65,271 research outputs found
Pulse transducer with artifact signal attenuator
An artifact signal attenuator for a pulse rate sensor is described. The circuit for attenuating background noise signals is connected with a pulse rate transducer which has a light source and a detector for light reflected from blood vessels of a living body. The heart signal provided consists of a modulated dc signal voltage indicative of pulse rate. The artifact signal resulting from light reflected from the skin of the body comprises both a constant dc signal voltage and a modulated dc signal voltage. The amplitude of the artifact signal is greater and the frequency less than that of the heart signal. The signal attenuator circuit includes an operational amplifier for canceling the artifact signal from the output signal of the transducer and has the capability of meeting packaging requirements for wrist-watch-size packages
Vital Sensory Kit For Use With Telemedicine In Developing Countries
In many developing countries, a large percentage of the population lacks access to adequate healthcare. This is especially true in India where close to 70% of the population lives in rural areas and has little to no access to hospitals or clinics. People living in rural India often times cannot afford to pay to see a doctor should they need to make the journey to a hospital. Telemedicine, a breakthrough in the past couple decades, has broken down the barrier between the patient and the physician. It has slowly been implemented in India to make doctors more available to patients through the use of video conferences and other forms of communication.
A compact and affordable kit has been developed that will be used to take a patient’s blood pressure, heart rate, blood glucose concentration and oxygen saturation. Our most novel contribution is the non-invasive glucose sensor that will use a near-infrared LED and photodiode in the patient’s earlobe. Currently millions of diabetics do this by pricking their finger. By wirelessly sending data results from the vital sign kit, the first essential part of a treatment can be carried out via wireless communication, saving the doctor and patient time and money
Recommended from our members
Methods and systems for extracting venous pulsation and respiratory information from photoplethysmographs
A system and method for separating a venous component and an arterial component from a red signal and an infrared signal of a PPG sensor is provided. The method uses the second order statistics of venous and arterial signals to separate the venous andarterial signals. After reliable separation of the venous and thearterial component signals,the component signals can be used for different purposes. In a preferred embodiment, the respiratory signal, pattern, and rate are extracted from the separated venous component and a reliable ?ratio of ratios? is extracted for SpO, using only the arterial component of the PPG signals. The disclosed embodiments enable real-time continuous monitoring of respiration pattern/rate and site-independentarterial oxygen saturation.Board of Regents, University of Texas Syste
Recommended from our members
Systems and methods for physiological signal enhancement and biometric extraction using non-invasive optical sensors
A system and method for signal processing to remove unwanted noise components including: (i) wavelength-independent motion artifacts such as tissue, bone and skin effects, and (ii) wavelength-dependent motion artifact/noise components such as venous blood pulsation and movement due to various sources including muscle pump, respiratory pump and physical perturbation. Disclosed are methods, analytics, and their uses for reliable perfusion monitoring, arterial oxygen saturation monitoring, heart rate monitoring during daily activities and in hospital settings and for extraction of physiological parameters such as respiration information, hemodynamic parameters, venous capacity, and fluid responsiveness. The system and methods disclosed are extendable to include monitoring platforms for perfusion, hypoxia, arrhythmia detection, airway obstruction detection and sleep disorders including apnea.Board of Regents, University of Texas Syste
A review of machine learning techniques in photoplethysmography for the non-invasive cuff-less measurement of blood pressure
Hypertension or high blood pressure is a leading cause of death throughout the world and a critical factor for increasing the risk of serious diseases, including cardiovascular diseases such as stroke and heart failure. Blood pressure is a primary vital sign that must be monitored regularly for the early detection, prevention and treatment of cardiovascular diseases. Traditional blood pressure measurement techniques are either invasive or cuff-based, which are impractical, intermittent, and uncomfortable for patients. Over the past few decades, several indirect approaches using photoplethysmogram (PPG) have been investigated, namely, pulse transit time, pulse wave velocity, pulse arrival time and pulse wave analysis, in an effort to utilise PPG for estimating blood pressure. Recent advancements in signal processing techniques, including machine learning and artificial intelligence, have also opened up exciting new horizons for PPG-based cuff less and continuous monitoring of blood pressure. Such a device will have a significant and transformative impact in monitoring patients’ vital signs, especially those at risk of cardiovascular disease. This paper provides a comprehensive review for non-invasive cuff-less blood pressure estimation using the PPG approach along with their challenges and limitations
Cuff-Less Methods for Blood Pressure Telemonitoring.
Blood pressure telemonitoring (BPT) is a telemedicine strategy that uses a patient\u27s self-measured blood pressure (BP) and transmits this information to healthcare providers, typically over the internet. BPT has been shown to improve BP control compared to usual care without remote monitoring. Traditionally, a cuff-based monitor with data communication capabilities has been used for BPT; however, cuff-based measurements are inconvenient and cause discomfort, which has prevented the widespread use of cuff-based monitors for BPT. The development of new technologies which allow for remote BP monitoring without the use of a cuff may aid in more extensive adoption of BPT. This would enhance patient autonomy while providing physicians with a more complete picture of their patient\u27s BP profile, potentially leading to improved BP control and better long-term clinical outcomes. This mini-review article aims to: (1) describe the fundamentals of current techniques in cuff-less BP measurement; (2) present examples of commercially available cuff-less technologies for BPT; (3) outline challenges with current methodologies; and (4) describe potential future directions in cuff-less BPT development
Miniature implantable instrument measures and transmits heart function data
Heart diameter is derived from measured transit time of 2.25 MHz ultrasonic pulse between two piezoelectric crystals attached to diametrically opposite heart surfaces. Miniature instrument implanted in chest telemeters information to external receiver-converter. System permits continual dimensional data recording taken from awake animals during long-term experiments
- …
