2,509 research outputs found

    Intrusion Detection Mechanism for Empowered Intruders Using IDEI

    Get PDF
    In the past, intrusion detection has been extensively investigated as a means of ensuring the security of wireless sensor networks. Anti-recon technology has made it possible for an attacker to get knowledge about the detecting nodes and plot a route around them in order to evade detection. An "empowered intruder" is one who poses new threats to current intrusion detection technologies. Furthermore, the intended impact of detection may not be obtained in certain subareas owing to gaps in coverage caused by the initial deployment of detection nodes at random. A vehicle collaboration sensing network model is proposed to solve these difficulties, in which mobile sensing cars and static sensor nodes work together to identify intrusions by empowered intruders. An algorithm for mobile sensing vehicles, called Intrusion Detection Mechanism for Empowered Intruders(IDEI), and a sleep-scheduling technique for static nodes form the basis of our proposal. Sophisticated intruders will be tracked by mobile sensors, which will fill in the gaps in coverage, while static nodes follow a sleep schedule and will be woken when the intruder is discovered close. Our solution is compared to current techniques like Kinetic Theory Based Mobile Sensor Network (KMsn)and Mean Time to Attacks (MTTA) in terms of intrusion detection performance, energy usage, and sensor node movement distance. IDEI's parameter sensitivity is also examined via comprehensive simulations. It is clear from the theoretical analysis and simulation findings that our idea is more efficient and available

    Multi-Level Multi-Objective Programming and Optimization for Integrated Air Defense System Disruption

    Get PDF
    The U.S. military\u27s ability to project military force is being challenged. This research develops and demonstrates the application of three respective sensor location, relocation, and network intrusion models to provide the mathematical basis for the strategic engagement of emerging technologically advanced, highly-mobile, Integrated Air Defense Systems. First, we propose a bilevel mathematical programming model for locating a heterogeneous set of sensors to maximize the minimum exposure of an intruder\u27s penetration path through a defended region. Next, we formulate a multi-objective, bilevel optimization model to relocate surviving sensors to maximize an intruder\u27s minimal expected exposure to traverse a defended border region, minimize the maximum sensor relocation time, and minimize the total number of sensors requiring relocation. Lastly, we present a trilevel, attacker-defender-attacker formulation for the heterogeneous sensor network intrusion problem to optimally incapacitate a subset of the defender\u27s sensors and degrade a subset of the defender\u27s network to ultimately determine the attacker\u27s optimal penetration path through a defended network

    Intelligent deployment strategies for passive underwater sensor networks

    Get PDF
    Passive underwater sensor networks are often used to monitor a general area of the ocean, a port or military installation, or to detect underwater vehicles near a high value unit at sea, such as a fuel ship or aircraft carrier. Deploying an underwater sensor network across a large area of interest (AOI), for military surveillance purposes, is a significant challenge due to the inherent difficulties posed by the underwater channel in terms of sensing and communications between sensors. Moreover, monetary constraints, arising from the high cost of these sensors and their deployment, limit the number of available sensors. As a result, sensor deployment must be done as efficiently as possible. The objective of this work is to develop a deployment strategy for passive underwater sensors in an area clearance scenario, where there is no apparent target for an adversary to gravitate towards, such as a ship or a port, while considering all factors pertinent to underwater sensor deployment. These factors include sensing range, communications range, monetary costs, link redundancy, range dependence, and probabilistic visitation. A complete treatment of the underwater sensor deployment problem is presented in this work from determining the purpose of the sensor field to physically deploying the sensors. Assuming a field designer is given a suboptimal number of sensors, they must be methodically allocated across an AOI. The Game Theory Field Design (GTFD) model, proposed in this work, is able to accomplish this task by evaluating the acoustic characteristics across the AOI and allocating sensors accordingly. Since GTFD considers only circular sensing coverage regions, an extension is proposed to consider irregularly shaped regions. Sensor deployment locations are planned using a proposed evolutionary approach, called the Underwater Sensor Deployment Evolutionary Algorithm, which utilizes two suitable network topologies, mesh and cluster. The effects of these topologies, and a sensor\u27s communications range, on the sensing capabilities of a sensor field, are also investigated. Lastly, the impact of deployment imprecision on the connectivity of an underwater sensor field, using a mesh topology, is analyzed, for cases where sensor locations after deployment do not exactly coincide with planned sensor locations

    On Optimal Arrangements of Binary Sensors

    Get PDF
    A large range of monitoring applications can benefit from binary sensor networks. Binary sensors can detect the presence or absence of a particular target in their sensing regions. They can be used to partition a monitored area and provide localization functionality. If many of these sensors are deployed to monitor an area, the area is partitioned into sub-regions: each sub-region is characterized by the sensors detecting targets within it. We aim to maximize the number of unique, distinguishable sub-regions. Our goal is an optimal placement of both omni-directional and directional static binary sensors. We compute an upper bound on the number of unique sub-regions, which grows quadratically with respect to the number of sensors. In particular, we propose arrangements of sensors within a monitored area whose number of unique sub-regions is asymptotically equivalent to the upper bound

    A Study of the Coverage of Large-scale Sensor Networks

    Get PDF
    We study the coverage properties of large-scale sensor networks. Three coverage measures are defined to characterize the fraction of the area covered by sensors (area coverage), the fraction of sensors that can be removed without reducing the covered area (node coverage), and the capability of the sensor network to detect objects moving in the network (detectability), respectively. We approach the coverage problem from a theoretical perspective and explore the fundamental limits of the coverage of a large-scale sensor network. We characterize the asymptotic behavior of the coverage measures for a variety of sensor network scenarios. We find that the coverage of a sensor network exhibits different behaviors for different network configuration and parameters. Based on the analytical characterizations of the network coverage, we further discuss the implications to network planning and protocol performance of sensor networks

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial
    • …
    corecore