1.08e+3 0.92

1000 20 0.06 0.1 0.1 3.09e-2 1.36e-1 1.93 8.63e-2 4.13e-1 6.07 7.95e+2 2.0e+4 1.10

1000 20 0.06 0.1 0.2 3.82e-2 1.59e-1 3.47 7.24e-2 3.42e-1 5.30 7.64e+3 9.5e+4 0.84

1000 20 0.06 0.3 0.01 1.85e-2 9.35e-2 1.80 7.86e-2 3.24e-1 4.40 7.29e+1 1.72e+3 1.44

1000 20 0.06 0.3 0.1 3.38e-2 1.39e-1 1.11 8.56e-2 3.35e-1 4.49 1.16e+2 1.66e+3 1.78

1000 20 0.06 0.3 0.2 4.58e-2 1.92e-1 2.54 7.20e-2 3.17e-1 4.24 9.05 1.18e+2 1.52

4000 20 0.035 0 0.01 1.90e-3 3.10e-2 2.31 5.5e-2 3.05e-2 133.09 1.98e-13 1.92e-12 3.27

4000 20 0.035 0 0.1 1.77e-2 9.63e-2 8.36 5.94e-2 3.17e-2 138.59 1.45e-13 9.7e-13 3.26

4000 20 0.035 0 0.2 2.96e-2 1.48e-1 8.19 7.51e-1 3.73e-1 153.85 1.47e-13 9.91e-13 3.16

4000 20 0.035 0.1 0.01 2.69e-3 2.24e-2 1.78 7.11e-2 3.68e-1 96.96 2.64e+1 8.54e+2 8.84

4000 20 0.035 0.1 0.1 1.75e-2 8.99e-2 15.89 5.9e-2 3.18e-2 85.31 5.88e+3 6.57e+4 6.50

4000 20 0.035 0.1 0.2 2.44e-2 1.24e-1 21.11 7.26e-2 3.45e-1 88.08 1.76e+1 3.12e+2 10.70

4000 20 0.035 0.3 0.01 5.50e-3 3.07e-2 0.82 7.23e-2 3.45e-1 60.62 2.90e+1 4.37e+2 10.79

4000 20 0.035 0.3 0.1 1.69e-2 1.05e-2 12.51 7.64e-2 3.46e-2 62.90 1.02e+2 2.25e+3 19.14

4000 20 0.035 0.3 0.2 2.62e-2 1.36e-1 21.12 9.28e-2 3.96e-1 64.24 1.28e+2 2.72e+3 33.18

Table II
RELATIVE COMPARISON WHEN THE NETWORK STRUCTURE IS CHANGED, FOR DIFFERENT m AND R

n m R σ η PLACEMENT Pong and Tseng (2009)
RMSE MAXERR Time RMSE MAXERR Time

1000 5 0.02 0.1 0.1 1.18e-1 3.51e-1 0.03 1.12e-1 3.39e-1 0.50

1000 5 0.06 0.1 0.1 2.77e-2 1.55e-1 1.55 1.96e-1 5.45e-1 17.69

1000 5 0.15 0.1 0.1 6.04e-3 1.55-2 18.59 1.26e-1 5.86e-1 9.43

1000 20 0.02 0.1 0.1 1.17e-1 3.56e-1 0.03 1.11e-1 3.67e-1 0.64

1000 20 0.06 0.1 0.1 3.39e-2 1.36e-1 2.50 8.20e-2 3.49e-1 5.79

1000 20 0.15 0.1 0.1 1.74e-2 1.32e-1 12.74 5.60e-1 3.00e-1 1.93

1000 50 0.02 0.1 0.1 1.15e-2 3.47e-1 0.04 1.09e-2 3.00e-1 1.93

1000 50 0.06 0.1 0.1 2.94e-2 1.44e-1 3.03 3.26e-1 2.39e-1 1.9

1000 50 0.15 0.1 0.1 3.48e-3 1.18e-2 7.80 1.49e-2 1.18e-1 1.21

1000 200 0.02 0.1 0.1 1.09e-1 3.45e-1 0.05 1.03e-1 3.45e-1 0.35

1000 200 0.06 0.1 0.1 1.45e-2 9.24e-2 1.32 1.43e-2 1.26e-1 0.56

1000 200 0.15 0.1 0.1 2.91e-3 1.03e-2 0.52 2.89e-3 1.00e-2 1.05

4000 5 0.02 0.1 0.1 4.28e-2 2.74e-1 3.38 2.61e-1 6.23e-1 286.11

4000 5 0.1 0.1 0.1 4.94e-4 1.31e-2 64.55 1.23e-1 5.03e-1 267.35

4000 20 0.02 0.1 0.1 4.19e-2 2.85e-1 3.85 1.12e-1 3.52e-1 78.08

4000 20 0.1 0.1 0.1 7.20e-2 2.45e-1 175.18 2.36e-2 2.64e-1 48.99

4000 50 0.02 0.1 0.1 4.09e-2 2.58e-1 4.26 8.60e-2 3.39e-1 52.04

4000 50 0.1 0.1 0.1 7.59e-3 1.04e-1 100.69 1.51e-3 5.55e-3 16.11

4000 200 0.02 0.1 0.1 3.70e-2 2.89e-1 4.03 4.12e-2 2.89e-1 12.27

4000 200 0.1 0.1 0.1 1.66e-3 7.41e-3 12.43 1.41e-3 5.98e-3 9.69

206206

amount of perturbation η. We repeat these experiments

for different values of n = 1000 and 4000. From this

table, first observation we make is that Krislock (2010)

performs poorly when there is noise in the data. This

algorithm is extremely good for non-noisy data, and

can give almost perfect position for sensors, however

if one only cares for the near-perfect position (of the

order of 1e−2), PLACEMENT is nearly as fast. But,

since Krislock (2010) performs poorly for the noisy

data (large σ), Pong and Tseng (2009) will be our main

baseline for the remaining experiments.

On comparing Pong and Tseng (2009) with PLACE-
MENT, we observe that PLACEMENT outperforms

Pong and Tseng (2009) in all cases both in terms speed

and accuracy. In some cases (e.g., non-noisy cases) the

difference in time is significant. Note that time taken

by Pong and Tseng (2009) for n = 4000 even with

η = 0.2 perturbation is 153 seconds while PLACE-
MENT can find a better embedding in only 8 seconds.

This time difference between Pong and Tseng (2009)

and PLACEMENT is consistent for other cases as well.

We emphasize here that both algorithms PLACEMENT
and Pong and Tseng (2009) require an initial estimation

of the locations but Pong and Tseng (2009) is not able

to exploit the good estimate of the initial locations as

much as PLACEMENT. Notice that when there is small

perturbation η = 0.01, PLACEMENT is significantly

faster than Pong and Tseng (2009)—for n = 4000,

σ = 0, η = 0.01 Pong and Tseng (2009) takes 133
seconds while PLACEMENT only takes 2.31 seconds,

while providing the better embedding both in terms of

RMSE and MAXERR.

In our second set of results, we study the behavior

of different algorithms as the network properties are

varied, specifically the number of anchors m and the

radio distance R. We fix the noise level σ at 0.1 and

perturbation η at 0.1, so as not to bias any algorithm.

Note from the previous table that our algorithm will

perform very well for small perturbation η = 0.01 and

for small noise, hence we do not keep σ and η to be

too small to favor PLACEMENT. The results of this

set of experiments are reported in Table II. Due to the

poor performance of Krislock (2010) on noisy data, we

exclude it from the table. From this set of experiments,

we observe that PLACEMENT has a better performance

than Pong and Tseng (2009) when the network is sparse,

i.e., when R and m both are small. As we increase R,

the performance of PLACEMENT still remains better

as long as m is small but when we increase both, Pong

and Tseng (2009) starts to catch up. This is mainly

because of the relatively poor performance of Pong and

Table IV
RESULTS ON LARGE SCALE NOISY DATA (m = 20).

n R σ η PLACEMENT
RMSE MAXERR Time

20000 0.018 0.02 0.01 1.5e-3 2.1e-2 14

20000 0.018 0.02 0.1 1.1e-2 6.9e-2 79

20000 0.018 0.1 0.01 1.8e-3 2.4e-2 13

20000 0.018 0.1 0.1 1.1e-2 6.4e-2 87

40000 0.015 0.02 0.01 1.2e-3 1.7e-2 46

40000 0.015 0.02 0.1 8.6e-3 5.6e-2 316

40000 0.015 0.1 0.01 1.3e-3 1.8e-3 50

40000 0.015 0.1 0.1 8.4e-3 5.1e-2 305

80000 0.010 0.02 0.01 1.4e-3 1.6e-2 123

80000 0.010 0.02 0.1 8.2e-3 4.7e-2 699

80000 0.010 0.1 0.01 1.4e-3 1.6e-2 125

80000 0.010 0.1 0.1 8.3e-3 4.4e-2 729

120000 0.008 0.02 0.01 1.4e-3 1.5e-2 197

120000 0.008 0.02 0.1 8.0e-3 4.8e-2 1043

120000 0.008 0.1 0.01 1.4e-3 1.3e-3 202

120000 0.008 0.1 0.1 8.0e-3 4.3e-2 1085

Tseng (2009) for small m. Note that all the experiments

reported in [5] considered m at 10% of n. Here we

keep m to be much smaller, we believe this to be

a more practical scenario. When both m and R are

large (e.g. m = 200, R = 0.15), there is not much

difference in the performance of Pong and Tseng (2009)

and PLACEMENT because, for large m, subroutine

AddAnchors finds more anchors making the problem

simpler, and thus PLACEMENT runs faster.

In certain instances, it is not clear which algorithm

performs best, mainly because our algorithm is an

iterative algorithm, and one can increase/decrease the

time by running it for more/less iterations. For example,

n = 1000,m = 50, R = 0.15 or n = 1000,m = 5, R =
0.15, although PLACEMENT takes more time, but it

also gives better accuracy. One can reduce the time by

compromising on the accuracy.

D. Large Scale Experiments

We also perform experiments on much larger prob-

lems in the noisy setting. To the best of our knowledge,

there has not been any work on this type of problem

at this scale for noisy data. So for the large scale,

there is no baseline algorithm. But still to see the

behavior of both baselines for noisy sparse problem,

we run them for n = 10, 000 and results are reported in

Table III. From this table, it is clear that PLACEMENT
not only runs significantly faster than both Pong and

Tseng (2009) and Krislock (2010) but also gives better

207207

Table III
RELATIVE PERFORMANCE ON LARGE SCALE NOISY DATA. “-” INDICATES THAT JOB DID NOT COMPLETE WITHIN 24 HOURS.

n m R σ η PLACEMENT Pong and Tseng (2009) Krislock (2010)
RMSE MAXERR Time RMSE MAXERR Time RMSE MAXERR Time

10000 20 0.02 0.02 0.01 2.6e-3 2.9e-2 5 6.0e-2 2.6e-1 598 1.1e+2 1.9e+3 39

10000 20 0.02 0.02 0.1 1.5e-2 8.1e-2 31 6.7e-2 3.0e-1 582 2.5e+3 1.8e+5 33

10000 20 0.02 0.1 0.01 2.9e-3 3.0e-2 5 7.1e-2 3.0e-1 592 3.6e+2 2.2e+4 126

10000 20 0.02 0.1 0.1 1.5e-2 8.4e-2 28 6.43e-2 2.67e-1 858 - - -

accuracy for both RMSE and MaxErr. Results for even

larger problems, n = 20, 000 to n = 120, 000 are

presented in Table IV. We can handle the sensors up to

n = 120, 000 in less than 20 minutes, with a reasonable

accuracy.

E. Moving Problem

We now consider experiments on moving data over

several (up to t = 20) time steps. Algorithms only take

the initial position X0 as input, and in the successive

steps, the initial position is the position returned from

the previous step (estimated location from (t−1) step).

So far we have only considered the speed of the

movement η not the pattern. When sensors are moving,

there can be many moving patterns e.g., moving in a

herd, moving in only one direction, disperse moving

etc., and an algorithm’s behavior might change accord-

ing to the pattern. In our work, we experiment with

following two moving patterns:

Moving-within-boundary: in this pattern, sensors

move from their initial location by a small amount η,

but at any given time all sensors remain inside a fixed

boundary. This pattern would imitate if animals are left

in a big fenced in ranch (note that animals are randomly

distributed in the ranch), and then they start moving.

They are not allowed to go out of the ranch.

Moving-without-boundary: this pattern is same as

above except, now that there is no notion of boundary

and animals are allowed to move freely. Since the size

of the area sensors are located in is increasing with the

time (and so are the distances), error would also increase

(as seen in Figure 1) .

Results for the pattern moving-without-boundary is

shown in Figure 1. For these experiments, we fix

n = 1000 and m = 5, but change other parameters

σ and η. Each subfigure in the figure is captioned with

the average time (in seconds) taken in all 20 time steps,

in the order of Pong and Tseng (2009) (η = 0.01),

PLACEMENT (η = 0.01), Pong and Tseng (2009)

(η = 0.05), PLACEMENT (η = 0.05). Each subfigure

has four RMSE plots, two for η = 0.01 (red lines)

and two for η = 0.05 (blue lines). From this figure,

it is clear that PLACEMENT outperforms Pong and

Tseng (2009) in terms of both speed and accuracy in

all cases. This improvement is even more significant

if one considers the time taken by both algorithms.

As mentioned above, since we are dealing with the

ground with no boundary, as we advance in time, inter-

sensor distances increase and so the embedding error,

but the relative improvement of PLACEMENT over

Pong and Tseng (2009) remains consistent. Note that

when R = 0.06, σ = 0.01, η = 0.05, m = 5
(Figure 1(a)), Pong and Tseng (2009) takes 19.1 seconds

while PLACEMENT only takes 0.2 seconds. We remind

readers that fast response time is important if one were

to do a real-time tracking.

Results for the pattern moving-within-boundary is

shown in Figure 2. In these cases as well, PLACE-
MENT consistently outperforms Pong and Tseng (2009)

both in terms of speed and accuracy. Once again,

compare the time for the case m = 5, R = 0.06,

η = 0.05, σ = 0.01 (Figure 2(a)), Pong and Tseng

(2009) takes 25.6 seconds while PLACEMENT only

takes 0.9 seconds.

V. CONCLUSION AND DISCUSSION

We have presented an iterative scalable MDS-based

algorithm for sensor network localization that can han-

dle the noisy data more effectively than the previous

scalable algorithms, and is guaranteed to reduce the cost

function in every iteration. It can embed sensors up to

120, 000 in less than 20 minutes. Our algorithm requires

and exploits an initial estimate of the sensor locations.

This makes the algorithm especially effective for mo-

bile sensor network location problems. Furthermore,

our algorithm is naturally distributed, thus potentially

avoiding large communication overhead associated with

centralized algorithms.

ACKNOWLEDGMENT

Suresh Venkatasubramanian is partially supported

by NSF grants CCF-0953066 and CCF-1115677. Hal

Daumé III is partially supported by NSF grants IIS-

1117716 and IIS-1153487.

208208

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

TimeSteps

R
M

S
E

n=1000, m=5, R=0.06, sigma=0.01

(a) 26.1, 0.3, 19.1, 0.2

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

TimeSteps

R
M

S
E

n=1000, m=5, R=0.06, sigma=0.10

PT−0.01
Ours−0.01
PT−0.05
Ours−0.05

(b) 18.0, 0.2, 10.6, 0.2

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

TimeSteps

R
M

S
E

n=1000, m=5, R=0.10, sigma=0.01

(c) 13.6, 0.7, 18.7, 2.7

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

TimeSteps

R
M

S
E

n=1000, m=5, R=0.10, sigma=0.10

(d) 10.6, 0.4, 9.1, 2.9

Figure 1. RMSE versus time steps for m = 5 for moving pattern moving-without-boundary

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

TimeSteps

R
M

S
E

n=1000, m=5, R=0.06, sigma=0.01

PT−0.01
Ours−0.01
PT−0.05
Ours−0.05

(a) 26.5, 0.4, 25.6, 0.9

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

TimeSteps

R
M

S
E

n=1000, m=5, R=0.06, sigma=0.10

PT−0.01
Ours−0.01
PT−0.05
Ours−0.05

(b) 18.8, 0.2, 13.8, 0.7

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

TimeSteps

R
M

S
E

n=1000, m=5, R=0.10, sigma=0.01

PT−0.01
Ours−0.01
PT−0.05
Ours−0.05

(c) 14.3, 0.7, 19.4, 5.8

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

TimeSteps

R
M

S
E

n=1000, m=5, R=0.10, sigma=0.10

PT−0.01
Ours−0.01
PT−0.05
Ours−0.05

(d) 11.1, 0.4, 9.9, 6.0

Figure 2. RMSE versus time steps for m = 5 for moving pattern moving-within-boundary

REFERENCES

[1] P. Biswas and Y. Ye, “Semidefinite programming for
ad hoc wireless sensor network localization,” in IPSN
’04: Proceedings of the 3rd international symposium on
Information processing in sensor networks. New York,
NY, USA: ACM, 2004, pp. 46–54.

[2] P. Biswas, T.-C. Liang, K.-C. Toh, , Y. Ye, and T.-C.
Wang, “Semidefinite programming approaches for sensor
network localization with noisy distance measurements,”
IEEE Transactions on Automation Science and Engi-
neering, vol. 3, pp. 360–371, 2006.

[3] M. W. Carter, H. H. Jin, M. A. Saunders, and Y. Ye,
“Spaseloc: An adaptive subproblem algorithm for scal-
able wireless sensor network localization,” SIAM J. on
Optimization, vol. 17, no. 4, pp. 1102–1128, Dec. 2006.

[4] P. Tseng, “Second-order cone programming relaxation of
sensor network localization,” SIAM J. on Optimization,
vol. 18, no. 1, pp. 156–185, 2007.

[5] T. Pong and P. Tseng, “Robust edge-based semidefinite
programming relaxation of sensor network localization,”
U. of Washington, Tech. Rep., 2009.

[6] S. Kim, M. Kojima, and H. Waki, “Exploiting sparsity in
sdp relaxation for sensor network localization,” SIAM J.
on Optimization, vol. 20, no. 1, pp. 192–215, Apr. 2009.

[7] N. Krislock, “Semidefinite facial reduction for low-rank
euclidean distance matrix completion,” Ph.D. disserta-
tion, University of Waterloo, 2010.

[8] A. Agarwal, J. M. Phillips, and S. Venkatasubramanian,
“Universal multi-dimensional scaling,” in KDD, 2010.

[9] P. Biswas, “Semidefinite Programming Approaches to
Distance Geometry Problems,” Ph.D. dissertation, De-
partment of Electrical Engineering, Stanford University.,
2007.

[10] P. Biswas and Y. Ye, “A distributed method for solv-
ing semidefinite programs arising from ad hoc wireless
sensor network localization,” Multiscale optimization
methods and applications, pp. 69–84, 2006.

[11] P. Biswas, K.-C. Toh, and Y. Ye, “A distributed SDP ap-
proach for large-scale noisy anchor-free graph reailzation
with applications to molecular conformation,” SIAM J.
Sci. Comput., vol. 30, no. 3, pp. 1251–1277, 2008.

[12] Z. Wang, S. Zheng, Y. Ye, and S. Boyd, “Further
relaxations of the semidefinite programming approach to
sensor network localization,” SIAM J. Optim., pp. 655–
673, 2008.

[13] J. Costa, N. Patwari, and A. Hero III, “Distributed
weighted-multidimensional scaling for node localization
in sensor networks,” ACM Transactions on Sensor Net-
works (TOSN), vol. 2, no. 1, pp. 39–64, 2006.

[14] D. Moore, J. Leonard, D. Rus, and S. Teller, “Ro-
bust distributed network localization with noisy range
measurements,” in Proceedings of the 2nd international
conference on Embedded networked sensor systems, ser.
SenSys ’04. New York, NY, USA: ACM, 2004, pp.
50–61.

[15] H. Fang and D. P. OLeary, “Euclidean distance matrix
completion problems, year = 2010.”

209209

