639 research outputs found

    A Location-Aware Middleware Framework for Collaborative Visual Information Discovery and Retrieval

    Get PDF
    This work addresses the problem of scalable location-aware distributed indexing to enable the leveraging of collaborative effort for the construction and maintenance of world-scale visual maps and models which could support numerous activities including navigation, visual localization, persistent surveillance, structure from motion, and hazard or disaster detection. Current distributed approaches to mapping and modeling fail to incorporate global geospatial addressing and are limited in their functionality to customize search. Our solution is a peer-to-peer middleware framework based on XOR distance routing which employs a Hilbert Space curve addressing scheme in a novel distributed geographic index. This allows for a universal addressing scheme supporting publish and search in dynamic environments while ensuring global availability of the model and scalability with respect to geographic size and number of users. The framework is evaluated using large-scale network simulations and a search application that supports visual navigation in real-world experiments

    Automated generation of geometrically-precise and semantically-informed virtual geographic environnements populated with spatially-reasoning agents

    Get PDF
    La Géo-Simulation Multi-Agent (GSMA) est un paradigme de modélisation et de simulation de phénomènes dynamiques dans une variété de domaines d'applications tels que le domaine du transport, le domaine des télécommunications, le domaine environnemental, etc. La GSMA est utilisée pour étudier et analyser des phénomènes qui mettent en jeu un grand nombre d'acteurs simulés (implémentés par des agents) qui évoluent et interagissent avec une représentation explicite de l'espace qu'on appelle Environnement Géographique Virtuel (EGV). Afin de pouvoir interagir avec son environnement géographique qui peut être dynamique, complexe et étendu (à grande échelle), un agent doit d'abord disposer d'une représentation détaillée de ce dernier. Les EGV classiques se limitent généralement à une représentation géométrique du monde réel laissant de côté les informations topologiques et sémantiques qui le caractérisent. Ceci a pour conséquence d'une part de produire des simulations multi-agents non plausibles, et, d'autre part, de réduire les capacités de raisonnement spatial des agents situés. La planification de chemin est un exemple typique de raisonnement spatial dont un agent pourrait avoir besoin dans une GSMA. Les approches classiques de planification de chemin se limitent à calculer un chemin qui lie deux positions situées dans l'espace et qui soit sans obstacle. Ces approches ne prennent pas en compte les caractéristiques de l'environnement (topologiques et sémantiques), ni celles des agents (types et capacités). Les agents situés ne possèdent donc pas de moyens leur permettant d'acquérir les connaissances nécessaires sur l'environnement virtuel pour pouvoir prendre une décision spatiale informée. Pour répondre à ces limites, nous proposons une nouvelle approche pour générer automatiquement des Environnements Géographiques Virtuels Informés (EGVI) en utilisant les données fournies par les Systèmes d'Information Géographique (SIG) enrichies par des informations sémantiques pour produire des GSMA précises et plus réalistes. De plus, nous présentons un algorithme de planification hiérarchique de chemin qui tire avantage de la description enrichie et optimisée de l'EGVI pour fournir aux agents un chemin qui tient compte à la fois des caractéristiques de leur environnement virtuel et de leurs types et capacités. Finalement, nous proposons une approche pour la gestion des connaissances sur l'environnement virtuel qui vise à supporter la prise de décision informée et le raisonnement spatial des agents situés

    Proceedings, MSVSCC 2018

    Get PDF
    Proceedings of the 12th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 19, 2018 at VMASC in Suffolk, Virginia. 155 pp

    Simulation-Based and Data-Driven Approaches to Industrial Digital Twinning Towards Autonomous Smart Manufacturing Systems

    Get PDF
    A manufacturing paradigm shift from conventional control pyramids to decentralized, service-oriented, and cyber-physical systems (CPSs) is taking place in today’s Industry 4.0 revolution. Generally accepted roles and implementation recipes of cyber systems are expected to be standardized in the future of manufacturing industry. Developing affordable and customizable cyber-physical production system (CPPS) and digital twin implementations infuses new vitality for current Industry 4.0 and Smart Manufacturing initiatives. Specially, Smart Manufacturing systems are currently looking for methods to connect factories to control processes in a more dynamic and open environment by filling the gaps between virtual and physical systems. The work presented in this dissertation first utilizes industrial digital transformation methods for the automation of robotic manufacturing systems, constructing a simulation-based surrogate system as a digital twin to visually represent manufacturing cells, accurately simulate robot behaviors, promptly predict system faults and adaptively control manipulated variables. Then, a CPS-enabled control architecture is presented that accommodates: intelligent information systems involving domain knowledge, empirical model, and simulation; fast and secured industrial communication networks; cognitive automation by rapid signal analytics and machine learning (ML) based feature extraction; and interoperability between machine and human. A successful semantic integration of process indicators is fundamental to future control autonomy. Hence, a product-centered signature mapping approach to automated digital twinning is further presented featuring a hybrid implementation of smart sensing, signature-based 3D shape feature extractor, and knowledge taxonomy. Furthermore, capabilities of members in the family of Deep Reinforcement Learning (DRL) are explored within the context of manufacturing operational control intelligence. Preliminary training results are presented in this work as a trial to incorporate DRL-based Artificial Intelligence (AI) to industrial control processes. The results of this dissertation demonstrate a digital thread of autonomous Smart Manufacturing lifecycle that enables complex signal processing, semantic integration, automatic derivation of manufacturing strategies, intelligent scheduling of operations and virtual verification at a system level. The successful integration of currently available industrial platforms not only provides facile environments for process verification and optimization, but also facilitates derived strategies to be readily deployable to physical shop floor. The dissertation finishes with summary, conclusions, and suggestions for further work
    • …
    corecore