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Abstract— We study the coverage properties of large-scale
sensor networks. Three coverage measures are defined to charac-
terize the fraction of the area covered by sensors (area coverage),
the fraction of sensors that can be removed without reducing the
covered area (node coverage), and the capability of the sensor
network to detect objects moving in the network (detectability),
respectively. We approach the coverage problem from a theoreti-
cal perspective and explore the fundamental limits of the coverage
of a large-scale sensor network. We characterize the asymptotic
behavior of the coverage measures for a variety of sensor
network scenarios. We find that the coverage of a sensor network
exhibits different behaviors for different network configuration
and parameters. Based on the analytical characterizations of the
network coverage, we further discuss the implications to network
planning and protocol performance of sensor networks.

I. INTRODUCTION

Advances in micro-sensor and communication technologies
have made it possible to manufacture small sensors with
simple sensing, processing, and wireless communication ca-
pabilities in a cost-effective fashion [1], [2]. A sensor network
can be formed by deploying specialized sensors in the region
of interest to perform certain sensing and networking tasks.
Applications of sensor networks include battlefield surveil-
lance, and environment monitoring [3], [4]. Many of these
applications involve large-scale sensor networks, where a large
number of sensors are deployed in a vast geographical area.

It is important to understand and characterize the perfor-
mance of large-scale sensor networks. This helps to better
design and use sensor networks for different application sce-
narios. In this work, we study a fundamental performance mea-
sure of a sensor network, namely, its coverage. Coverage of a
sensor network represents the quality of service (surveillance)
that it can provide, for example, how well a region of interest
is monitored by sensors, how effective a sensor network is in
detecting intruding objects.

There are many different measures for the coverage of a
sensor network. Given a sensor network, we would like to
know the fraction of the area covered by sensors (defined later
as area coverage), which is a direct measure of sensor network
coverage. The characterization of area coverage is important
for sensor network planning. It can be used to determine how
small the footprint of each sensor can be or how densely
sensors should be deployed to guarantee that a fraction of the

region is covered. Power consumption is another important
concern in sensor networks, since the power supply of a
sensor is usually limited. Many schemes have been proposed
to reduce power consumption by turning off redundant sensors
while ensuring that a certain fraction of area be covered [5],
[6]. To this end, we are interested in the fraction of the
sensors that can be removed without reducing the covered area
(node coverage), which represents the redundancy level of the
sensor deployment. For intrusion detection applications, it is
important to know the capability of a sensor network to detect
intruding objects. An object is detected if it goes through a
covered area. In this regard, we study the detectability of a
sensor network, which is defined to be the probability that a
sensor network is able to detect objects that move inside or
through a region of interest.

While most previous work on sensor network coverage
focuses on coverage-related protocol and algorithm design
[5], [6], [7], [8], [9], the goal of our work is to characterize
the asymptotic behavior of the coverage of large-scale sensor
networks and explore the fundamental limits of the network
coverage. As in most of the previous work, we will focus
on the coverage properties of a sensor network and will not
address the communication and networking aspects of the
network.

We consider a variety of network scenarios. In terms of
the network topology, we study large-scale sensor networks
that lie within a two-dimensional plane and a two-dimensional
strip. The placement of sensors can vary significantly in differ-
ent applications. In a ”structured” sensor network application
(e.g. video surveillance system), sensors are placed at the
exact specific locations. While in an ”unstructured” sensor
network application (e.g. battlefield surveillance), sensors may
be randomly dropped. In this work, we focus on the latter
case where sensors are randomly placed in a field. In terms
of the sensing model, we consider a Boolean sensing model
and a more general sensing model, both widely adopted in the
literature. For each scenario, we characterize the area coverage,
the node coverage, and the detectability of the network. We
find that the coverage of a sensor network exhibits different
behaviors for different network configuration and parameters.
Based on the analytical characterizations, we further examine
the implications to protocol design and performance of sensor



networks.
For a large-scale randomly placed sensor network under the

Boolean sensing model, the area coverage is obtained using
results in stochastic geometry. This is further used to derive
the required sensor density to achieve a target area coverage.
The simulation results of the node coverage suggest that if
sensors are not deployed at a very high density, the fraction
of redundant nodes that can be turned off without reducing
covered area is small. The analytical characterizations of
the detectability are obtained for unknown sensor location
scenario. In this case, the probability of an intruding object
being detected is minimized when the object takes a straight
path, and the probability approaches one as the distance goes
to infinity. If sensor locations are known, for a sensor network
within a two-dimensional strip, an object can almost surely
find a path to cross without being detected. For a sensor
network within a two-dimensional plane, the detectability of
the network exhibits a phase transition behavior at a critical
density. If the sensor density is below the critical density, an
intruding object can almost surely find a path to cross the
network without being detected. However, if the sensor density
is above the critical density, no path exists such that an object
can cross the network without being detected.

For large-scale sensor networks under the general sensing
model, we obtain analytical results for the area coverage.
For node coverage, we prove that no sensor can be turned
off without reducing the covered region. The detectability
of a sensor network under the general sensing model is
more difficult to obtain than in the Boolean sensing model.
Nevertheless, we show that, if sensor density is above some
critical value, no path exists such that an object can cross the
network without being detected. We also conjecture that if
the sensor density is below some critical value, an object can
almost surely find a path to cross the network without being
detected.

The remainder of the paper is organized as follows. In
Section II, we review some of the related work on the coverage
of sensor networks. In Section III, we describe the network
model and define three coverage measures of large-scale
sensor networks. In Section IV, we present the results on the
coverage of large-scale sensor networks under the Boolean
sensing model. The coverage results under a general sensing
model are presented in Section V. Finally, we summarize this
paper in Section VI.

II. RELATED WORK

In the past few years, coverage has been an active re-
search area in sensor networks. Many studies have focused
on characterizing the area coverage and designing algorithms
to achieve desired area coverage. In [10], the authors studied
the coverage of a grid-based wireless sensor network. They
derived the necessary and sufficient conditions on the sensing
range and failure rate of sensors in order to ensure that
the whole network is covered as well as connected. In [5],
the authors proposed a coverage-preserving scheme to extend
sensor network lifetime. Redundant sensors that are fully

covered by other sensors are turned off to reduce power
consumption, while the fraction of the area covered by sensors
is preserved. In [6], a probing-based density control algorithm
is proposed to extend sensor network lifetime. Again, the basic
idea is to turn off redundant sensors to save energy. A sleeping
sensor wakes up occasionally to probe its neighborhood and
starts working if there are no other working sensors in its
probing range. The desired redundancy of working sensors
can be achieved by adjusting the probing range of sensors.

Another line of work on coverage studies the path exposure
of moving objects in sensor networks, which is a quantitative
measure of how well sensors can detect objects moving in
the network. In [8], the authors proposed algorithms to find
paths which are most or least likely to be detected by sensors
in a sensor network. The authors further defined and studied
the path exposure of a moving object in a sensor network [7],
which is a quantitative measure of how well an object, moving
on an arbitrary path, can be detected by the sensor network.
An algorithm is developed to find minimum exposure paths
in sensor networks, where the probability of a moving object
being detected is minimized. Along this line, [9] investigates
deployment strategies for sensor networks performing target
detection. The goal of sensor deployment is to maximize the
exposure of the least exposed path in the network.

Most of these previous work has focused on protocol and
system design, and studied the performance of the proposed
algorithms. In this paper, we approach the coverage problems
from a different perspective by studying the fundamental prop-
erties and limitations of a sensor network’s coverage. These
properties and limitations are determined by the basic network
parameters (e.g. deployment strategy, sensor density, etc), but
they can fundamentally impact the protocol performance in a
sensor network. For example, when the sensor density is above
some threshold (percolation density), no algorithm can find a
path such that an object can cross the network without being
detected.

III. LARGE-SCALE SENSOR NETWORK MODEL

In this section, we first describe the location model and
two sensing models of the large-scale sensor networks used in
our study. We then define three different coverage measures,
namely, area coverage, node coverage, and detectability. In
the rest of this paper, we will study these coverage measures
of large-scale sensor networks under the location and sensing
models.

A. Location model

We consider a network of a large number of sensors placed
in a vast two-dimensional geographical region. We assume
that the locations of sensors are uniformly and independently
distributed in the region. Such a random initial deployment is
desirable in scenarios where priori knowledge of the field is
not available. Also, the random deployment can be the direct
result of certain deployment strategies. For example, sensors
may be air-dropped or launched via artillery in battlefields or
unfriendly environments. Under this assumption, the locations



of sensors can be modeled by a stationary two-dimensional
Poisson point process. Denote the density of the underlying
Poisson point process as λ, which is measured by the number
of sensors per unit area. The number of sensors located in a
region A, N

�
A � , follows a Poisson distribution of parameter

λ � A � , where � A � represents the area of the region.

P
�
N
�
A ��� k ��� e � λ � A � � λ � A ��� k

k!
(1)

B. Sensing models

In this work, we consider two different sensing models:
a Boolean sensing model and a general sensing model that
considers more realistic sensing characteristics of a sensor,
as well as the possible collaborations among sensors. Both
models have been widely used in the literature [5], [6], [7],
[9], [10].

1) Boolean sensing model: In the Boolean sensing model,
each sensor has a certain sensing range, r. A sensor can only
sense the environment and detect events within its sensing
range. The simple Boolean sensing model has been widely
adopted in the study of sensor networks [5], [6], [10].

A location is said to be “covered” by a sensor if it lies
within the sensor’s sensing area. The space is partitioned into
two regions, the covered region, which is the region covered
by at least one sensor, and the vacant region, which is the
complement of the covered region. An object is detected
if it passes through the covered region. For the purpose of
computing the detectability of a sensor network, we say two
sensors at locations Xi and X j are directly connected if the
sensing areas of the two sensors intersect, or equivalently,�
Xi 	 X j

��

2r, where

�
Xi 	 X j

�
is the distance between the two

sensors. A cluster is defined to be a connected component of
the covered region. Two nodes are said to be connected if they
belong to the same cluster. An object cannot traverse through a
cluster without being detected, since it will need to go through
a covered region and thus be detected.

2) General sensing mode: Despite its simplicity, the above
Boolean sensing model does not capture the degradation of
a sensor’s sensing capability as the distance between the
sensor and measuring point increases. In general, sensors have
widely different sensing characteristics. Depending on the
specific sensor device and application environment, different
sensing models can be constructed to capture the sensing
characteristics of the sensors. In this work, we adopt the
following general sensing model, which has been widely used
in the literature [7], [9], [11], [12], [13], and is reasonable for
radio, acoustic and seismic signals.

For a sensor s, the sensing signal at an arbitrary point p is
given by:

S
�
s � p ���


α

d � s � p � β A



d
�
s � p ��� B

0 otherwise
(2)

where α is the energy emitted by events occurring at point p;
d
�
s � p � is the Euclidean distance between sensor s and point

p; parameters A and B define the range of a sensor’s sensing

capability. The sensing signal decays according to a power
law with exponent β. The value of the decaying exponent is
assumed to be known (or estimated via experiments). For radio
signal sensing, the exponent typically ranges from 2.0 to 5.0
[11].

As in [7], we define the all-sensor field intensity of an
arbitrary point p, Ip, to be the sum of the sensing signals
of all sensors (s1, s2, ...) at p, i.e.,

Ip � ∞

∑
i � 1

S
�
si � p ��� ∞

∑
i � 1

α
d
�
si � p � β (3)

We say that a point p is covered if the all-sensor field
intensity at p is greater than or equal to some threshold, θ,
i.e., Ip � θ. The set of points that are covered according to the
above definition is called the covered region. Similarly, the
complement of the covered region is called the vacant region.
Note that this definition of coverage embodies the notion of
value fusion in sensor networks, where sensors collaborate
to determine whether an event occurs at a location. This
definition requires the information of all of the sensors in the
network to compute the all-sensor field intensity. The require-
ment can be relaxed by considering only the contributions
from the N � 1 closest sensors. We refer to Ip in this case
as the N-closest sensor field intensity and to Ip given by (3)
as the all-sensor field intensity. Since all-sensor field intensity
is strictly larger than N-closest sensor field intensity for any
finite N, the covered region under all-sensor field intensity is
a super set of the covered region under N-closest sensor field
intensity. The all-sensor field intensity scenario characterizes
the best coverage that a sensor network can offer. Note that the
Boolean sensing model can be easily derived from the N � 1
case. In this paper, we will study the sensor network coverage
under the Boolean sensing model (N � 1) and the all-sensor
field general sensing model (N � ∞), each being extremes of
a spectrum.

Although the obtained results in this work are for the
specific sensing signal and all-sensor field intensity function
defined above, the same or similar techniques may be applied
to other sensing model and sensor field intensity functions.

C. Coverage measures

To characterize the coverage of a sensor network quantita-
tively, we define the following three measures of the coverage.

Definition 1: Area coverage ( fa): the fraction of the geo-
graphical area covered by one or more sensors.

Note that the definition of a location being covered depends
on the specific sensing model under consideration. In the
Boolean sensing model, a location is covered if it is within
the sensing area of a sensor. In the general sensing model, a
location is covered if the all-sensor field intensity is greater
than the threshold θ. The area coverage is a very direct
measure of how well a sensor network covers a region.

Definition 2: Node coverage fraction ( fn): the fraction of
sensors that can be removed without reducing the coverage
area.



The node coverage measure represents the redundancy level
of sensor deployment and has a direct effect on the perfor-
mance of energy-efficient protocols that turn off redundant
sensors while preserving area coverage [5].

Definition 3: Detectability (pd
�
S � D � ): the probability that

a sensor network can detect an object moving from point S to
point D in the network.

This is a measure of the intrusion detection capability
of a sensor network. Obviouly, detectability depends on the
deployment of the sensors and the locations of the two end
points. Here we study the detectability in an expected sense,
i.e., the expected value of all different realizations of the
network. Therefore, the detectability of a sensor network is
only a function of the density of sensors and the distance
between the two end points (l � �

SD
�
).

In some specific sensor network scenarios, we are interested
in variations of the above definition of detectability. We will
introduce these variations when we describe those specific
network scenarios.

Detectability of a sensor network is of interest in an appli-
cation scenario such as detecting moving targets in battlefield
and wild life tracking in environment monitoring. Note that in
the Boolean sensing model, an object is detected by a sensor
if it enters the sensing area of that sensor; while in the general
sensing model, an object is detected at a location if the all-
sensing field intensity of the object at the location is greater
than a threshold θ.

IV. RANDOM SENSOR NETWORKS: BOOLEAN SENSING

MODEL

In this section, we study the coverage of large-scale ran-
dom sensor networks under the Boolean sensing model. We
consider networks within a two-dimensional infinite plane
and two-dimensional strip, and study the area coverage, node
coverage, and detectability for each case.

A. Two-dimensional plane case

1) Area coverage:
Theorem 1: Consider a two-dimensional infinite plane

where sensors of sensing range r are deployed uniformly at
density λ, the area coverage of such a sensor network is

fa � 1 	 e � λπr2
(4)

Proof. This is a result in stochastic geometry [14]. Here
we present the key arguments of the proof. Consider a model
where the locations of the sensors are distributed following
a two-dimensional Poisson point process P � �

ξi � i � 1 ���� 	 ∞ � ∞ � 2. Each point ξi has a random shape Si centered at
the point. Let α � E � Si � � ∞ denote the expected area of the
random shape. In this case, each sensor has a disk shape and
α � πr2.

For an arbitrary point p in a large region A, the number
of sensors located in this region is a Poisson random variable
N, and E

�
N � � λ � A � . The probability that point p does not

lie within an arbitrary sensor equals 1 	 α � � A � . Since the
sensors are located uniformly in A, conditioned on the number
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Fig. 1. Area and node coverage as a function of node density

of sensors N, the probability that point p does not lie within
any sensor equals

�
1 	 α � � A ��� N. In the limit when � A � � ∞,

we have

P
�
point p not covered � � E � � 1 	 α � � A ��� N �

� e � � α 	 � A � � E � N �� e � αλ

� e � λπr2

The fraction of the area being covered is simply

fa � 1 	 P
�
point p not covered ��� 1 	 e � λπr2



This formula can be used in network planning to determine

the required sensor density in order to achieve a desired area
coverage fa (0 � fa � 1) almost surely. The density required
is given by

λ � 	 ln
�
1 	 fa ��� πr2 (5)

2) Node coverage: It is difficult to obtain a closed form
expression for node coverage in a two-dimensional sensor
network. In Figure 1, we plot the simulation results of node
coverage ( fn) as a function of node density. The area coverage
(equation (4)) is also plotted in Figure 1 to illustrate the
relative difference between the two coverage measures. In the
simulation, we approximated an infinite plane by a domain
of 10000 x 10000 pixels. The density of the sensor nodes is
measured in pixels � 2. The sensing range of each sensor is set
to be 10 pixels.

We observe that node coverage remains below 1% until the
density of the sensor nodes increases to 2 � 10 � 3. At this
density, 47% of the area is covered by sensors. To provide
a visual illustration of the area coverage and node coverage
at this density, we show a small part of the network in
Figure 2. This part is randomly chosen within the domain
and contains a large number of sensors. It is representative
of the whole network. In the illustration, each sensor is
represented by a circle with a common sensing range, while
filled circles represent those sensors that are fully covered by
other sensors. We observe that the density is quite high and
redundant sensors that are fully covered by other sensors are



Fig. 2. Part of the sensor network at node density of 2 � 10 � 3.
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Fig. 3. Detecting zone of path p between end points S and D. The area of
the detection zone is minimized when target takes a straight path between the
two end points.

only sparsely distributed in the network. This result suggests
that in scenarios where sensors cannot be deployed at a high
density due to cost or other reasons, the fraction of redundant
nodes that can be turned off without reducing area coverage
is small.

3) Detectability: We study the detectability of a sensor
network in two different scenarios. In the first scenario, we
assume that the locations of sensors are unknown to intruding
objects. In the second scenario, sensor locations are known to
intruding objects.
(i) Unknown sensor locations.

Figure 3 depicts a scenario where an object moves from
point S to point D along path p. We define the domain between
two curves (p1 and p2) of distance r from p as the detecting
zone of path p and denoted it as Zp. An object moving along
path p will be detected by sensors located within Zp. Denote
the area of Zp as � Zp � , the number of sensors in Zp, Np, is a
Poisson random variable of parameter λ � Zp � . Therefore, the
probability an object moving along path p being detected is

Pd
�
p � � 1 	 P

�
Np � 0 � � 1 	 e � λ � Zp � (6)

As can be directly derived from (6), in order to minimize
the probability of being detected, an object should choose a
path whose detecting zone area is minimized. For all possible
paths between S and D, the straight path yields the smallest
detecting zone. Therefore, to minimize the probability of being
detected, the best strategy is to take the direct path. Denote

the length of segment SD as x, we have � Zp � � 2rx 	 πr2. The
probability of an object being detected along SD is

Pd
�
x ��� 1 	 e � λ � 2rx 
 πr2 � (7)

As the distance between two end points approaches infinity
(x � ∞), the detectability (P∞

d ) of a sensor network can be
interpreted as the capability of the sensor network in detecting
objects attempting to cross the network. We will call the
detectability in this case, P∞

d , the asymptotic detectability of a
sensor network. From equation (7), we have

P∞
d � 1 � as x � ∞ (8)

Therefore, without knowing the locations of the sensors, an
object cannot cross the network without being detected.
(ii) Known sensor locations.

Unfortunately, it is difficult to compute the detectability
for the general case where the distance between the two
end points is a parameter. Nevertheless, we have derived the
asymptotic detectability as the distance between the two end
points approaches infinity. Note that the asymptotic detectabil-
ity represents a sensor network’s capability to detect objects
attempting to cross the network.

In the limit, as the distance between the two end points
approaches infinity, the asymptotic detectability of a sensor
network can be related to the continuum percolation of the
sensors. According to percolation theory [15], there exists a
critical density λc, where a phase transition occurs with respect
to the size of the largest cluster.

If the density is below the critical density λc, all clusters
are finite in size almost surely, and there is no percolation.
In this case, there is a unique unbounded vacant component
in the network. An object can cross the network without
being detected by traversing through the unbounded vacant
component. Otherwise, if there is no path that an object
can cross the network without being detected, there must
be an unbounded cluster percolating through the network,
contradicting the fact that there is no percolation.

When the sensor density is above the critical density λc, an
unbounded sensor cluster percolates the whole network almost
surely, which will detect any object trying to cross the network.
Therefore,

P∞
d � �

0 a.s. if λ � λc

1 a.s. if λ � λc
(9)

Note that because of the “zero-one” law of the phase
transition, the asymptotic detectability cannot be anything
other than 0 or 1. Therefore, in sensor network planning, in
order to provide effective intrusion detection for the worst-
case scenario, sensors need to deployed at a density above
the critical density. The critical density (λc) depends on the
sensing range of the sensors and can be obtained via simula-
tion. In the above simulation setting, λc � 3  53 � 10 � 3. Under
this critical density, the area coverage fa is approximately
0.67. Note that percolation theory has been used in [16] to
study the connectivity of large-scale ad hoc networks, the
detectability problem in our case is essentially a dual problem
of the connectivity problem in [16].
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B. Two-dimensional strip case

In some scenarios, due to geographical terrain constraints
or application requirements, the region of interest may have a
long extension in one particular direction. The sensor network
can be better modeled by a two-dimensional strip in this case,
as shown in Figure 4.

For convenience, we set the boundaries of a two-
dimensional strip tangent to the sensing areas of most outlying
sensors at the top and at the bottom. If the width of a two-
dimensional strip is much larger than the sensing range of the
sensors, i.e., h � r, the boundary effect to area coverage and
node coverage is small. In this case, the area coverage can
be approximated by Equation (4); and the node coverage still
remains small until the node density is sufficiently high, as in
the two-dimensional infinite plane case.

In this scenario, it is more interesting to study the detectabil-
ity where the two end points are on opposite sides of the strip.
This corresponds to the capability of a sensor network to detect
objects attempting to cross the strip from top to bottom.
(i) Unknown sensor locations.

It is easy to show that an object should cross the strip
perpendicularly at some arbitrary point in order to minimize
the chance of being detected, as illustrated in Figure 4. Based
on (7), neglecting the boundary effect, the probability of an
object being detected is

Pd
�
2-dim strip ��� 1 	 e � 2λrh

(ii) Known sensor locations.
For the two-dimensional infinite plane case, we have shown

that there is a phase transition in the detectability of the sensor
network that is due to the percolation of sensors in the network

at a critical density. Above the critical density, an infinite
cluster of sensors percolates the region, and no object can
pass through without being detected.

However, for a strip of finite width h, percolation never
occurs. This has been shown in [16] in the context of net-
work connectivity. Projecting the two-dimensional strip on
horizontal axis, one obtains a one-dimensional Poisson point
process of density λh, as shown in Figure 5. Since the distance
between two nodes in the projected one-dimensional space is
smaller than the original distance in two-dimensional space,
existing connections between sensors are preserved while
new connections are created. It has been shown in [17] that
percolation never occurs in the one-dimensional case, which
implies percolation never occurs on the two-dimensional strip.
Therefore, there is almost surely a path in the two-dimensional
strip where an object can cross without being detected by
sensors.

Pd
�
2-dim strip ��� 0 (10)

The above coverage results are obtained for two-
dimensional sensor networks. Note that the same techniques
can be used to derive coverage measures for large-scale three-
dimensional random sensor networks. Although the exact
forms of the results may differ, the qualitative behavior of
the coverage measures should be similar.

V. RANDOM SENSOR NETWORK: GENERAL SENSING

MODEL

In this section, we study the area coverage, node coverage,
and detectability for large-scale sensor networks under the
general sensing model.

A. Area coverage

For an arbitrary point p, the all-sensor intensity function is
Ip � ∑∞

i � 1
α

d � si � p � β . The necessary and sufficient condition for
the convergence of Ip is given in [18]:

� ∞

y

α
tβ � 1

dt � ∞ � for a sufficiently large y (11)

In this work, we assume that β � 2 [11]. Thus, the all-
sensor field intensity Ip converges for an arbitrary point p in
a network almost surely.

To derive the area coverage, we first obtain the probability
density function (PDF) of the all-sensor field intensity of an
arbitrary point p, fIp

�
x � . The homogeneity of the Poisson point

process implies the probability density function is the same for
all points in the plane.

As defined in Equation (3), Ip � ∑∞
i � 1

α
d � si � p � β , the all-

sensor field intensity is the sum of the sensing signals of
all sensors in a network. Since the locations of sensors form
a two-dimensional Poisson point process, the all-sensor field
intensity of points in a sensor network can be modeled by a
two-dimensional Poisson shot noise process [19], [20], [18],
where the shot noise is synonymous here with the sensing
signal function, defined in Equation (2).
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Fig. 6. Area coverage under general sensing model when α � 1 � β � 4

The probability density function of a one-dimensional Pois-
son shot noise model has been studied in [19], [20]. In this
work, we derived the PDF of Ip for a two-dimensional Poisson
shot noise model. The derivation is quite involved and is
presented in a more detailed report[17]. Denote D � 2

β ,we have

fIp

�
x ��� 1

2π

��� ∞� ∞
exp ��� jωx � λπαD � � jω � DΓ

�
1 � D ��� dω (12)

Similar to [19], we can write the infinite sum form of the
probability density function as

fIp

�
x ��� 1

πx

∞

∑
n � 1

� � 1 � n � 1Γ
�
1 � nD � sin

�
πnD �

n! � λπαDΓ
�
1 � D �

xD � n

(13)

where the Gamma function Γ
�
x � is defined as  ∞

0 tx � 1e � tdt.
Recall that a point is covered if Ip � θ. Once we have the

probability density function of the all-sensor field intensity,
the area coverage can be computed as follow:

fa � P
�
point p is covered ��� P

�
Ip � θ ��� � ∞

θ
fIp

�
x � dx

In general, the probability density function of Ip and hence
the area coverage can be computed numerically [19], [21]. As
in [19], for the special case D � 1 � 2, or β � 4, we obtain the
following closed-form result.

fIp

�
x ��� λπα1 	 2

2
x � 3 	 2 exp ! 	 λ2π3α

4x " (14)

Therefore, the area coverage is

fa � � ∞

θ
fIp

�
x � dx � 1 	 1#

π
Γ $ 1

2
� αλ2π3

4θ %
Figure 6 shows the area coverage for the above special case

of β � 4. We set α � 1 and consider two different sensor
densities, λ � 0  006 � 0  01. As can be observed from the figure,
for the same threshold value, as the sensor density increases,
the all-sensor field intensity of a location increases and the
location becomes more likely to be covered. As a result, the
area coverage increases. For the same sensor density value, as
the threshold increases, a location becomes less likely to be
covered. The area coverage is thus reduced.

dr
x

x
x
r&('�) *p

sensor

Fig. 7. Approximation of all-sensor field intensity

B. Node Coverage

Theorem 2: In the general sensing model, no sensor can be
turned off without reducing the covered region, or fn � 0.
Proof. We first show that there exist points in the network that
are not covered. Consider an arbitrary point p in the network.
The distance between p and the nearest sensor, Rmin, is a
random variable whose distribution density function (PDF) is
given by

fRmin

�
x ��� λ2πxe � λπr2

(15)

Denote rc �,+ 2πλα� β � 2 � θ - 1
β � 2 , given Rmin � rc, the expected

all-sensor field intensity of point p can be approximated as
follows. Consider an infinitesimal ring structure of width dr
which is a distance r away from point p (see Figure 7),
the area of the ring is 2πrdr. Hence, the number of sensors
located within the ring is λ2πrdr, and each of these sensors
contributes α

rβ to the all-sensor field intensity. Therefore, the
all-sensor field intensity can be obtained by integrating the
contributions of the ring structure from minimum radius rc to
infinity. Therefore,

E � Ip
�
Rmin � rc

� � � ∞

rc

λ2πr
α
rβ dr � 2πλα

β 	 2
1�

rc � β � 2
� θ (16)

From the above derivation, we see that E � Ip
�
Rmin � rc

� is a
decreasing function of the minimum distance r. We have

E � Ip
�
Rmin � rc

� � θ (17)

Therefore,

P
�
Ip � θ

�
Rmin � rc ��� 1 (18)

or equivalently,

P
�
Ip � θ

�
Rmin � rc � � 0 (19)

Since there is a non-zero probability for Rmin � rc, i.e.,
P
�
Rmin � rc � � 0, there exist uncovered points (Ip � θ) in the

network.
For the all-sensor intensity function of an arbitrary point p,

we order the index of sensors according to their distances
to p, such that . i � j � d � si � p � 
 d

�
s j � p � . Define Ip

�
n � �

∑n
i � 1

α
d � si � p � β , we have Ip � limn / ∞ Ip

�
n � , which converges
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Fig. 8. Existence of point p such that Ip � θ

under our assumption β � 2. Denote the coordinates of sensor
si as

�
xi � yi � and the coordinates of p as

�
x � y � , since each term

α
d � si � p � β � α� � xi � x � 2 
�� yi � y � 2 � β � 2 is a continous function of variables
x and y, Ip is also a continous function of the location of p.

Above we have proved there exist uncovered points in the
network. Consider an uncovered point u and a covered point
v in the network, as shown in Figure 8, we have Iu � θ and
Iv � θ by definition. Since Ip is a continuous function along
the segment from u to v,

�
u � v � , there exists a point p � �

u � v �
such that Ip � θ.

Since Ip � ∑∞
i � 1

α
d � si � p � β , if any sensor is turned off, a non-

negative term will be missing in the summation, and Ip will
decrease below θ. Therefore, no sensor can be turned off
without reducing the covered region. 


C. Detectability

Deriving the detectability under the general sensing model
(PGSM

d ) is more difficult than in the Boolean sensing model.
Under the Boolean sensing model, the covered region is
directly defined by the union of the disks (sensing areas) of the
underlying Poisson point process. As a result, the detectability
simply depends on the distribution of the number of sensors
located in the detecting zone; and the asymptotic detectability
is directly related to the percolation of the underlying Poisson
Boolean model. However, under the general sensing model, the
covered region is a two-dimensional random field which has a
more complicated dependence on the underlying point process.
This makes the detectability under the general sensing model
more difficult to compute than in the Boolean sensing model.
Nevertheless, we can obtain some results for the asymptotic
detectability. In the following, we prove an important property
of the asymptotic detectability under the general sensing
model.

Theorem 3: There exists a critical density λc, such that the
asymptotic detectability is one almost surely if the sensor
density is above the critical density.

PGSM
d � 1 a.s., if λ � λc

Proof: The flow of the proof is as follows. For a sensor
network under the general sensing model, we first construct a
Poisson Boolean model, whose covered region is a subset of
the original covered region under the general sensing model.
Therefore, if no path exists such that an object can cross the
network without being detected in the constructed Poisson
Boolean model, there is no such path under the general sensing
model either.

For a sensor network under the general sensing model, we
construct the following Poisson Boolean model B

�
λ � rc � , where

the underlying point process is preserved, and rc � �
α � θ � 1 	 β.

We can show that a point in the covered region of the
Poisson Boolean model is also in the covered region under the
general sensing model, which implies the covered region of
the Poisson Boolean model is a sub-set of the covered region
under the general sensing model.

For a point p in the covered region of the Poisson Boolean
model, the distance between p and its nearest sensor sp is
smaller than or equal to rc, i.e., d

�
sp � p � 
 rc. The all-sensor

field intensity is strictly larger than the contribution from the
nearest sensor. Hence,

Ip � ∞

∑
i � 1

α
d
�
si � p � β � α

d
�
sp � p � β � α

rβ
c

� θ

For the Poisson Boolean model B
�
λ � rc � , based on Equation

(9), there exists a critical density λc. If the sensor density
is larger than the critical density, an unbounded cluster forms
and the asymptotic detectability is one almost surely. Since the
covered region under the general sensing model is a superset
of the covered region of the constructed Boolean model, non-
existence of a path along which an object can cross the
network without being detected in the Boolean model implies
non-existence of such a path in the general sensing model.
Therefore, we have

PGSM
d � 1 a.s., if λ � λc



In the Boolean sensing model, we have shown that when the

sensor density is below some critical density, the asymptotic
detectability is almost surely zero. Under the general sensing
model, we conjecture that there is a similar result: if the
sensor density is below some critical density, the asymptotic
detectability is zero almost surely.

VI. CONCLUSIONS

In this paper, we studied three fundamental coverage mea-
sures of large-scale sensor networks: area coverage, node
coverage, and detectability. These measures are determined
by basic network parameters and have important implications
on network planning and protocol performance of sensor
networks. We consider a Boolean sensing model and a general
sensing model, both widely adopted in the literature. For each
sensing model, we study the coverage of network scenarios
that can be modeled by a two-dimensional infinite plane and
a two-dimensional strip case.



For a large-scale random sensor network under the Boolean
sensing model, the area coverage can be obtained using
volume fraction results established in stochastic geometry. The
simulation results of the node coverage suggest that if sensors
are not deployed at a very high density, the fraction of redun-
dant nodes that can be turned off without reducing covered
area is small. We have obtained analytical characterizations of
the detectability of a sensor network if targets do not know
the locations of sensors. If sensor locations are known, for
the two-dimensional strip case, an object can almost surely
find a path to cross the strip without being detected. For
the two-dimensional infinite plane case, the detectability of a
sensor network exhibits a phase transition behavior at a critical
density. If the sensor density is below the critical density, an
intruding object can almost surely find a path to cross the
network without being detected; however, if the sensor density
is above the critical density, no path exists such that an object
can cross the network without being detected.

For large-scale sensor networks under the general sens-
ing model, we have obtained analytical results for the area
coverage by modeling the all-sensor field intensity as a two-
dimensional Poisson shot noise process. For node coverage, we
have proved that no sensor can be turned off without reducing
the covered region. The detectability of a sensor network under
the general sensing model is more difficult to obtain than in
the Boolean sensing model. We have shown that, if sensor
density is above some critical value, no path exists such that
an object can cross the network without being detected. We
conjecture that if the sensor density is below some critical
value, an object can almost surely find a path to cross the
network without being detected.
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