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Abstract

The U.S. military’s ability to project military force is being challenged. This

dissertation develops, and demonstrates the application of, three respective sensor

location, relocation, and network intrusion models to provide the mathematical basis

for the strategic engagement of emerging technologically advanced, highly-mobile,

Integrated Air Defense Systems. Herein, this research addresses each of these related

problems via three distinct modeling and analysis efforts, each building upon the

previous work.

First, a bilevel mathematical programming model is proposed for locating a het-

erogeneous set of sensors to maximize the minimum exposure of an intruder’s pene-

tration path through a defended region. This formulation also allows a defender to

specify minimum probabilities of coverage for a subset of the located sensors (e.g.,

the most valuable sensors) and for high-value asset locations in the defended region.

The bilevel program is reformulated to a single-level optimization problem for which

instances can be readily solved using a commercial solver. Given the locations of a

defender’s sensors, three alternative path identification models are formulated, each

corresponding to conceptually-motivated intrusion-path metrics. A test instance is

examined for the air defense of a border region against intrusion by an enemy air-

craft; upon identifying the optimal, respective defender asset location and intruder

routing solutions, intruder-optimal solutions corresponding to each of three alterna-

tive metric-specific paths are examined, illustrating the relative impact of an intruder

choosing an inappropriate metric. Sensitivity analyses are conducted to examine the

effect of several model parameters on solution quality and required computational

effort.

iv



Next, consider a set of sensors having varying capabilities and respectively located

to maximize an intruder’s minimal expected exposure to traverse a defended border

region. Given two subsets of the sensors that have been respectively incapacitated

or degraded, a multi-objective, bilevel optimization model is formulated to relocate

surviving sensors to maximize an intruder’s minimal expected exposure to traverse a

defended border region, minimize the maximum sensor relocation time, and minimize

the total number of sensors requiring relocation. This formulation also allows the

defender to specify minimum preferential coverage requirements for high-value asset

locations and emplaced sensors. Adopting the ε-constraint method for multi-objective

optimization, a single-level reformulation is subsequently developed that enables the

identification of non-inferior solutions on the Pareto frontier and, consequently, iden-

tifies trade-offs between the competing objectives. The aforementioned model and

solution procedure are demonstrated for a scenario in which a defender is relocating

surviving air defense assets to inhibit intrusion by a fixed-wing aircraft.

Lastly, this research considers an attacker seeking an optimal intrusion path

through a region defended by a sensor network, as measured by the expected exposure

of the intruding attacker to the defender’s sensors. Herein, a trilevel mathematical

programming formulation is presented in which an attacker respectively identifies a

subset of the defender’s heterogeneous sensors to incapacitate and a subset of the de-

fender’s network to degrade, subject to budget constraints; a defender subsequently

relocates the surviving sensors, considering multiple, competing objectives; and in

the third level, the attacker selects an optimal intrusion path to traverse through the

defender’s sensor network. A bilevel reformulation is derived, new heuristics are devel-

oped and tested, and the performance of the heuristics on synthetic-but-representative

scenarios is reported.

v
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MULTI-LEVEL MULTI-OBJECTIVE PROGRAMMING AND OPTIMIZATION

FOR INTEGRATED AIR DEFENSE SYSTEM DISRUPTION

I. Introduction

1.1 Motivation

A key to the United States military’s overwhelming historical success is due in large

part to its ability to achieve and maintain air superiority. For the past half century,

the United States has conducted combat operations relatively unimpeded, projecting

power across the globe at will. However, this level of success has not gone unnoticed,

and enemy nations have been forced to reassess their strategies in hope of achieving

future success. As a result, many nations have adopted an antiaccess/area-denial

(A2/AD) strategy to inhibit the United States’ ability to penetrate their borders and

project military power.

Unfortunately, past performance does not guarantee future success for the United

States military. The operational environment is changing, and the United States’

future military success will also depend on its own ability to adapt. This level of con-

cern has risen to the highest ranks within the U.S. Air Force. In August 2016, during

his “State of the Air Force” address, Air Force Chief of Staff General David Goldfein

expressed his concern, stating that “air superiority is not an American birthright. It’s

actually something you have to fight for and maintain” (Goldfein & James, 2016).

Current U.S. doctrine for the suppression of enemy air defenses (SEAD) in Joint

Publication (JP) 3-01, Countering Air and Missile Threats (specifically, Chapter 4,

“Offensive Counterair Planning and Operations”) highlights the need for a serious
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reassessment of our strategy. JP 3-01 acknowledges that “potential adversaries’ IADS

[Integrated Air Defense Systems] have become increasingly complex and needs to be

analyzed in-depth with an eye to potential strengths and weaknesses” (United States

Joint Chiefs of Staff, 2012b). The document also discusses the change in mobility and

effectiveness of enemy IADS as compared to past technologies. “SAM [Surface to Air

Missile] forces have become more mobile and lethal, with some systems demonstrating

a ‘shoot-and-move’ time in minutes rather than hours or days” (United States Joint

Chiefs of Staff, 2012b). Although current doctrine recognizes the emergence of a more

effective, modern A2/AD threat, JP 3-01 fails to provide a comprehensive approach

to defeat such a threat.

In its section on “Suppression of Enemy Air Defenses,” JP 3-01 details three cate-

gories of SEAD execution, namely (1) area of responsibility/joint operations area-wide

(AOR/JOR-wide) air defense (AD) system suppression, (2) localized suppression, and

(3) opportune suppression. AOR/JOR-wide air defense system suppression targets

“high payoff AD assets that result in the greatest degradation of the enemy’s to-

tal system,” focusing on the destruction of “key C2 [Command and Control] nodes”

(United States Joint Chiefs of Staff, 2012b). Unfortunately, enemy IADS command

and control networks are becoming highly dispersed, decentralized, and redundant.

Therefore, this category of SEAD execution will become much less effective in the

future. The second category of SEAD, localized suppression, is focused on escort

operations that are “normally confined to geographic areas associated with specific

targets or transit routes for a specific time” (United States Joint Chiefs of Staff,

2012b). Under this category are two subcategories - planned localized suppression

and immediate localized suppression. Planned localized suppression is a bottom-up,

reactive approach whereby “localized suppression requests are processed from the

lowest echelon of command to to the highest using the appropriate air control sys-

2



tem” (United States Joint Chiefs of Staff, 2012b). Immediate localized suppression is

similar to its counterpart except with the added necessity of an immediate response,

“similar to immediate requests for CAS [Close Air Support]” (United States Joint

Chiefs of Staff, 2012b). It is clear that both subcategories of localized suppression are

highly reactive as opposed to a deliberate, offensive approach. The final category of

SEAD, opportune suppression, is also “unplanned and includes aircrew self-defense

and attack against surface-AD targets of opportunity” (United States Joint Chiefs of

Staff, 2012b). Included under the opportune suppression category of SEAD are also

the following four subcategories: aircrew self-defense, targets of opportunity, targets

acquired by observers or controllers, and targets acquired by aircrews. Again, a com-

mon theme characterized by a defensive and reactive strategy is present, complicated

by the “proliferation of highly mobile AD weapon systems, coupled with deception

and defensive tactics” (United States Joint Chiefs of Staff, 2012b).

Recognizing the gap in U.S. doctrine for defeating an ever developing and in-

creasingly modern IADS threat, Lt Elliot Bucki recently proposed the addition of a

new category of SEAD, termed “planned opportune suppression” (Bucki, 2016). This

category of SEAD would combine the “planned nature of localized suppression and

the tactics of opportune suppression” to produce a strategy that is more offensive-

minded and proactive as opposed to the current doctrine which is more defensive and

reactive (Bucki, 2016). This strategy makes three key assumptions about the nature

of the new IADS threat which helps focus and shape its approach. First, it assumes

that “almost all IADS components will be mobile and linked together in a system

with considerable redundancy” (Bucki, 2016). Second, it assumes that non-stealth

aircraft or those aircraft not equipped with long range standoff weapons will be “out-

ranged” by technologically advanced IADS threats (Bucki, 2016). Third, it assumes

that modern IADS will be “inherently resistant to jamming and electronic attack”

3



(Bucki, 2016). All of these assumptions help provide a realistic assessment of the

modern IADS threat the U.S. is certain to face in an A2/AD environment.

It is important to note that Bucki’s SEAD category of planned opportune suppres-

sion also accounts for the important temporal aspect in engaging an enemy IADS. By

adding planned opportune suppression to JP 3-01, U.S. SEAD doctrine would con-

tain a proactive approach that offers flexibility in attacking a highly mobile enemy

IADS threat, providing a strategy that focuses on “planned on-call targets,” while

still offering the necessary flexibility to handle time critical targets of opportunity

(United States Joint Chiefs of Staff, 2012b).

There has also been recent doctrinal development on the part of the Joint Chiefs

of Staff as found in their “Joint Operational Access Concept (JOAC)” (United States

Joint Chiefs of Staff, 2012a). Recognizing the “dramatic improvement and prolifer-

ation of weapons and other technologies,” the document proposes a new concept for

achieving operational access against an increasingly capable enemy that has adopted

an antiaccess/area-denial strategy (United States Joint Chiefs of Staff, 2012a). Op-

erational access is defined as “the ability to project military force into an operational

area with sufficient freedom of action to accomplish the mission” (United States Joint

Chiefs of Staff, 2012a). The JOAC doctrine notes that “the ability to ensure oper-

ational access in the future is being challenged - and may well be the most difficult

operational challenge U.S. forces will face over the coming decades” (United States

Joint Chiefs of Staff, 2012a).

In order to combat this emerging threat, the document lists multiple precepts de-

scribing how future joint forces could achieve operational access in the face of armed

opposition. Some suggestions include: (1) “conduct operations based on the require-

ments of the broader mission, while also designing subsequent operations to lessen

access challenges, (2) seize the initiative by deploying and operating on multiple, inde-
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pendent lines of operations, (3) create pockets or corridors of local domain superiority

to penetrate the enemy’s defenses and maintain them as required to accomplish the

mission, (4) maneuver directly against key operational objectives from strategic dis-

tance, (5) attack enemy antiaccess/area-denial defenses in depth rather than rolling

back those defenses from the perimeter, and (6) maximize surprise through deception,

stealth, and ambiguity to complicate enemy targeting” (United States Joint Chiefs

of Staff, 2012a). This verbiage is strikingly different than the current SEAD doctrine

found in JP 3-01. Here, a set of precepts outlines the development of a comprehen-

sive operational concept for conducting planned, offensive operations in support of

achieving the broader strategic objectives in a highly contested A2/AD environment.

In order to aid counter-A2/AD efforts, the JOAC recommends that future joint

forces leverage “cross-domain synergy - the complementary vice merely additive em-

ployment of capabilities in different domains such that each enhances the effectiveness

and compensates for the vulnerabilities of the others - to establish superiority in some

combination of domains that will provide the freedom of action required by the mis-

sion” (United States Joint Chiefs of Staff, 2012a). Whereas synergy between joint

forces has historically been a U.S. military strength, the unity of effort required for

cross-domain synergy will require a higher level of integration, acting across domains

and at lower echelons. This will allow the joint forces to exploit “fleeting local op-

portunities for disrupting the enemy system” because the temporal aspect of warfare

will be critical in achieving cross-domain success. The days of overwhelming air

supremacy will be far less likely, and air superiority as mentioned in the JOAC may

not be “widespread or permanent; it more often will be local and temporary” (United

States Joint Chiefs of Staff, 2012a).
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1.2 Research Focus and Organization

Although the U.S. has taken significant steps in identifying the gaps in doctrine

and proposing concepts for confronting a highly mobile, technologically advanced

A2/AD enemy threat, the greater difficulty will be in operationally implementing

these new concepts. This research provides a mathematical lens to analyze the emerg-

ing A2/AD threat with the aim of understanding how to engage and defeat future

adversaries. To accomplish this task, this dissertation focuses on three main avenues

of research, each building upon the previous work.

To ultimately defeat an advanced A2/AD threat, it is critical to first understand

how an enemy may construct (i.e., layout) an air defense network consisting of a

set of ground-based air defense assets to prevent intrusion of a defended region. To

wit, Chapter II presents a bilevel math programming model to determine the optimal

layout of a given set of heterogeneous assets to maximize the minimum exposure of

an intruder’s penetration path through a defended border region.

Considering the rapid increase in air defense asset mobility, it is also important

to determine how an enemy may reposition surviving ground-based IADS assets fol-

lowing an attack. Given two subsets of the assets that have been respectively inca-

pacitated or degraded, Chapter III formulates a multi-objective, bilevel optimization

model to relocate surviving assets to maximize an intruder’s minimal expected ex-

posure to traverse a defended border region, minimize the maximum asset relocation

time, and minimize the total number of assets requiring relocation.

Once a better understanding has been achieved regarding how an enemy may

optimally locate and relocate ground-based elements of an A2/AD IADS, the research

herein shifts its focus to the ultimate goal of the dissertation - determining how to

optimally attack and penetrate an enemy air defense system. To accomplish this,

Chapter IV proposes a trilevel mathematical programming formulation in which an
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attacker respectively identifies a subset of the defender’s heterogeneous sensors to

incapacitate and a subset of the defender’s network to degrade, subject to budget

constraints; a defender subsequently relocates their sensors to maximize the attacker’s

minimal exposure, minimize the maximum relocation time, minimize the maximum

number of sensors requiring relocation, and minimize the under coverage of high-

value assets and emplaced sensors; in the third level, the attacker selects an optimal

intrusion path through the defender’s sensor network.

For each of the three main research efforts presented in Chapters II, III, and

IV, detailed solution techniques are presented, and their application is demonstrated

via a representative air defense scenario. A discussion of selected analyses is also

provided therein. Chapter V concludes with a summary of the contributions and

recommendations for future research.

By accomplishing each of these research goals, this dissertation provides a basis

for the operational implementation of the concepts outlined in the JOAC and the

proposed improvements to JP 3-01 to provide the strategic planning that will be

necessary to effectively engage and defeat the emerging A2/AD IADS threat.
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II. A Bilevel Exposure-oriented Sensor Location Problem
for Border Security

2.1 Introduction

National, group, and individual sovereignty requires protection against threats.

At the national level, potential threats include the illegal or unauthorized movement

of people, weapons, or drugs. At the group level, corporations seek to defend their

computer networks against malicious code. Individual sovereignty concerns include

protection of a residence against burglary. The defense against such threats begins at

a border or boundary of the region under a defender’s control, whether it be physical or

virtual. Moreover, the defense against threats occurs within a border region, wherein

a defender will locate and use assets to detect and/or interdict a would-be intruder.

Evidence of the growing requirement for border security can be seen in a 2017

memorandum from the U.S. Department of Homeland Security (DHS) which indi-

cates “the surge of illegal immigration at the southern border has overwhelmed federal

agencies and resources and has created a significant national security vulnerability

to the United States” (Kelly, 2017). As a result, the U.S. House of Representatives

Homeland Security Committee passed a $10 billion bill (McCaul, 2017) to “deter,

impede, and detect illegal activity” through the use of integrated surveillance and

intrusion detection assets such as the Integrated Fixed Tower (IFT) System and

the Remote Video Surveillance System (RVSS). IFTs are fixed sensors that provide

long-range, persistent surveillance by automatically detecting and tracking targets of

interest. Similarly, RVSS assets are fixed sensors that use cameras, radio, and mi-

crowave transmitters to “provide short-, medium-, and long-range persistent surveil-

lance mounted on stand-alone towers, or other structures” (Alles et al., 2016). The bill

also sets aside $10 million to implement Vehicle and Dismount Exploitation Radars
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(VADER) in border security operations (McCaul, 2017). Since 2006, unmanned sys-

tems equipped with VADER sensors have been credited with interdicting over “13,144

pounds of cocaine and 321,330 pounds of marijuana worth an estimated $1.8 billion”

(Alles et al., 2016).

Oriented against aerial threats to border security, ground-based air defense weapons

are emplaced as part of an antiaccess/area-denial (A2/AD) strategy to defend against

enemy aircraft attempting to penetrate a country’s border region during active con-

flict. Many countries have adopted A2/AD strategies (Schmidt, 2016) and signif-

icantly advanced their Surface to Air Missile (SAM) technology. Over the last 10

years, Russia has developed and fielded the S-400 Triumf air defense weapon system

which can destroy aerial targets at ranges of 40-400 km (Foss & O’Halloran, 2014).

This highly-effective SAM system is capable of engaging the world’s most premier

aircraft, as well as cruise missiles and ballistic missiles. Recent reports indicate the

Russian military currently operates 39 S-400 battalions, with each battalion consisting

of eight launchers and up to 112 missiles, along with radar systems and a command

post (Gady, 2017). China, Turkey, India, and Saudi Arabia have all signed contracts

for the purchase of multiple S-400 systems from Russia (TAS, 2017). Motivated by

this trend in air defense posturing, in this study we construct an air defense test

instance as an illustrative border security application.

Border security is no longer limited to physical borders but now includes virtual,

software-defined borders, creating vulnerabilities from the economic market to the

energy sector. Due to recent threats “targeting government entities and organizations

in the energy, nuclear, water, aviation, and critical manufacturing sectors” the DHS

and the Federal Bureau of Investigation (FBI) released an alert “to educate network

defenders and enable them to identify and reduce exposure to malicious activity”

(DHS, 2017). This emerging threat is not simply a U.S. problem; in December 2015,
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a cyberattack on the Ukrainian power grid left over 225,000 people without power

(Lee et al., 2016). Daniel Tobok, CEO and co-owner of Toronto-based Cytelligence,

estimates that cyberattacks “cost Canada $3 billion to $5 billion per year in proceeds

to criminals, adding one Calgary energy company was forced to pay $200,000 in

ransom three years ago to regain control of its corrupted digital production systems”

(Healing, 2017). In his 2017 State of the Union Address, European Commission

President Jean-Claude Juncker said that “cyber-attacks can be more dangerous to

the stability of democracies and economies than guns and tanks” (Juncker, 2017).

Common to each of these border security applications is that a defender must

decide where to locate a set of assets to prevent an adversary from traversing through

a region; the defender’s assets may also have differing capabilities to detect or en-

gage the adversary; some defensive assets may be important enough to the defender

because of their high cost or limited supply to warrant protection, once emplaced;

specific locations of the defended region may require preferential coverage due to their

importance; and an adversary will be able to observe the location of defender assets

and select a route through the border region to minimize their likelihood of detection.

2.1.1 Literature Review.

Our modeling efforts for this research focus on implementing and extending pre-

vious work in facility location. Schilling et al. (1993) presented a detailed overview of

covering problems in facility location. They classified models as either a Set Covering

Problem (SCP) or a Maximal Covering Location Problem (MCLP), where coverage

is either required or optimized, respectively. The MCLP was first introduced by

Church & ReVelle (1974) to maximize the amount of demand covered within a spec-

ified service distance by locating a fixed number of facilities. White & Case (1974)

extended the work of Church & ReVelle (1974) by considering equal weights on all
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demand points. Church (1984) later introduced the MCLP on a planar surface using

Euclidean and rectilinear distance measures, where potential facility locations are no

longer discrete (and finite).

One of the main assumptions of the MCLP is that coverage is binary. That is,

a demand point is either fully covered or not covered at all by a located facility.

However, this assumption is often unrealistic. Berman & Krass (2002) extended the

MCLP to the Generalized Maximal Covering Location Problem (GMCLP), allowing

for “partial coverage of customers, with the degree of coverage being a non-increasing

step function of the distance to the nearest facility.” Additionally, Berman et al.

(2003) extended the GMCLP by way of a gradual covering decay model. Drezner

et al. (2004) also solved the gradual covering problem on a planar surface.

Traditional facility location models do not address the need to prevent the passage

of an adversary into friendly territory, which is the main concern for border security

applications. However, a related field of research pertaining to the location of sensors

in a Wireless Sensor Network (WSN) presents coverage models designed specifically

for such a purpose. One of the three main coverage problems discussed in WSNs is

barrier coverage (Cardei & Wu, 2006). In the context of WSNs, “a given belt region

is said to be k-barrier covered with a sensor network if all crossing paths through the

region are k-covered, where a crossing path is any path that crosses the width of the

region completely” (Kumar et al., 2005). A path is said to be k-covered if it intersects

at least k sensors’ sensing ranges (Huang & Tseng, 2005).

As the defender, the goal of a barrier coverage model is to locate a set of sensors S

such that some chosen measure of coverage is maximized. Alternatively, an attacker

seeks to interdict or locate areas of the region where the value of the coverage measure

is minimized. One such measure of coverage often used in WSN models is exposure.

First introduced by Meguerdichian et al. (2001), exposure can informally be thought
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of as the “expected average ability of observing a target in the sensor field.” More

formally, exposure is defined as “an integral of a sensing function that generally

depends on distance from sensors on a path from a starting point pS to destination

point pD” (Meguerdichian et al., 2001). Unlike some coverage metrics, the element

of time is important for exposure, since the ability of a sensor to detect a target can

improve as the sensing time (i.e., exposure) increases.

For a sensor s, the general sensing model S at an arbitrary point p is:

S(s, p) =
λ

[d(s, p)]K
, (1)

where d(s, p) is the Euclidean distance between the sensor s and the point p, and

positive constants λ and K are technology-dependent parameters (Meguerdichian

et al., 2001). The parameter λ can be thought of as the energy emitted by a target,

and K is an energy decay factor, typically ranging from 2 to 5 (Amaldi et al., 2008).

The exposure of an object in the sensor field during the interval [t1, t2] along the

path p(t) is defined by Meguerdichian et al. (2001) as:

E(p(t), t1, t2) =

∫ t2

t1

I
(
F, p(t)

) ∣∣∣∣dp(t)dt

∣∣∣∣ dt, (2)

wherein the sensor field intensity I
(
F, p(t)

)
is implemented using an All-Sensor Field

Intensity model or a Closest-Sensor Field Intensity model, depending on the applica-

tion and types of sensors used. The All-Sensor Field Intensity model is a summation

of the sensing function values (1) from target p to all sensors in the sensor net-

work, defined as IA(F, p) =
∑n

i=1 S(si, p), whereas the Closest-Sensor Field Intensity

model only utilizes the sensing function value of the closest sensor to the target

(Meguerdichian et al., 2001).

Using the definition of exposure, Meguerdichian et al. (2001) presented an algo-
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rithm to find the minimal exposure path in a sensor network. The algorithm first

transforms the problem into a discrete domain utilizing a generalized grid approach

and then creates an edge-weighted graph. The algorithm then applies Dijkstra’s

single-source shortest-path algorithm (Dijkstra, 1959) to find the minimal exposure

path from the source point pS to the destination point pD. Meguerdichian et al.

(2001) also extended this initial work by developing a localized minimal exposure

path algorithm using Voronoi diagrams.

Understanding that signals traveling from a target to a sensor are often corrupted

by noise, Clouqueur et al. (2002) added an Adaptive White Gaussian Noise term

Ni, i = 1, ..., n, to the initial sensor model in Equation (1). Clouqueur et al. (2002)

also presented the concepts of value fusion and decision fusion as alternative tech-

niques for collaborating sensors to decide whether a target is actually present in the

field to avoid false alarms. In the same paper, Clouqueur et al. (2002) developed a

multi-phase random deployment strategy to minimize the cost of sensor deployment

while achieving a desired detection performance. Adlakha & Srivastava (2003) deter-

mined the minimum number of randomly deployed sensors required to guarantee a

given exposure level. Veltri et al. (2003) presented a localized algorithm that enables

a sensor network to determine its minimal exposure path. More recently, Amaldi

et al. (2008) formulated two exposure-based optimization problems to respectively

minimize the number of sensors required while guaranteeing a minimum exposure

and, alternatively, to maximize the exposure of the least exposed path subject to a

budget constraint on the sensors’ installation cost. Tian et al. (2014) presented a

motion-planning scheme to direct the movement of mobile sensors for better detect-

ing “smart” intruders. Lastly, Feng et al. (2016) proposed a minimal exposure path

problem that requires the passage of a path around the boundary of an inaccessible

region, and is solved using a hybrid genetic algorithm.
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Another metric used to evaluate the quality of service provided by a WSN is

maximal breach, first proposed by Meguerdichian et al. (2001). Given a field A with

n sensors si ∈ S = {1, ..., n} located at (xi, yi), let points I and F be initial and final

locations, respectively, of an intruder traveling through A. Given a path P connecting

I to F, breach is defined as the minimum Euclidean distance from P to any sensor

in S (Megerian et al., 2005). Furthermore, among all possible paths connecting I

and F, the path that has the maximum breach value is called the maximal breach

path, PB (Duttagupta et al., 2007). For an intruder, the breach of PB represents the

closest the intruder will be to any sensor in A when traveling from point I to F .

For the defender, breach represents how close to a sensor the intruder is guaranteed

to travel, no matter which path the intruder traverses through the field for a given

sensor layout.

In many WSN models wherein the objectives involve partial, if not complete, cov-

erage of all grid points, the number of sensors available for deployment is typically not

limited. However, in some situations resources may be limited and must be optimally

allocated across a vast geographical area. WSN algorithms that make use of Voronoi

diagrams and breach values are often better suited for this purpose. Meguerdichian

et al. (2001) demonstrated how the critical edges of a maximal breach path could be

used as a guide for determining where to add sensors in order to improve overall cover-

age. Duttagupta et al. (2007) developed a sensor insertion-based heuristic procedure

to achieve the maximum possible improvement in average breach. This procedure

provides an approach that builds up a sensor network by successively adding sensors

to reduce the breach value as much as possible. Cavalier et al. (2007) presented a

heuristic based on Voronoi diagrams to locate a finite number of sensors to detect an

event in a given planar region where the objective is to minimize the maximum prob-

ability of non-detection. Recently, Karabulut et al. (2017) presented a mixed-integer
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linear bilevel programming formulation, called the Maximal Breach Path Coverage

Problem (MBPCP), along with three Tabu search heuristics; the defender determines

the best sensor locations to maximize security, and the intruder reacts by destroying

a subset of the sensors to increase the probability of evading detection, as computed

using a maximal breach path approach.

There are several important distinctions that should be made between minimal

exposure and maximal breach coverage models. Exposure models incorporate the

element of time, assuming that sensors are more likely to detect an intruder given a

longer period of observation. The minimal exposure problem seeks a path between

points pS and pD such that the total exposure acquired from the sensors by the moving

target is minimized. Alternatively, the maximal breach problem seeks a path from

point pS to pD such that the maximum exposure to the sensors at any given point is

minimized (Veltri et al., 2003). This is a key distinction between the two approaches.

In terms of exposure, it may be beneficial to move closer to a sensor for a period of

time to shorten the total path length and decrease the total exposure.

From the defender’s perspective, our goal is to determine the optimal sensor lay-

out to prevent an intruder from crossing a defended region of interest. We employ a

minimal exposure path approach, and our objective is to maximize the intruder’s min-

imal exposure. We are not concerned with forcing a specified probability of coverage

during at least one segment of the intrusion path, but we instead seek to maximize

the intruder’s total exposure across the entire path. If we were to adopt a maximal

breach path approach to solve this problem, our objective would be to minimize the

intruder’s maximal breach. That is, we would want to guarantee that, at some point

in the traversal of the defended region, the intruder is within a certain distance of a

sensor. However, it is unlikely, if not impossible, that we could force an intruder to

always be within the coverage range across the entire space; we would be seeking to
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ensure at least one opportunity exists for which the intruder is within the coverage

range of a sensor. As the defender, an exposure-based approach may offer many more

opportunities to engage an intruder relative to a maximal breach path approach.

2.1.2 Major Contributions and Organization.

A majority of the research implementing breach- and exposure-coverage metrics

focuses on determining the maximal breach path or calculating the minimal exposure

path for a given sensor layout. Our chief concern, however, is to find the optimal de-

ployment of a given set of sensors to maximize the minimal exposure of an intruder’s

traversal of a defended region. Extending the work of Amaldi et al. (2008), this paper

develops the notion of weighted exposure, considering a set of heterogeneous sensor

types. The exposure weights represent the defender’s sensor preferences in terms of

which sensors the defender prefers to employ when interdicting the intruder. Our

formulation also allows the defender to specify required minimum probabilities of

coverage for a subset of the located sensors (e.g., the most valuable sensors) and for

high-value asset locations in the defended region (e.g., fielded force locations, popu-

lation centers, command and control centers, etc.), balancing the exposure objective

with the protection of sensors and high-value asset locations. We also demonstrate the

robustness of the exposure metric for border protection by formulating and analyzing

three additional alternative intrusion path metrics. That is, the optimal objective

value of the minimal exposure solution results in the worst-case exposure of an in-

truder’s traversal of the defended region, regardless of the intruder’s chosen metric

for intrusion path determination.

Section 2.2 presents the bilevel mathematical formulation for solving the sen-

sor location problem as well as a single-stage reformulation, and it proposes three

conceptually-motivated, alternative intrusion path metrics an intruder might con-
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sider adopting. Section 2.3 provides a military air defense scenario as an illustrative

example for the application of the model, and it details the test instance generation,

presents solutions, and provides sensitivity analysis results. Section 2.4 concludes

with a summary of our findings and recommendations for future research.

2.2 Model & Methodology

In this section, we present a baseline formulation for the optimal sensor location

problem, extending a modeling approach presented by Amaldi et al. (2008) wherein

the authors seek to maximize the exposure of the least exposed path subject to

a budget on the sensor installation cost. Unlike Amaldi et al. (2008), our model

includes a heterogeneous set of sensors, and we introduce the notion of weighted

exposure, allowing for defender-specified preferences between sensor types. We also

add constraints to ensure defender-specified minimum probabilities of coverage for a

set of high-value asset locations the defender seeks to protect. Considering instances

where the loss of a sensor is highly undesirable, we include additional constraints

to provide minimum probabilities of coverage for located sensors, by sensor type.

Therefore, given a specified set of heterogeneous sensors, we determine the optimal

layout that maximizes the minimal expected exposure of an intruder attempting to

traverse the region, while ensuring adequate coverage of emplaced sensors and high-

value asset locations.

2.2.1 Assumptions.

We make several assumptions related to the defender’s objectives and sensors.

Regarding the objectives, we assume that, in addition to constructing a sensor network

to inhibit an adversary traversing the defended region, the defender also wants to

provide specific coverage of a set of high-value asset locations (e.g., population centers,
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command and control centers, etc.) and a subset of the located sensors (e.g., the

most valuable sensors). A minimum probability of protection is specified for each

high-value asset location of interest and for each sensor type. The overall objective

is to determine the location of sensors to maximize the ability to intercept intruding

targets while protecting the high-value asset locations and a subset of the located

sensors.

In many instances, points within a sensor coverage ring are not fully covered,

whereas points outside remain completely uncovered. Rather, a probability of cov-

erage exists for a target located at a given distance from a sensor location. As the

distance from target to sensor decreases, the probability of coverage increases. In-

stead of assuming binary sensor coverage (i.e., covered/not covered), we implement

a probability-of-coverage curve as a function of the distance from target to sensor,

for each of the heterogeneous sensor types. Furthermore, we assume the defender’s

incoming threat is a single target with a specified constant velocity.

To formulate instances of our model, we construct a hexagonal tessellation over

the border region of interest, as shown in Figure 1. The intruding target traverses

the arcs of the graph, traveling from artificial origination node o on the left side

of the hexagonal grid to the artificial destination node d on the right. Potential

sensor locations are positioned at the center of each hexagon in the grid. We choose

to discretize the border region using a mesh of uniformly-sized regular hexagons,

as Yousefi & Donohue (2004) demonstrated it to be superior to alternative uniform

tessellation means (e.g., square, rhombus, triangle) as it provides more freedom of

movement for the intruder.

Lastly, we assume the adversaries know each others’ capabilities, and the intruder

has sufficiently capable intelligence to know the defender’s sensor locations.
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Figure 1. Hexagonal tessellation example

2.2.2 Model.

The following list of sets, parameters, and decision variables are used to formulate

the mathematical programming models considered herein.

Sets:

T : the set of all types of sensors available to locate, indexed by t.

S : the set of all sites where sensors can be located, indexed by s.

F : the set of all sites where high-value assets are located, indexed by f .

A : the set of arcs over which an intruding target can traverse, indexed by

(i, j).

N : the set of all nodes at which arcs intersect and through which an

intruding target can traverse, indexed by n.
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G = (N,A) : the graph over which an intruding target will traverse, as

induced by the set of potential sensor sites s ∈ S.

Parameters:

wt : the exposure weight for sensor type t ∈ T .

estij : the exposure time of a target traversing arc (i, j) ∈ A to a sensor

of type t ∈ T located at site s ∈ S.

Bt : the maximum number of type t ∈ T sensors available to locate.

ptsp : the probability that a sensor of type t ∈ T located at site s ∈ S

can cover the point p.

Cf : the minimum probability of coverage required for each high-value

asset location f ∈ F .

Ct: the minimum probability of coverage required for each located sensor

of type t ∈ T .

Decision Variables:

xts : 1 if the defender locates a type t ∈ T sensor at site s ∈ S, and 0

otherwise.

yij : 1 if the intruder traverses arc (i, j) ∈ A, and 0 otherwise.

Given our assumptions, the game theoretic view of this problem is that of a

two-player, extensive-form, two-stage, zero-sum game with perfect and complete in-

formation. In the upper-level problem, the defender determines the locations of a set

of heterogeneous sensors. Observing this decision, the intruder reacts in the lower-

level problem by selecting arcs to traverse the region. The defender and intruder seek
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to respectively maximize and minimize the total expected weighted exposure of the

least exposed path. Leveraging the aforementioned notation, we formulate the bilevel

Maximin Exposure Problem (MmEP) corresponding to this Stackelberg game

as follows:

MmEP: max
x

min
y

∑
(i,j)∈A

(∑
s∈S

∑
t∈T

wtestijx
t
s

)
yij (3)

s.t.
∑
s∈S

xts = Bt, ∀t ∈ T, (4)

∑
t∈T

xts ≤ 1, ∀s ∈ S, (5)

∑
s∈S

∑
t∈T

ln
(

1− ptsf
)
xts ≤ ln

(
1− Cf

)
, ∀f ∈ F, (6)

∑
s∈S\{s̄}

∑
t∈T

ln
(

1− ptss̄
)
xts ≤ ln

(
1− Ct

)
xts̄, ∀s̄ ∈ S, t ∈ T (7)

∑
j:(i,j)∈A

yij −
∑

j:(j,i)∈A

yji =


1, i = o,

−1, i = d,

0, i = N \ {o, d},

∀i ∈ N, (8)

yij ≥ 0, ∀(i, j) ∈ A, (9)

xts ∈ {0, 1}, ∀s ∈ S, t ∈ T. (10)

The objective function (3) maximizes the total expected weighted exposure of

the intruder’s minimal exposure path, where
∑
s∈S

∑
t∈T

wtestijx
t
s represents the expected

weighted exposure of a target traversing a given arc (i, j) ∈ A to sensors of type

t ∈ T emplaced (i.e., xts = 1) at locations s ∈ S. The exposure weights wt account

for the defender’s preferences of sensors for engaging the intruder. We propound that

cardinality weighting is appropriate for most applications, as it results in an objec-

tive calculation of exposure times for an intruder. However, we retain the general
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model having wt-parameters for a special case wherein the defender may exhibit pref-

erences over the sensor types t ∈ T . As a defender-focused model, the purpose of

these weights is to determine the optimal location of the sensors, given the defender’s

sensor preferences. For a given set of wt-parameter values, the resulting formulation

corresponds to the framework of a zero-sum game with perfect and complete infor-

mation. Were the intruder to assume any other set of weights than the actual ones

adopted by a defender, a different intrusion path may result; however, such a different

path can only yield a better objective function value for the defender. If the intruder

does perceive the defenders priorities correctly, the optimal solution identified via our

model represents the worst-case solution from the defender’s perspective.

For example, the defender could specify exposure weights of 1.0, 0.5, and 0.2 for a

model with three different sensor types. For such a case, the defender would prefer to

use the first sensor type over all other sensor types to engage the intruder. Alterna-

tively, exposure weights may be parameterized to account for qualitative differences

in sensor effectiveness not captured by the quantitative differences inherent in the

sensor probability functions. Qualitative differences in sensor performance may re-

sult from factors such as insufficient sensor operator training or operational technical

complexity of a given sensor type. Under this interpretation, the defender may be

half as effective at employing the second type of sensor against a target compared to

using the first sensor type.

Constraint (4) specifies the number of each type of sensor the defender can locate.

Constraint (5) prevents more than one sensor from being located at the same site.

Constraint (6) ensures that all high-value asset locations receive the required coverage.

The form of Constraint (6) results from a logarithmic transformation of the constraint

1−
∏
s∈S

∏
t∈T

(
1− ptsf

)xts
≥ Cf , ∀f ∈ F, (11)
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wherein independence is assumed among the probabilities of coverage, ptsf over sensor

locations, s ∈ S, and sensor types, t ∈ T . (Implied is the assumption that Cf < 1,

which is appropriate for this probabilistic metric wherein certain coverage is not

attainable.) Likewise, Constraint (7) provides for the coverage of emplaced sensors by

other sensors, as may be required by specific applications to protect valuable sensors.

That is, for every site s̄ ∈ S, if a defender locates a sensor of type t ∈ T (i.e., xts̄ = 1),

Constraint (7) requires a specified level of coverage, Ct, via the effects of other sensors

the defender chooses to locate (i.e., xts, ∀s ∈ S \ {s̄}). In contrast, if a defender does

not locate a sensor of type t ∈ T at a site s̄ ∈ S (i.e., xts̄ = 0), then the constraint

effectively requires at least Ct = 0 (i.e., no coverage requirement). Constraint (8)

induces the flow balance constraints for the path from the intruder’s point of origin, o,

to destination point, d. Constraint (9) is the non-negativity constraint associated with

the minimal exposure path variables, and Constraint (10) enforces binary restrictions

on the sensor location decision variables.

Adopting an approach similar to Wood (1993), Colson et al. (2007), and Amaldi

et al. (2008), we reformulate the bilevel MmEP (3)-(10) by replacing the lower-level

problem with its dual formulation, enabling the identification of an optimal solution

via direct optimization using a commercial solver. Treating the upper-level variables

xts as parameters, the lower-level minimization problem becomes a shortest path prob-

lem in which the exposure objective is minimized, subject to Constraints (8) and (9).

Replacing the primal, lower-level problem with its dual in Equations (12)-(15),

max
π

πd − πo (12)

s.t. − πi + πj ≤
∑
s∈S

∑
t∈T

wtesijx
t
s, ∀(i, j) ∈ A, (13)

πo = 0, (14)

πi unrestricted,∀i ∈ N \ {o}, (15)
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where πi is the dual variable associated with the ith Constraint (8), we obtain the

following single-level reformulation of the MmEP:

max
x,π

πd − πo (16)

s.t.
∑
s∈S

xts = Bt, ∀t ∈ T, (17)

∑
t∈T

xts ≤ 1, ∀s ∈ S, (18)

∑
s∈S

∑
t∈T

ln
(

1− ptsf
)
xts ≤ ln

(
1− Cf

)
, ∀f ∈ F, (19)

∑
s∈S\{s̄}

∑
t∈T

ln
(

1− ptss̄
)
xts ≤ ln

(
1− Ct

)
xts̄, ∀s̄ ∈ S, t ∈ T (20)

− πi + πj ≤
∑
s∈S

∑
t∈T

wtestijx
t
s, ∀(i, j) ∈ A, (21)

πo = 0 (22)

πi unrestricted, ∀i ∈ N \ {o}, (23)

xts ∈ {0, 1}, ∀s ∈ S, t ∈ T. (24)

The sensor location formulation presented in Equations (16)-(24) provides a base-

line model to determine the optimal location of sensors to maximize the exposure of

the least exposed intruder path. Although our focus is on border security, the model

is easily generalizable for surveillance or coverage of any type of region by any type

of device (e.g., cameras, police units, air defense batteries, cell phone towers, etc.).

Numerous model enhancements can be added to the above formulation to incorporate

other situation-specific requirements. For example, if sensors represent police units,

the defender may want to specify the maximum (or minimum) distance between any

two sensor locations to ensure backup coverage for officer safety concerns. The de-

fender may also need to prevent the placement of sensors in certain locations for
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geographical or political reasons.

2.2.3 Alternative Intrusion Paths.

For a given instance, the MmEP not only determines the optimal sensor locations,

but it also identifies an intruder’s minimal exposure path. However, we recognize that

an intruder may not adopt such an exposure metric when determining its intrusion

path, but may instead consider the maximal breach metric or some other metric of

choice. Accordingly, for a fixed sensor location solution to the MmEP, we also identify

three alternative intrusion paths: the maximal breach path, the maximal weighted

breach path, and the maximum probability of survival path.

As a defender-focused model, the goal of the bilevel programming formulation is

to determine the optimal sensor locations to maximize the exposure of an intruder.

For the worst-case scenario, the intruder adopts the same exposure-oriented metric

as the defender. This scenario corresponds to a zero-sum game that is represented by

our baseline MmEP formulation. Should the intruder adopt a different metric, the

defender will do no worse with respect to their objective function for a given (i.e.,

fixed) sensor location strategy and, as demonstrated via our test results, may yield a

markedly better outcome.

Should the defender assume (correctly or otherwise) that the intruder adopts a

different metric, the solution to a modified bilevel programming formulation may

identify a better outcome for the defender. However, if that defenders assumption

is incorrect, the sensor location solution will not address the worst-case scenario,

yielding a suboptimal solution for the defender, for whom the exposure metric is of

paramount importance.

As such, we contend that the adopted framework should not be set aside for a

defender to change their strategy based on assumptions about the intruders metric
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in lieu of considering the worst-case scenario.

Defining dsij as the minimum Euclidean distance between arc (i, j) ∈ A and the

sensor located at site s ∈ S, we develop the following multi-objective, binary Maxi-

mal Breach Path (MBP) programming model to determine the intruder’s maximal

breach path, given a defender’s sensor layout solution to the MmEP:

MBP: max
dmin,y

f(dmin,y) =
(
f1(dmin),−f2(y)

)
(25)

s.t. f1(dmin) = dmin, (26)

f2(y) =
∑

(i,j)∈A

yij, (27)

dmin ≤ dsij

(∑
t∈T

xts

)
yij +M

(
1−

(∑
t∈T

xts

)
yij

)
, ∀(i, j) ∈ A, s ∈ S,

(28)

∑
j:(i,j)∈A

yij −
∑

j:(j,i)∈A

yji =


1, i = o,

−1, i = d,

0, i = N \ {o, d},

∀i ∈ N, (29)

yij ∈ {0, 1}, ∀(i, j) ∈ A. (30)

Traditional maximal breach path approaches in the literature are single-objective

formulations which seek to maximize the minimum distance between the intruder’s

path and any sensor in the region. These formulations determine a path that typi-

cally identifies one critical arc in the intruder’s path (i.e., the arc with the maximal

breach value). The other non-critical arcs are therefore insignificant in that they

do not affect the maximal breach objective value, yielding many alternative optimal

solutions. Without the inclusion of additional constraints or path length objectives,

single-objective maximal breach formulations can yield (alternative optimal) intruder

26



paths that wander throughout a region and are unrealistic for many practical appli-

cations. This solution characteristic motivates our construction of a multi-objective

maximal breach path approach to preemptively maximize the metric corresponding

to the intruder’s maximal breach path, dmin, and subsequently differentiate among

alternative optimal solutions by minimizing the total path length, f2(y). Constraint

(28) bounds dmin based on the intruder path selected, wherein the values of the lo-

cation decisions xts are fixed parameters from the optimal solution to the MmEP.

Constraint (??) induces the flow balance constraints for the path from the intruder’s

point of origin, o, to destination point, d. Constraint (30) enforces binary restrictions

on the path traversal decision variables.

Instead of solving the MBP (25)-(30) using a weighted sum or lexicographic ap-

proach, we implement the ε-constraint method and reformulate the MBP as follows:

MBPε: max
y

dmin (31)

s.t.
∑

(i,j)∈A

yij ≤ ε2, (32)

Constraints (28)− (30),

wherein we utilize Constraint (32) to bound our second objective, the minimization

of the intruder path length, to be no more than ε2, a maximum path length. We

do not specify the value used for ε2 because it is a tunable parameter for which

the appropriate value is instance-specific. Its purpose is to inhibit the generation of

solutions having intruder paths that wander, in that any routing that is not affected

by the binding constraint is otherwise allowable in an optimal solution. During initial

testing, setting ε2 equal to the intruder path length corresponding to the optimal

solution to Problem MmEP was effective, but it may not hold for every instance, and

tuning may be required. Since we discretized the defended region using a uniformly-
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sized regular hexagon tessellation, the intruder’s path length is simply the number

of arcs in the maximal breach path. More generally, we could include the length lij

of each arc (i, j) ∈ A in Constraints (27) and (32) to minimize the intruder’s path

length for tessellation schemes having disparate arc lengths.

If the entire sensor network consisted of a homogeneous set of sensors, the maximal

breach path would indeed remain as far away from every sensor as possible across the

intrusion path. However, since a sensor network may consist of sensors having differ-

ent capabilities, an intruder will most likely seek to remain further away from more

capable sensors. We captured this effect by examining two additional intruder path-

selection metrics: the maximal weighted breach path and the maximum probability

of survival path.

Using a maximal weighted breach path approach, we weight the breach distances

from sensor location to intruder path by sensor type, using a weighting scheme based

on the maximum effective sensor range (rmax) of each sensor type. For example,

consider a sensor network with three types of sensors with maximum effective ranges

of rmax = [250, 20, 6] km. We then assign the following breach distance weights:

γt =

[
1.0,

rmax1

rmax2

,
rmax1

rmax3

]
=

[
1.0,

250

20
,
250

6

]
=
[
1.0, 12.5, 41.6̄], (33)

for the first (t = 1), second (t = 2), and third (t = 3) sensor types, respectively. Mod-

ifying the MBP formulation (25)-(30) by incorporating the breach distance weights,

γt, we obtain the following multi-objective Maximal Weighted Breach Path

(MWBP) formulation:

MWBP: max
dmin,y

f(dmin,y) =
(
f1(dmin),−f2(y)

)
(34)

s.t. f1(dmin) = dmin, (35)
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f2(y) =
∑

(i,j)∈A

yij, (36)

dmin ≤ dsij

(∑
t∈T

γtx
t
s

)
yij + · · ·

· · ·+M

(
1−

(∑
t∈T

xts

)
yij

)
, ∀(i, j) ∈ A, s ∈ S, (37)

∑
j:(i,j)∈A

yij −
∑

j:(j,i)∈A

yji =


1, i = o,

−1, i = d,

0, i = N \ {o, d},

∀i ∈ N, (38)

yij ∈ {0, 1}, ∀(i, j) ∈ A. (39)

Moreover, adopting the ε-constraint method results in the following ε-constrained

MWBP formulation:

MWBPε: max
y

dmin (40)

s.t.
∑

(i,j)∈A

yij ≤ ε2, (41)

Constraints (37)− (39),

Alternatively, we determined the path that maximizes the intruder’s probability of

survival during sensor network traversal, using the probability-of-coverage function for

each sensor type as a proxy weighting scheme. Assuming independence among sensors

and arcs (i, j) ∈ A, an intruder’s probability of not surviving across an intrusion path

is:

p̄ = 1− p = 1−
∏

(i,j)∈A

∏
s∈S

∏
t∈T

[
1− ptsij

]xtsyij , (42)

where p̄ is the probability of not surviving and ptsij is the probability of being covered

(i.e., not surviving) along arc (i, j) ∈ A by a sensor of type t ∈ T located at site
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s ∈ S.

Such a modeling construct is erroneous for a defender to adopt; compared to the

Minimal Exposure Path, a so-called “Maximum Probability of Survival Path” does

not account for the time spent traversing any given arc in the network. However, its

conceptual simplicity portends that an adversary may consider it, so we examine it

as an alternative intrusion path metric within this study.

Imposing a logarithmic transformation, maximizing the probability of survival is

equivalent to maximizing:

ln(p) =
∑

(i,j)∈A

∑
s∈S

∑
t∈T

(
ln
[
1− ptsij

]
xts
)
yij. (43)

To determine the maximum probability of survival path, we solved the following

binary programming Maximum Probability of Survival Path (MPSP) problem:

MPSP: max
y

∑
(i,j)∈A

∑
s∈S

∑
t∈T

(
ln
[
1− ptsij

]
xts
)
yij (44)

s.t.
∑

j:(i,j)∈A

yij −
∑

j:(j,i)∈A

yji =


1, i = o,

−1, i = d,

0, i = N \ {o, d},

∀i ∈ N, (45)

yij ∈ {0, 1}, ∀(i, j) ∈ A. (46)

Since the values of the location decisions xts are fixed parameters from the optimal

solution of the MmEP (3)-(10), we could replace the objective function (44) with

min
y

∑
(i,j)∈A

cijyij, where cij = −
∑
s∈S

∑
t∈T

ln
[
1 − ptsij

]
xts, and the MPSP problem (44)-

(46) is equivalent to a shortest path problem.

In addition to providing the defender with knowledge of potential alternative

intruder path locations, analyzing the exposure values associated with each of the
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alternative intrusion paths provides the defender with an assessment of the robustness

of the MmEP sensor location solution. We demonstrate the MmEP solution approach

and provide alternative intrusion path analysis via an air defense application example

in the following section.

2.3 Testing, Results, & Analysis

We solve the mixed integer linear reformulation (16)-(24) of the bilevel Maximin

Exposure Problem (3)-(10) on a 3.2 GHz PC with 6 GB of RAM, using the commercial

solver IBM ILOG CPLEX 12.7. The following subsections present the chosen border

security application, discuss test instance generation, and provide numerical results

of the testing.

2.3.1 Illustrative Instance for Air Defense of a Border Region.

Adopting the viewpoint of a defender, we illustrate via a representative test in-

stance the applicability of our MmEP formulation and solution approach to the border

security application of locating ground-based assets within an Integrated Air Defense

System (IADS).

Given a 600 km long by 520 km wide border region, the defender’s objective is

to optimally locate two long-range (e.g., SA-21 Growler), four medium-range (e.g.,

SA-22 Greyhound), and six short-range (e.g., SA-24 Grinch) SAM battery assets

(i.e., Bt = [2, 4, 6]) to maximize the ability to intercept intruding aircraft (Foss &

O’Halloran, 2014). The defender also seeks to protect three high-value assets (e.g.,

fielded force locations, population centers, command and control centers, etc.) located

at F = {(375, 420), (405, 30), (450, 565)}, with minimum probabilities of protection of

Cf = [0.75, 0.5, 0.5]. Additionally, the defender requires the long-range SAM batteries

to be protected with a minimum probability of 0.7 (i.e., Ct = [0.7, 0, 0]). Given the
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defender’s air defense asset location solution, the intruder’s objective is to determine

the least exposed intrusion path.

Instead of assuming binary SAM battery coverage (i.e., covered/not covered), we

implement a representative probability-of-kill curve as a function of the distance from

target to SAM battery, for each SAM battery type. Capabilities of these weapons

for parameterizing model instances in this study are obtained from an open-source,

unclassified reference (Foss & O’Halloran, 2014). The construction of the probability-

of-kill curves for instances herein is notional but representative; we utilized a logit

model for the probability of kill as a function of the range, assuming a probability

of 0.99 for a range of zero and a probability of between 0.04 and 0.11 at the maxi-

mum effective range (rmax) (Foss & O’Halloran, 2014). To artificially induce different

interceptor performance, we specified a probability of 0.55 at 65% of rmax for the long-

range SAM batteries, a probability of 0.2 at 90% of rmax for the medium-range SAM

batteries, and a probability of 0.5 at 60% of rmax for the short-range SAM batteries.

The probability-of-kill function for each SAM battery type is depicted in Figure 2.

These functions are used to calculate the exposure values for each arc resulting from

the hexagonal tessellation of the border region.

In addition to the aforementioned SAM battery types, the long-range assets re-

quire separate targeting and tracking radars to engage a target. However, to simplify

the model, we assume that each SAM battery possesses the required radar coverage

to engage enemy targets.

Furthermore, we assume for this study the defender’s incoming threat consists only

of aircraft, as opposed to a wide range of threats not limited to, but including, cruise

missiles and ballistic missiles. This assumption determines the coverage capabilities

for each SAM battery instead of requiring the model to account for a myriad of

target types. The intrusion aircraft travel at a constant velocity of 1,800 km/hr (i.e.,
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(a) Long-range SAM battery (b) Medium-range SAM battery

(c) Short-range SAM battery

Figure 2. Probability-of-kill curve for each SAM battery type

|v| = 1, 800 km/hr). For the baseline instance, we further assume equal exposure

weights (i.e., wt = [1, 1, 1]). That is, the defender does not wish to specify preferences

between SAM battery types for engaging the intruder.

2.3.2 Test Instance Generation.

Test instances for our analysis are generated by first constructing a hexagonal grid

with potential sensor (i.e., SAM battery) locations positioned in the center of each

hexagon. Neighboring hexagon centers are located at a defender-specified distance

(in km) from each other. Herein, we adopt a distance of 30 km for initial testing in

Section 2.3.3 and explore alternatives through sensitivity analyses in Section 2.3.4.

The granularity of grid construction is easily adapted to suit a given situation or

modeler’s needs for fidelity.

The intruder’s goal is to traverse the border region from an artificial origination
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node, o, on the (w.l.o.g.) Western side of the border region to an artificial destination

node, d, on the (w.l.o.g.) Eastern side of the border region, where these nodes are

connected by arcs to the leftmost and rightmost hexagon arc nodes, respectively.

Unlike previous definitions of exposure in the literature which utilize the standard

sensing model (1), we leverage the specific probability-of-kill functions depicted in

Figure 2, as well as the target’s velocity. That is, for a type t ∈ T SAM battery

located at site s ∈ S, the sensing model for a target located at the point l on arc

(i, j) ∈ A is:

St(s, l) = pt(s, l), (47)

where pt(s, l) is the probability of kill for a target located at the Euclidean distance

from SAM battery s ∈ S of type t ∈ T to the point l on arc (i, j) ∈ A.

Given a target’s location as a function of time, denoted l(τ), the cumulative

exposure time of a target traversing arc (i, j) ∈ A from SAM battery s ∈ S of type

t ∈ T is represented as a function of either time or distance via Equation (48), wherein

τ1 and τ2 indicate the respective times at which a target starts and completes the arc

traversal, corresponding to points l1 and l2 for a given constant target velocity, |v|.

estij =

∫ τ2

τ1

St(s, l(τ))dτ =

∫ τ2

τ1

pt(s, l(τ))dτ =

∫ l2

l1

pt(s, l)

|v|
dl (48)

This exposure calculation within Equation (48) differs slightly from that used by

Meguerdichian et al. (2001), wherein the author calculates cumulative exposure in-

tensity vis-à-vis cumulative exposure time, the metric of interest for the parameter

estij .

The exposure value for each arc is calculated via numerical integration and in-

cluded as a model parameter. The numerical integration requires an assumed, con-

stant speed of the intruder and the probability of kill (i.e., detection) at each of a set
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of discrete points along the arc. The specific probability-of-kill values at each point

are determined by the probability-of-kill functions for each of the three sensor types,

t ∈ T , shown in Figure 2 and the Euclidean distance between the point l and sensor

location s. Therefore, we can interpret the objective function (3) as the total expected

time the defender can intercept an intruder, which the defender and intruder seek to

maximize and minimize, respectively.

2.3.3 Results.

Figure 3 depicts the solution to the single-level MmEP reformulation (16)-(24)

for this instance, using a 30 km spacing between potential SAM battery locations.

It further depicts the four respective intruder paths, each of which is optimal for its

given metric.

Figure 3. Baseline Maximin Exposure Problem solution

The two long-range SAM batteries are located near the center of the border re-
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gion, while the medium-range and short-range SAM batteries provide coverage of the

northern and southern edges of the border region. This IADS layout results in a

minimal exposure of 2.8075 minutes, divided between the long-range, medium-range,

and short-range SAM batteries which induce 75-second, 93-second, and 7.44× 10−5-

second exposures, respectively. The minimal exposure is the total expected time

the defender will have to engage an enemy aircraft traversing the minimal exposure

path. This represents the worst-case exposure the defender will experience for a given

IADS layout; any other path chosen by the intruder will result in an equal or greater

exposure value, which can only benefit the defender. This effect is observed in the

resulting exposure values for the MBP, the MWBP, and the MPSP, as displayed in

Figure 4 and reported in Table 1.

The disparity in exposure values between the alternative intrusion paths results

from the distinct differences in path location. The minimal exposure path traverses

the southern edge of the border region, remaining as far away from the long-range

SAM batteries as possible since they result in the largest exposure values. The maxi-

mum probability of survival path travels along the northern edge of the border region,

but moves away from the more capable medium-range SAM battery located near the

northern border. This path corresponds to a 0.0024 probability of survival for the

intruder, and it also results in a 0.92% (i.e., 1.54 second) increase in exposure com-

pared to the minimal exposure path. Alternatively, the maximal breach path seeks to

remain as far away from all IADS assets as possible without regard to differing asset

capabilities, splitting the distance between the long-, medium-, and short-range SAM

batteries in the northern part of the border region. Similarly, the maximal weighted

breach path also attempts to remain as far away from the IADS assets as possible;

however, this path seeks to remain furthest from the long-range assets, traveling closer

to the less capable SAM batteries. This behavior is showcased by the magenta path
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in the northern part of the border region in Figure 3. Instead of splitting the distance

between the three SAM battery types, the maximal weighted breach path travels

closer to the medium-range and short-range SAM batteries while remaining further

away from the more capable, long-range SAM battery.

Due to the relatively small number of IADS assets available to the defender, the

optimal objective value for the MBP and the MWBP remained unchanged for varying

values of ε2 in the MBPε and MWBPε. Therefore, the breach path solutions shown

in Figure 3 represent the maximal breach solution with the minimum feasible path

length (i.e., f2(y) = 41).

Figure 4 depicts the exposure of an attacking aircraft to each type of located SAM

battery as it traverses its intrusion path, as it corresponds to each of the four metrics

(and paths) considered. These exposure plots illustrate the differences in exposure

values by SAM battery type across the four alternative intrusion paths analyzed.

Not only do we observe the difference in overall exposure values, but the plots

also show the differences in exposure across each edge of the intruder’s flight profile.

As the defender, these plots reveal the points in the flight path that offer the most

opportune times for engaging the intruder. For the intruder, these plots highlight the

riskiest portions of the mission profile. For example, if the intruder decides to operate

along the minimal exposure path, the intruder is most exposed between edges 23-33

of the flight profile, as depicted in Figure 4(a).

The defender determined the location of the IADS assets under the assumption

that the attacker would adopt a minimal exposure path for intrusion. Even if this

assumption does not hold, the results in Figure 4 validate this approach for metric

selection. Moreover, if the intruder instead chose to use the breach metric for intrusion

path selection, the results show that intruder the would experience a 280% increase in

exposure. Table 1 further details the differences in solution quality for the alternative
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(a) Minimal Exposure Path

(b) Maximal Breach Path

(c) Maximal Weighted Breach Path

(d) Maximum Probability of Survival Path

Figure 4. Exposure values by path edge for four alternative intrusion paths

intrusion paths based on the four metrics for intrusion path selection (i.e., exposure,

breach, weighted breach, and probability of survival).

The minimal exposure path indeed provides a worst-case bound on the expected

exposure. All three alternative intrusion paths result in an increased exposure, which

benefits the defender. As expected, we also observe that each path performs best
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Table 1. Intrusion results by path metric and type

Intrusion Path Type

Intrusion Path Metric

Exposure Breach Weighted Probability
(min) (km) Breach (km) of Survival

Minimal Exposure Path 2.8075 15.0 187.5 4.0E-04
Maximal Breach Path 10.6755 113.6 138.6 3.3E-13

Maximal Weighted Breach Path 3.2045 15.0 210.7 1.2E-03
Maximum Probability of Survival Path 2.8332 15.0 210.7 2.4E-03

for its respective metric. In terms of the probability of survival, all paths result in a

near-zero probability of survival for this specific instance. However, this calculation

presumes that a defender engages an intruding aircraft with an interceptor from

every IADS asset as it traverses each arc. This is indeed a pessimistic metric and not

one we recommend adopting. This metric could be adjusted by making additional

assumptions regarding the number of weapon engagements the defender could employ

for each SAM battery, as well as decision rules to determine when a defender would

engage a target.

2.3.4 Sensitivity Analysis.

We conducted a sensitivity analysis to examine the effect of several model pa-

rameters on solution quality and required computational effort. When modeling the

MmEP, there are several important modeling parameters that can affect the minimal

exposure objective. We chose to investigate the respective effect of (1) the separa-

tion distance between potential SAM battery locations and (2) the exposure weights

assigned to each SAM battery type on the minimal exposure objective value. Specifi-

cally, we considered potential SAM battery separations of 25, 30, 40, and 50 km, and

we examined exposure weights wt ∈ (0, 1] for each SAM battery type.

Although each SAM battery spacing alternative yields a unique layout, several

trends emerged for this test instance. The long-range SAM batteries remained cen-
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trally located in the border region, whereas the medium-range and short-range SAM

batteries were most often dispersed along the northern and southern edges of the bor-

der region. Perhaps of greater interest, however, are the effects on solution quality

and computation time, as reported in Table 6. A decrease in the distance between

potential SAM battery locations from 40 km to 30 km (i.e., an increase in granular-

ity of the hexagonal grid) yields a relative increase of 9.5% in the minimal exposure

for an intruder. However, this result does not portend a monotonically increasing

relationship, as an additional decrease to 25 km corresponds to a relative decrease of

12.7% from the exposure attained from a 30 km tessellation. We postulate but do not

examine further herein that such relative decreases with increased granularity result

merely from the altered feasible set of locations for SAM battery sites, S, specific to

a given instance.

Table 2. Effect of potential SAM battery location spacing on minimal exposure and
computation times

Distance Between Number of Number Minimal Computation
Potential SAM Potential SAM of Exposure Time
Batteries (km) Battery Locations Arcs (min) (sec)

25 600 1825 2.4507 28,558.5
30 420 1281 2.8075 107.1
40 210 645 2.5641 7.8
50 156 481 1.6165 4.0

Moreover, the 25 km spacing instance required nearly 8 hours to solve, whereas

the 30 km instance required under 2 minutes. While further testing may be conducted

to determine if this trend holds in general, there is indeed a practical spacing value

to maximize the minimal exposure objective. For this instance, we recommend using

a 30 km spacing of potential SAM batteries. One may even be able to construct

a general spacing rule that results in a superlative solution found with reasonable

computational effort.

If the potential SAM battery spacing is too large, the model may not obtain
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a feasible solution. For example, in the 50 km instance, the medium-range SAM

batteries were no longer capable of satisfying the high-value asset coverage constraints

because their effective ranges were too small. One could remedy this situation by

increasing the number of potential SAM battery locations for a set hexagon size or by

reducing the minimum high-value asset and/or SAM battery coverage requirements.

The 50 km instance, for example, required reducing the coverage requirements by

10% in order to obtain a feasible solution.

Although the model specifies exact locations for each SAM battery, in real-world

applications, commanders of air defense units should be given the latitude to adjust

the prescribed locations of their specific SAM batteries within the associated hexagon

region while still satisfying the coverage requirements. For example, there may be

local terrain restrictions or other aspects indiscernible from a high-level modeling

standpoint that need to be considered during implementation of a specific IADS

layout solution.

If a defender prefers to engage an enemy aircraft using certain SAM batteries over

others, our model allows for the specification of exposure weights (wt) to capture these

preferences. Instead of equally weighting the exposure values (i.e., wt = [1, 1, 1]) as in

the baseline solution shown in Figure 3, the defender may prefer to assign exposure

weights of wt = [1, 0.5, 0.2], for example. That is, the defender is half as effective at

employing the medium-range SAM battery against an enemy aircraft as compared to

using the long-range SAM battery. Likewise, the defender considers their forces to be

five times more effective at employing a long-range SAM battery than a short-range

SAM battery. Table 3 details the change in exposure values for each of the alternative

intrusion paths, using the exposure weights wt = [1, 0.5, 0.2].

Compared to the baseline solution in Figure 3, the minimal weighted exposure

solution locates all the medium-range SAM batteries on the southern edge of the
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Table 3. Exposure values for the weighted exposure (wt = [1, 0.5, 0.2]) solution

Intrusion Path Type
Exposure Percent

(min) Change (%)*

Minimal Weighted Exposure Path 2.3898 -14.9
Maximal Breach Path 12.5862 17.9

Maximal Weighted Breach Path 2.4656 -23.1
Maximum Probability of Survival Path 2.3898 -15.7

*compared to the baseline instance solution with wt = [1, 1, 1]

border region and transfers an additional short-range SAM battery near the northern

edge of the border region. As a result, the locations of the intrusion paths also

change. More importantly, this layout produces a minimal exposure value of 2.3898

minutes. This represents a 14.9% decrease in the minimal exposure, as compared to

the baseline solution. Even though the defender may prefer using one SAM battery

over another, the solution is actually worse if the model is forced to comply with

the defender’s additional exposure weights; the model produces a better solution in

terms of minimal exposure when allowed to determine SAM battery placement using

equally weighted exposure values.

To further examine the effect of exposure weighting, we fixed the long-range ex-

posure weight at 1 and systematically decreased the medium-range and short-range

exposure weights at the same rate (i.e., w1 = 1 and w2 = w3 : 1 → 0). Our results

confirmed that the equally weighted, baseline exposure model results in an optimal

IADS layout that maximizes the minimal exposure. Additional exposure weights

imposed by the defender (i.e., weights less than 1) produced suboptimal minimal

exposure objective values for all test instances analyzed. However, if the defender

prefers a non-equal weighting, the model does offer such flexibility and will identify

the optimal solution corresponding to such user-imposed weights. For example, the

defender may choose to implement a weighted exposure scheme to account for differ-

ences in crew training or expertise between various SAM battery types. Although the

overall exposure decreases in the weighted instance, Table 4 indeed shows that the
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IADS solution using weighted exposures wt = [1, 0.5, 0.2] produces an increase in the

long-range SAM battery exposure and a decrease in the medium-range SAM battery

exposure, as desired by the defender.

Table 4. Differences in exposure for the equally and unequally weighted exposure
instances

Exposure Total Exposure
Exposure by SAM Battery Type (seconds)

Weights (minutes) Long-range Medium-range Short-range

wt = [1, 1, 1] 2.8075 75.2 93.3 7.4E-05
wt = [1, 0.5, 0.2] 2.3898 143.4 1.1E-80 7.4E-05

2.4 Conclusions & Recommendations

Using the minimal exposure metric, we formulated a heterogeneous sensor location

model for border security, developing the notion of weighted exposure to incorporate

defender preferences among different sensor types. Our formulation also allows the

defender to specify required minimum probabilities of coverage for a subset of the

located sensors (e.g., the most valuable sensors) and for high-value asset locations

in the defended region. Moreover, for a given defender location solution, we formu-

lated intruder path identification models corresponding to each of three conceptually-

motivated, alternative intrusion path metrics. We showcased our formulation and

solution approach via a representative air defense asset location instance. Upon iden-

tifying the optimal, respective defender asset location and intruder routing solutions,

we examined the intruder-optimal solutions corresponding to each of the alterna-

tive metric-specific paths, illustrating the relatively greater exposure incurred to an

intruder by choosing an inappropriate metric. We also conducted a sensitivity anal-

ysis to examine the effects of exposure weights, along with varying potential sensor

location spacing, on the minimal exposure objective value.

Future research could be conducted to increase model fidelity by accounting for
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the placement of hierarchical sensors or by considering multiple intrusion targets with

disparate capabilities. We could also refine the sensor probability-of-coverage func-

tions to account for location-specific effects such as terrain and altitude, depending

on the application of interest. Alternatively, a follow-on study could set aside the

discrete expectation framework for identifying an intruder exposure-minimizing path,

instead embedding the routing problem within a simulation (e.g., see Ryan et al.

(1998, 1999)); however, such an approach would preclude the identification of an op-

timal sensor location solution via a single-stage optimization problem, and the use of

a response surface methodology would be more appropriate.
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III. A Multi-objective, Bilevel Sensor Relocation Problem
for Border Security

3.1 Introduction

Defense against threats to a sensor network begin at a border or boundary of a

defender’s network, whether it be physical or virtual. Moreover, the defense against

such threats occurs within a border region, wherein a defender will locate sensors to

detect and/or interdict an intruder and relocate sensors to adjust to disruptions or

unexpected changes. Location decisions for the sensors are often made using static

assumptions. In practice, however, subsequent decisions may be required to respond

to changes, whether internal or external, to the decision space. Within the context

of sensor networks, such changes within a network may result from random sensor

failures, planned sensor outages, direct adversarial attacks, or temporary decreases in

sensor performance due to malicious attacks. Changes external to the sensor network,

such as unexpected increases in demand or the need to provide backup coverage, may

require the adjustment of sensor locations to improve the level of coverage. Relocation

models are designed to respond to such changes by adjusting initial location decisions.

Applications of relocation problems that account for possible changes affecting

initial location decisions can be found throughout the public, private, and government

sectors. Natural disasters that destroy power generation and delivery components

and cause power outages or create critical shortages of basic supplies, necessitate the

relocation of electrical generators and emergency response resources (FEMA, 2017).

In the wake of recent hurricanes, such as the one in Puerto Rico that left over 3.5

million people without electricity, the U.S. Secretary of Energy is considering plans

to relocate air transportable nuclear power plants as a rapid response solution to

minimize the impact of future disasters (Adams, 2017). Temporary relocation of
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cell phone towers may be required to perform maintenance on permanent towers or

to support high-volume demands for major sporting events, concerts, Presidential

inaugurations (Baig, 2017), or even solar eclipses (Banse, 2017). Taxi companies

such as Uber relocate vehicles based on historical data to meet forecasted demands or

accommodate significant short-term increases in service requests (Laptev et al., 2017).

Police units, ambulance companies, and fire stations (Lincoln, 2014) may relocate

individual units or entire stations to decrease response times or adapt to changing

demands as the coverage area increases or the distribution and/or likelihood of events

in a given location changes over time (Macaulay, 2017).

An application of particular interest within this study relates to military defense

of airspace. To counter aerial threats to border security, ground-based air defense

weapons are positioned as part of an Integrated Air Defense System (IADS) to defend

against enemy aircraft attempting to penetrate a country’s border region during active

conflict. Unlike previously fielded air defense systems, emerging air defense assets are

highly mobile, “with some systems demonstrating a ‘shoot-and-move’ time in minutes

rather than hours or days” (United States Joint Chiefs of Staff, 2012b). We construct

an air defense test instance as an illustrative border security application, showcasing

the sensor relocation formulation and solution approach developed herein.

The objective of this paper is to provide an exact solution method for the sensor

relocation problem to prevent intrusion through a defended border region. We accom-

plish this via the formulation and solution of a bilevel, multi-objective optimization

model. Given an initial layout of heterogeneous sensors, we simulate a disruption

to the sensor network by incapacitating (i.e., interdicting) a subset of sensors and

degrading (i.e., partially interdicting) the effectiveness of another subset of sensors,

wherein an incapacitation is enduring for an affected sensor whereas a degradation is

limited to a geographic region and sensor type (i.e., moving an incapacitated sensor
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does not recover its capability, but moving a degraded sensor out of an affected re-

gion will). We then determine the optimal response to these events by relocating the

available sensors, considering multiple, competing objectives. Specifically, we seek to

maximize an intruder’s minimal expected exposure to traverse the defended border

region, minimize the maximum sensor relocation time, and minimize the total number

of sensors requiring relocation.

3.1.1 Literature Review.

Our modeling efforts apply and extend previous techniques in facility relocation

and bilevel, multi-objective optimization, particularly as they relate to border secu-

rity. Ehrgott (2006) provides a comprehensive presentation of multi-objective opti-

mization modeling approaches and solution techniques “to compute so called efficient,

or Pareto optimal, or compromise solutions that - unlike traditional mathematical

programming methods - take the contradictory nature of the criteria into account.”

Unlike single-objective problems, we no longer achieve a single optimal solution but

rather a set of Pareto optimal solutions. A solution is called Pareto optimal (or effi-

cient) if no single objective function can improve without deteriorating the objective

function value of at least one of the other objectives (Ehrgott, 2006).

Most multi-objective optimization problems in the literature focus on problems

with continuous decision variables. However, many facility location models incor-

porate binary location decision variables. Ulungu & Teghem (1994) and Ehrgott

& Gandibleux (2000) provide surveys of multi-objective combinatorial optimization

(MOCO). Greco et al. (2005) provide a collection of state of the art multi-criteria sur-

vey papers that includes a chapter of specific interest by Nickel et al. (2005), which

presents a broad overview of multi-criteria location problems.

Defender-attacker optimization problems in the literature often employ bilevel
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mathematical programming models to represent extensive form games. With a view

to protect fixed sites, Brown et al. (2006) examined and illustrated models to defend

nodes on critical infrastructure networks such as petroleum refinement and electrical

supply. Bricha & Nourelfath (2013) adopted a non-zero-sum approach to protect

supply nodes, wherein both the defender and attacker have multiple objectives (i.e.,

respective player action costs and their collective impact on the resulting defender’s

supply system capabilities). From a facility location-oriented approach, Scaparra &

Church (2008) developed models to fortify facilities and maintain the best p-median

coverage of demands, whereas Losada et al. (2012) proposed a similar coverage pro-

tection model but with an emphasis on the restoration of coverage over time, and

Aliakbarian et al. (2015) examined hierarchical facility protection having a similar

p-median coverage structure. Alternatively, other works examine bilevel defender-

attacker models to protect networks rather than fixed sites. For example, Qiao et al.

(2007) modeled a defender’s allocation of resources to maximize an attacker’s cost of

inflicting damage to water supply network components, and Cappanera & Scaparra

(2011) sought to identify the components in a transportation network to protect from

disruption so as to maintain the shortest path between a supply and demand node

pair. The problem considered herein differs from the aforementioned literature in

that it seeks to relocate a subset of the defender’s assets rather than emplace new

assets. Moreover, the defender’s objective function in the proposed model is not only

coverage-focused, but it also integrates an exposure-based metric to directly counter

the intruder’s penetration-oriented objective.

Many such protection models have been extended via a trilevel mathematical pro-

gramming framework to account for an additional stage. Because such a framework

is beyond what is necessary for the current study, we refrain from providing a com-

plete review of this literature, but we refer an interested reader to the works of Brown
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et al. (2006), San Martin (2007), Smith et al. (2007), Yao et al. (2007), Alderson et al.

(2011), Liberatore et al. (2012), Yuan et al. (2014), and Lozano & Smith (2017). In a

parallel to the aforementioned bilevel models, the majority of these works model the

protection or fortification of sites, although a select few examine network components,

in general.

Although related in their two-player, game theoretic structure, several attacker-

defender models in the literature also adopt a bilevel mathematical programming

model (e.g., see Wood, 1993; Washburn & Wood, 1995; Cormican et al., 1998; Lim &

Smith, 2007; Lunday & Sherali, 2012). However, these attacker-focused frameworks

do not notably inform the current work that adopts a defender-attacker sequence of

decisions.

A plethora of multi-objective location modeling examples and applications exist in

the literature. Badri et al. (1998) proposed a multi-objective model for the location of

fire stations that incorporates 11 different strategic objectives. Raisanen & Whitaker

(2005) determined where to place antennae in a cellular wireless network to maximize

service while minimizing cost. Kulturel-Konak et al. (2007) considered a bi-objective

approach to solve the manufacturing facility relayout problem, minimizing material

handling costs and relayout costs. A model to determine the locations of park-and-

ride facilities is developed by Farhan & Murray (2008) to cover as much potential

demand as possible, while integrating new facilities as close as possible to major

roadways in an existing transit system.

A majority of facility relocation problems in the literature are applied to the

relocation of fire companies (Kolesar & Walker, 1974), ambulances (Brotcorne et al.,

2003; Gong & Batta, 2007), and emergency vehicles (Gendreau et al., 2006). Many of

these works have been extended from single-objective to multi-objective formulations

as well. Sathe & Miller-Hooks (2005) set forth a model to locate military units,
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police forces, and first responders, and to relocate idle units in response to an event,

maximizing secondary coverage and minimizing cost. Melachrinoudis & Min (2000)

presented a multi-objective application involving the relocation and phase-out of a

combined manufacturing plant and warehousing facility. The location and relocation

of mobile servers in a transportation network was considered by Berman & Rahnama

(1985), wherein the authors sought to balance coverage, response time, and relocation

costs. Recently, Paul et al. (2016) provided a multi-objective, maximal conditional

covering location problem applied to the relocation of hierarchical emergency response

facilities to respond to large-scale emergencies.

Traditional facility location models are focused on the coverage of specific demand

points within an area of interest and do not address the need to prevent the passage

of an adversary into friendly territory, which is the main concern for border security

applications. However, a related field of research pertaining to the location of sensors

in a Wireless Sensor Network (WSN) presents coverage models designed specifically

for such a purpose. One of the three main coverage problems discussed in WSNs is

barrier coverage (Cardei & Wu, 2006). In the context of WSNs, “a given belt region

is said to be k-barrier covered with a sensor network if all crossing paths through the

region are k-covered, where a crossing path is any path that crosses the width of the

region completely” (Kumar et al., 2005). A path is said to be k-covered if it intersects

at least k sensors’ sensing ranges (Huang & Tseng, 2005).

As the defender, the goal of a barrier coverage model is to locate a set of sensors S

such that some chosen measure of coverage is maximized. Alternatively, an attacker

seeks to interdict or locate areas of the region where the value of the coverage measure

is minimized. One such measure of coverage often used in WSN models is exposure.

First introduced by Meguerdichian et al. (2001), exposure can informally be thought

of as the “expected average ability of observing a target in the sensor field.” More
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formally, exposure is defined as “an integral of a sensing function that generally

depends on distance from sensors on a path from a starting point pS to destination

point pD” (Meguerdichian et al., 2001). Unlike some coverage metrics, the element

of time is important for exposure, since the ability of a sensor to detect a target can

improve as the sensing time (i.e., exposure) increases.

For a sensor s, the general sensing model S at an arbitrary point p is:

S(s, p) =
λ

[d(s, p)]K
, (49)

where d(s, p) is the Euclidean distance between the sensor s and the point p, and

positive constants λ and K are technology-dependent parameters (Meguerdichian

et al., 2001). The parameter λ can be thought of as the energy emitted by a target,

and K is an energy decay factor, typically ranging from 2 to 5 (Amaldi et al., 2008).

The sensing function represents the energy received by a sensor s from the target p.

Furthermore, the exposure of an object in the sensor field during the interval [t1, t2]

along the path p(t) is defined by Meguerdichian et al. (2001) as:

E(p(t), t1, t2) =

∫ t2

t1

I
(
F, p(t)

) ∣∣∣∣dp(t)dt

∣∣∣∣ dt, (50)

wherein the sensor field intensity I
(
F, p(t)

)
is implemented using an All-Sensor Field

Intensity model or a Closest-Sensor Field Intensity model, depending on the applica-

tion and types of sensors used. The All-Sensor Field Intensity model is a summation

of the sensing function values (49) from target p to all sensors in the sensor net-

work, defined as IA(F, p) =
∑n

i=1 S(si, p), whereas the Closest-Sensor Field Intensity

model only utilizes the sensing function value of the closest sensor to the target

(Meguerdichian et al., 2001).

Using the definition of exposure, Meguerdichian et al. (2001) presented an algo-
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rithm to find the minimal exposure path in a sensor network. The algorithm first

transforms the problem into a discrete domain utilizing a generalized grid approach

and then creates an edge-weighted graph. The algorithm then applies Dijkstra’s

single-source shortest-path algorithm (Dijkstra, 1959) to find the minimal exposure

path from the source point pS to the destination point pD. Meguerdichian et al.

(2001) also extended this initial work by developing a localized minimal exposure

path algorithm using Voronoi diagrams. We utilize the exposure coverage metric for

border security in this paper since we are concerned with maximizing the coverage of

an intruder’s path across a sensor network.

Numerous solution techniques exist to solve multi-objective optimization and fa-

cility relocation problems, ranging from the Weighted Sum and ε-constraint Methods

to genetic algorithms and other metaheuristics. The Weighted Sum Method involves

selecting weights for each objective that represent their relative importance and sub-

sequently optimizing the resulting weighted objective function (Ehrgott, 2006). How-

ever, prespecifying appropriate weights for each objective may be unrealistic, and

the objectives may be incommensurable (Sherali & Soyster, 1983). Detailed surveys

of systematic weight selection techniques are presented by Eckenrode (1965), Hobbs

(1980), and Hwang & Yoon (2012). Similarly, the Lexicographic Method requires

preemptively ranking the objectives in order of importance such that an incremental

improvement in a particular objective preempts arbitrarily large improvements in the

less important objectives (Sherali & Soyster, 1983). This method iteratively solves a

sequence of single-objective problems, optimizing one objective at a time and assign-

ing previously determined optimal objective function values as constraints (Ehrgott,

2006). Alternatively, one can develop preemptive weights for a single objective func-

tion that includes all objectives as shown by Sherali & Soyster (1983), but potential

scaling issues in practice may induce premature termination in a commercial solver,
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resulting in the identification of a solution that is not Pareto optimal. As such,

herein we utilize the ε-constraint Method, which bounds the respective values for all

but one of the objective function values while optimizing the remaining objective.

The respective bounds may be iteratively relaxed (w.l.o.g.) with the corresponding

identification of optimal solutions for each combination of bounds used to identify

non-inferior solutions (Mavrotas, 2009). Additionally, goal programming has been

applied to multi-objective optimization and facility relocation problems, such as in

research conducted by by Min (1988), Bhattacharya et al. (1993), and Badri (1999).

Goal programming requires specification of goals for each objective function, upon

which the total absolute deviation from the goals is typically minimized (Marler &

Arora, 2004). Lee & Olson (1999) provide a review of goal programming formulations

and applications.

3.1.2 Major Contributions & Organization.

This paper provides the only known exposure-based solution to the heterogeneous

sensor relocation problem, extending the work of Lessin et al. (2018a) to optimally

respond to the incapacitation and/or degradation of sensors and their respective ca-

pabilities within a sensor network. Our multi-objective formulation and subsequent

single-level reformulation captures system disruptions to the sensor network via model

parameters developed herein. Our model also provides the defender-focused flexibility

to specify minimum probabilities of protection for emplaced sensors and high-value

asset locations, and specific capabilities of sensors via probability-of-coverage func-

tions and transit speeds for each sensor type. Our modeling framework also allows

the defender to quantify qualitative differences in sensor preferences in terms of which

sensors the defender prefers to employ when interdicting an intruder.

Section 3.2 presents the bilevel mathematical formulation and a single-level refor-
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mulation that enables the identification of non-inferior solutions on the Pareto frontier

using a commercial solver. Section 3.3 provides a military air defense scenario as an

illustrative borer security application of the model, and it details the test instance

generation, presents solutions, and discusses the results of selected analyses. Section

3.4 summarizes our findings and suggests potential avenues for future research.

3.2 Model & Methodology

In this section, we present a mathematical programming formulation for the op-

timal relocation of sensors, following an attack. Given a specified set of surviving

assets and a location-and-asset-type degradation, we determine the optimal layout

that maximizes the minimum expected exposure of an intruder to prevent access

across a defended border region, minimizes the maximum sensor relocation time, and

minimizes the total number of sensors requiring relocation, while also ensuring ade-

quate preferential coverage of high-value asset locations and a subset of the located

sensors.

3.2.1 Assumptions.

We make several assumptions related to the defender’s objectives and sensors.

Regarding the objectives, we assume that, in addition to constructing a sensor network

to inhibit an adversary traversing the border region, we also seek to minimize the

maximum time required to relocate sensors, as well as minimize the number of sensors

requiring relocation. Additionally, we desire protection of a specified set of high-value

asset locations and a subset of the located sensors (e.g., the most valuable sensors).

A minimum probability of protection is specified for each high-value asset location of

interest and for each sensor type. We assume a given allocation of a heterogeneous

set of sensors. For testing purposes, our problem instance includes a combination of
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three types of sensors with varying capabilities.

In many instances, binary sensor coverage is unrealistic or unrepresentative of

actual sensor capabilities. Rather, a probability of coverage exists for targets located

at a given distance from a sensor location. As the distance from target to sensor

increases, the probability of coverage decreases. Instead of assuming binary sensor

coverage (i.e., covered/not covered), we implement a notional probability-of-coverage

function for each of the heterogeneous sensor types, as a function of the distance from

target to sensor.

Furthermore, we assume the defender’s incoming threat is a single target with a

known, constant velocity. Our model addresses a single intruder who will identify and

traverse a single path through the border region. This assumption is valid because,

although the identified optimal solution to our formulation identifies a single intrusion

path, any alternative path taken by an intruder will yield an expected exposure that

is the same or higher. Because our model seeks to identify the best relocation solution

for the defender’s sensors, we are not concerned with the specific path an intruder

will traverse, merely the least expected exposure an intruder can attain via any of

the paths. Within our model testing, we assume a constant velocity for the intruder.

A variable velocity could be considered when computing expected exposure times

for arc-sensor combinations, and the model set forth in Section ?? can be readily

parameterized for such a case. The consideration of a variable intruder velocity

would be appropriate to account for terrain (e.g., traveling faster when terrain does

not mask an intruder from sensors) but, for testing on a terrain-agnostic instance

herein, there is no compelling reason to consider it.

Moreover, we assume sensors that are attacked by the intruder are either com-

pletely incapacitated or their performance is degraded by a specified percentage. Re-

locating an incapacitated sensor will not recover its capability and is therefore not
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considered for relocation in our model. However, we allow the relocation of sensors

to sites of incapacitated sensors (i.e., a defender may move surviving sensors to sites

where other sensors were destroyed by the intruder). Degraded sensors experience

a proportional reduction in system effectiveness across the system’s operating range

but can be relocated to reduce the level of degradation.

To formulate instances of our model, we first tessellate the continuous planar

space representing the border region via regular hexagons for computational tractabil-

ity. Hexagonal tessellations are computationally easier to construct because they al-

low clustering in every direction and mitigate the directional restrictions to travel

vis-à-vis other regular shapes (Yousefi & Donohue, 2004). Although we choose a

uniformly-sized tessellation of the border region to evenly space the potential sensor

relocation positions, this approach is not strictly required for our model; unequally-

sized tessellations can be applied to vary the density of potential senor locations for

situation-specific reasons (e.g., to align with the effects of instance-specific terrain).

Given this discretization of the solution space, we restrict the location of sensors

to the centroid of each hexagon, whereas the edges of the hexagonal mesh comprise

the induced network over which an intruder may traverse, traveling from artificial

origination node o on the (w.l.o.g.) left side of the hexagonal grid to the artificial

destination node d on the right. Moreover, as a defender-focused model, we are not

concerned with the intruder’s actions outside the defended border region of interest.

We make no assumptions regarding the number or location of the intruder’s final

destination(s), other than their existence outside the defended border region by way

of the artificial destination node d.

Lastly, given the state of today’s intelligence capabilities, especially for various

nation-states in defense-related applications, it is reasonable to assume that an in-

truder knows the location of sensors that a defender has emplaced, as well as their
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capabilities. Likewise, a defender will have reasonable estimates for the capabilities

of intruding targets. Together, this level of assumed intelligence on adversaries en-

tails a perfect information game framework. With rapid advancements in persistent

and effective intelligence, surveillance, and reconnaissance, we can also assume that

adversaries will be aware of each other’s previous decisions. Subject to the strength

of this assumption, this framework constitutes a complete information game as well.

3.2.2 Model.

The following list of sets, parameters, and decision variables are used to formulate

the mathematical programming models considered herein.

Sets:

T : the set of all types of sensors available to locate, indexed by t.

S : the set of all sites where sensors can be located, indexed by s.

S̄ : the set of all sites where sensors are initially located (i.e.,

S̄ = {s | xts = 1,∀s ∈ S, t ∈ T}), indexed by s̄.

F : the set of all sites where high-value assets are located, indexed by f .

A : the set of arcs in the graph that are equidistant from adjacent potential

sensor sites s ∈ S, and over which an intruding target can traverse,

indexed by (i, j).

N : the set of all nodes at which arcs intersect and through which an

intruding target can traverse, indexed by n.

G = (N,A) : the graph over which an intruding target will traverse, as

induced by the set of potential sensor sites s ∈ S.
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Parameters:

λts : the percent effectiveness of a sensor of type t ∈ T located at site s ∈ S,

due to intruder countermeasures. For example, if a type t ∈ T sensor

located at site s ∈ S is degraded by 20%, then λts = 0.8.

wt : the exposure weight for sensor type t ∈ T .

estij : the exposure time of a target traversing arc (i, j) ∈ A to a sensor of

type t ∈ T located at site s ∈ S.

ds̄s : the Euclidean distance between sensor sites s̄ ∈ S̄ and s ∈ S.

rt : the transit speed of sensor type t ∈ T .

vts̄ : 1 if a type t ∈ T sensor is initially located at site s̄ ∈ S̄, and 0 otherwise.

zts̄ : 1 if the intruder incapacitates a type t ∈ T sensor initially located at

site s̄ ∈ S̄, and 0 otherwise.

Bt : the maximum number of type t ∈ T sensors the defender can locate.

ptsp : the probability that a sensor of type t ∈ T located at site s ∈ S can

cover the point p.

Cf : the minimum probability of coverage required for each high-value

asset location f ∈ F .

Ct: the minimum probability of coverage required for each located sensor

of type t ∈ T .

Decision Variables:

xts̄s : 1 if the defender relocates a type t ∈ T sensor from site s̄ ∈ S̄ to site

s ∈ S, and 0 otherwise.
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yij : 1 if the intruder traverses arc (i, j) ∈ A, and 0 otherwise.

ψmax : the maximum time (in hrs) required to complete sensor relocations.

Given our assumptions, the game theoretic view of this problem is that of a

two-player, two-stage, zero-sum game with perfect and complete information. In

the upper-level problem, the defender determines the locations of a set of heteroge-

neous sensors, given an intruder-induced incapacitation and degradation of a subset

of the initially located sensors. Observing this decision, the intruder reacts in the

lower-level problem by selecting arcs to traverse the region. The defender seeks to

maximize the total expected weighted exposure of the intruder’s least exposed path

across the defended border region, minimize the maximum sensor relocation time,

and minimize the total number of sensors requiring relocation. The defender seeks to

minimize the total expected weighted exposure of the least exposed path. Leverag-

ing the aforementioned notation, we formulate the multi-objective, bilevel program

Multi-Objective Sensor Relocation Problem (MOSRP), alternatively denoted

Problem P1 herein, corresponding to this Stackelberg game as follows:

P1: max
x,ψmax

f(x,y, ψmax) =
(
f1(x,y),−f2(ψmax),−f3(x)

)
(51)

s.t. f1(x,y) =
∑

(i,j)∈A

(∑
s̄∈S̄

∑
s∈S

∑
t∈T

λtsw
testijx

t
s̄s

)
yij, (52)

f2(ψmax) = ψmax, (53)

f3(x) =
∑
s̄∈S̄

∑
s∈S\{s̄}

∑
t∈T

xts̄s, (54)

ds̄s
rt
xts̄s ≤ ψmax, ∀s̄ ∈ S̄, s ∈ S, t ∈ T, (55)∑

s∈S

xts̄s = vts̄ − zts̄,∀s̄ ∈ S̄, t ∈ T, (56)

∑
s̄∈S̄

∑
s∈S

xts̄s = Bt −
∑
s̄∈S̄

zts̄, ∀t ∈ T, (57)
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∑
s̄∈S̄

∑
t∈T

xts̄s ≤ 1, ∀s ∈ S, (58)

∑
s̄∈S̄

∑
s∈S

∑
t∈T

ln
(

1− λtsptsf
)
xts̄s ≤ ln

(
1− Cf

)
, ∀f ∈ F, (59)

∑
s̄∈S̄

∑
s∈S\{ŝ}

∑
t∈T

ln
(

1− λtsptsŝ
)
xts̄s ≤ ln

(
1− Ct

)
xts̄ŝ, ∀ŝ ∈ S, t ∈ T, (60)

xts̄s ∈ {0, 1}, ∀s̄ ∈ S̄, s ∈ S, t ∈ T, (61)

where y represents the optimal solution to the lower-level problem:

min
y

f1(x,y) (62)

s.t.
∑

j:(i,j)∈A

yij −
∑

j:(j,i)∈A

yji =


1, i = o,

−1, i = d,

0, i = N \ {o, d},

∀i ∈ N, (63)

yij ≥ 0, ∀(i, j) ∈ A. (64)

The objective function (51) maximizes the total expected weighted exposure of the

minimal exposure path (52), minimizes the maximum sensor relocation time (53), and

minimizes the total number of relocated sensors (54). The expected weighted exposure

of a target traversing a given arc (i, j) ∈ A to sensors of type t ∈ T relocated (i.e.,

xts̄s = 1) from site s̄ ∈ S̄ to site s ∈ S is represented by
∑̄
s∈S̄

∑
s∈S

∑
t∈T

λtsw
testijx

t
s̄s, where

the λts-parameters account for the degradation of sensor capability due to intruder

countermeasures. A sensor of type t ∈ T located at site s ∈ S experiences a (1 −

λts)×100% system degradation, which proportionally reduces the system effectiveness

across a sensor’s operational range.

The exposure weights wt may be parameterized to account for qualitative differ-

ences in sensor effectiveness not captured by the quantitative differences inherent in
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the sensor probability functions, ptsp. Qualitative differences in sensor performance

may result from factors such as insufficient sensor operator training or operational

technical complexity of a given sensor type. For example, the defender could specify

exposure weights of 1.0, 0.5, and 0.2 for a model having three different sensor types,

thereby affecting a relative preference over the set of sensors within the model formu-

lation. Under this interpretation, the defender is half as effective at employing the

second type of sensor against a target as compared to the first sensor type.

Constraint (55) provides lower bounds on the maximum relocation time, ψmax.

Constraint (56) ensures we can only relocate sensors that are initially located and

not incapacitated. Constraint (57) determines the number of each type of sensor the

defender can relocate. Constraint (58) prevents more than one sensor from being

relocated to the same site. Constraint (59) ensures that all high-value asset locations

receive the required coverage. The form of Constraint (59) results from a logarithmic

transformation of the constraint:

1−
∏
s∈S

∏
t∈T

(
1− λtsptsf

)xts̄s
≥ Cf , ∀f ∈ F,

wherein independence is assumed among the probabilities of coverage, ptsf , over sensor

locations, s ∈ S, and sensor types, t ∈ T . (Implied is the assumption that Cf < 1,

which is appropriate for this probabilistic metric wherein certain coverage is not

attainable.) Likewise, Constraint (60) provides for the coverage of emplaced sensors

by other sensors, as may be required by specific applications to protect valuable

sensors. That is, for every site ŝ ∈ S, if a defender relocates a sensor of type t ∈ T

from site s̄ ∈ S̄ to site ŝ ∈ S (i.e., xts̄ŝ = 1), Constraint (60) requires a specified level

of coverage, Ct, via the effects of other sensors the defender chooses to locate (i.e.,

xts̄s,∀s̄ ∈ S̄, s ∈ S \ {ŝ}). In contrast, if a defender does not relocate a sensor of

type t ∈ T from site s̄ ∈ S̄ to site ŝ ∈ S (i.e., xts̄ŝ = 0), then the constraint induces
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no coverage requirement (i.e., an upper bound on the constraint that corresponds to

Ct = 0). Constraint (61) enforces binary restrictions on the sensor relocation decision

variables. The lower-level objective function (62) seeks to minimize the total expected

weighted exposure of the intruder’s minimal exposure path (52). Constraint (63)

induces the flow balance constraints for the path from the intruder’s point of origin,

o, to destination point, d. Lastly, Constraint (64) is the non-negativity constraint

associated with the minimal exposure path variables.

3.2.3 Methodology.

Instead of solving an MOSRP instance using a weighted sum or lexicographic

approach, we utilize the ε-constraint method to identify a set of non-inferior solutions.

We first reformulate Problem P1 (i.e., MOSRP) to Problem P2 as follows:

P2: max
x,ψmax

min
y

∑
(i,j)∈A

(∑
s̄∈S̄

∑
s∈S

∑
t∈T

λtsw
testijx

t
s̄s

)
yij (65)

s.t. ψmax ≤ ε2, (66)∑
s̄∈S̄

∑
s∈S\{s̄}

∑
t∈T

xts̄s ≤ ε3, (67)

Constraints (55)− (61) and (63)− (64).

In this reformulation, we replaced the objective function (51) with the defender

and intruder objectives of maximizing and minimizing the total expected weighted

exposure of the minimal exposure path (52), respectively. We utilize Constraint (66)

to bound our second objective, the minimization of the maximum sensor relocation

time, to be no more than ε2, a maximum relocation time. Likewise, Constraint (67)

bounds our third objective, the minimization of the total number of sensor relocations,

to be no more than ε3, an allowed number of relocations.
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Similar to Wood (1993), Colson et al. (2007), Amaldi et al. (2008), and Lessin

et al. (2018a), we reformulate the bilevel Problem P2 by replacing the lower-level

problem with its dual formulation. Treating the upper-level variables xts̄s as parame-

ters, the lower-level minimization problem becomes a shortest path problem in which

the expected weighted exposure objective is minimized, subject to Constraints (63)

and (64). Replacing the primal, lower-level problem with its dual formulation as

represented in Equations (68)-(71),

max
π

πd − πo (68)

s.t. − πi + πj ≤
∑
s̄∈S̄

∑
s∈S

∑
t∈T

λtsw
testijx

t
s̄s, ∀(i, j) ∈ A, (69)

πo = 0, (70)

πi unrestricted,∀i ∈ N \ {o}, (71)

where πi is the dual variable associated with the ith Constraint (63), we obtain the

following single-level reformulation of Problem P2, denoted Problem P3:

P3: max
x,ψmax,π

πd − πo (72)

s.t. ψmax ≤ ε2, (73)∑
s̄∈S̄

∑
s∈S\{s̄}

∑
t∈T

xts̄s ≤ ε3, (74)

ds̄s
rt
xts̄s ≤ ψmax,∀s̄ ∈ S̄, s ∈ S, t ∈ T, (75)∑

s∈S

xts̄s = vts̄ − zts̄,∀s̄ ∈ S̄, t ∈ T, (76)

∑
s̄∈S̄

∑
s∈S

xts̄s = Bt −
∑
s̄∈S̄

zts̄, ∀t ∈ T, (77)

∑
s̄∈S̄

∑
t∈T

xts̄s ≤ 1, ∀s ∈ S, (78)
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∑
s̄∈S̄

∑
s∈S

∑
t∈T

ln
(

1− λtsptsf
)
xts̄s ≤ ln

(
1− Cf

)
, ∀f ∈ F, (79)

∑
s̄∈S̄

∑
s∈S\{ŝ}

∑
t∈T

ln
(

1− λtsptsŝ
)
xts̄s ≤ ln

(
1− Ct

)
xts̄ŝ, ∀ŝ ∈ S, t ∈ T,

(80)

− πi + πj ≤
∑
s̄∈S̄

∑
s∈S

∑
t∈T

λtsw
testijx

t
s̄s, ∀(i, j) ∈ A, (81)

πo = 0, (82)

πi unrestricted,∀i ∈ N \ {o}, (83)

xts̄s ∈ {0, 1}, ∀s̄ ∈ S̄, s ∈ S, t ∈ T. (84)

Problem P3 provides a baseline, single-level model to determine the relocation of

a heterogeneous set of surviving sensors following an attack to maximize the exposure

of the intruder’s least exposed path, minimize the maximum time required for any

sensor relocation, and minimize the number of sensor relocations. We initially set

ε2 = max
s̄∈S̄,s∈S

{ds̄s}/min
t∈T
{rt} and ε3 =

∑̄
s∈S̄

∑
t∈T

(vts̄ − zts̄) as upper bounds on the second

and third objectives, respectively. Given these values for ε2 and ε3, we solve Problem

P3 to determine the maximum minimal exposure solution. We can then set ε2 and ε3

to the values from the initial optimal solution to Problem P3 to tighten Constraints

(73) and (74). By iteratively decreasing the value of ε2 and/or ε3 and re-solving

Problem P3, we develop a set of non-inferior solutions on the Pareto frontier that

identify the trade-offs between the competing objectives of maximizing the intruder’s

minimal exposure, minimizing the maximum sensor relocation time, and minimizing

the total number of sensor relocations.
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3.3 Testing, Results, & Analysis

We explore the Pareto frontier of efficient solutions by iteratively solving the re-

formulated Problem P3 for an illustrative instance of Problem P1 on a 3.2 GHz PC

with 6 GB of RAM, using the commercial solver IBM ILOG CPLEX 12.7. The fol-

lowing subsections present a selected border security application, discuss test instance

generation, and provide numerical results of the testing.

3.3.1 Representative Scenario for Air Defense of a Border Region.

We demonstrate the applicability of the MOSRP (51)-(64) formulation and our

solution approach to the border security problem with an illustrative air defense test

instance. This application is representative of the general problem class in that a

decision maker has a set of sensors (i.e., air defense batteries), some of which have

been incapacitated (i.e., rendered inert by kinetic or non-kinetic attack) or degraded

(e.g., made less capable due to electronic countermeasures), and wherein the decision

maker seeks to relocate the sensors to optimize multiple, competing objectives, at

least one of which relates directly to the goal of the intruder.

Adopting the viewpoint of a defender, we seek to relocate surviving ground-based

assets of an Integrated Air Defense System (IADS) following the incapacitation and

degradation of a subset of the air defense assets. We assume a given allocation of

long-range (e.g., SA-21 Growler), medium-range (e.g., SA-22 Greyhound), and short-

range (e.g., SA-24 Grinch) Surface to Air Missile (SAM) batteries (Foss & O’Halloran,

2014). Although these weapons do not represent the full range of SAM technologies a

defender could encounter, they are representative of the various threats that countries

employing antiaccess/area-denial (A2/AD) strategies are likely to possess and employ

(Schmidt, 2016).

Given a 600 km long by 520 km wide border region with an initial IADS layout
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consisting of two long-range, five medium-range, and five short-range SAM batteries

(i.e., Bt = [2, 5, 5]), we seek to optimally relocate surviving air defense assets following

the incapacitation of two medium-range and one short-range SAM batteries, as well

as a single degradation attack resulting in a 10% decrease in system effectiveness for

the two long-range assets. We require protection of three high-value assets located

at F = {(500, 100), (350, 400), (500, 550)}, with minimum probabilities of protection

of Cf = [0.75, 0.5, 0.5], respectively. We also require the long-range SAM batteries to

be protected with a minimum probability of 0.5 (i.e., Ct = [0.5, 0, 0]). Additionally,

we assume transit speeds of rt = [50, 70, 90] km/hr for the long-range, medium-range,

and short-range SAM batteries, respectively. For this baseline instance, we further

assume equal exposure weights (i.e., wt = [1, 1, 1]), an intrusion aircraft velocity of

1,800 km/hr (i.e., |v| = 1, 800 km/hr), and a 30 km spacing between potential SAM

battery locations.

We also specify a probability-of-kill function for each SAM battery type, based

on representative SAM battery capabilities found in Foss & O’Halloran (2014). The

construction of the probability-of-kill curves for instances herein is notional but rep-

resentative; we utilized a logit model for the probability of kill as a function of the

range, assuming a probability of 0.99 for a range of zero and a probability of between

0.04 and 0.11 at the maximum effective range (rmax) (Foss & O’Halloran, 2014). To

artificially induce different interceptor performance, we specified a probability of 0.55

at 65% of rmax for the long-range SAM batteries, a probability of 0.2 at 90% of rmax

for the medium-range SAM batteries, and a probability of 0.5 at 60% of rmax for

the short-range SAM batteries. The probability-of-kill function for each SAM bat-

tery type is depicted in Figure 5. These functions are used to calculate the exposure

values for each arc resulting from the hexagonal tessellation of the border region.

In addition to the aforementioned SAM battery types, the long-range assets re-
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(a) Long-range SAM battery (b) Medium-range SAM battery

(c) Short-range SAM battery

Figure 5. Probability-of-kill curve for each SAM battery type

quire separate targeting and tracking radars to engage a target. For this illustrative

scenario, we assume that each SAM battery possesses the required radar coverage to

engage intruding targets. We make this assumption to avoid an increase in model

complexity necessary to include the radar location decisions within the current frame-

work. Alternatively, the radar location problem could be solved as a separate covering

location problem (or relocation problem, as appropriate); given a SAM battery relo-

cation solution from our formulation, one could subsequently solve a radar location

problem to determine the optimal radar locations.

Furthermore, we assume for this study the defender’s incoming threat consists only

of aircraft, as opposed to a wide range of threats not limited to, but including, cruise

missiles and ballistic missiles. This assumption determines the coverage capabilities

for each SAM battery instead of requiring the model to account for a myriad of

target types. This assumption is made to demonstrate a solution for an illustrative

scenario, but it is appropriate for two reasons. First, a single intruder is considered
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as representative of a strike package, a technique for organizing multiple attacking

aircraft in a single sortie (e.g., see McLemore, 2010). Second, any alternative path

taken by an intruder will yield an exposure that is not less than the identified minimal

exposure path.

Moreover, we assume IADS assets that are attacked by the intruder are either

completely incapacitated via kinetic or non-kinetic effects or degraded due to effects

such as, but not limited to, electronic warfare. Relocating an incapacitated asset will

not recover its capability and is therefore not considered for relocation in our model.

However, we allow the relocation of surviving assets to sites of incapacitated assets.

Degraded assets experience a proportional reduction in system effectiveness across

the system’s operating range.

The adoption of a two-dimensional network for aircraft traversal implicitly as-

sumes an intruder flies below (or at) a given altitude ceiling. Such an assumption is

reasonable if either (a) the intruder utilizes such tactics within their doctrinal frame-

work or (b) if the ground-based air defense assets are complemented within the IADS

by interceptor aircraft that operate at high altitudes. Given the precepts of Energy-

Maneuverability Theory (Boyd et al., 1966), the doctrinal employment of interceptors

conducting Combat Air Patrols (CAPs) requires the aircraft to patrol at (and begin

maneuvers from) relatively high altitudes, reinforcing the division of effort among air-

and ground-based assets within an IADS by altitude and, hence, the validity of the

two-dimensional modeling assumption.

Test instances for our analysis were generated by first constructing a hexagonal

grid with potential sensor (i.e., SAM battery) locations positioned at the center of each

hexagon. Neighboring hexagon centers are located at a defender-specified distance

(in km) from each other. Herein, we adopt a distance of 30 km for initial testing in

Section 3.3.2. The granularity of grid construction is easily adapted to suit a given
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situation or modeler’s desired fidelity.

The intruder’s goal is to traverse the border region from an artificial origination

node, o, on the (w.l.o.g.) Western side of the border region to an artificial destination

node, d, on the (w.l.o.g.) Eastern side of the border region, where these nodes are

connected by arcs to the leftmost and rightmost hexagon arc nodes, respectively.

3.3.2 Results.

Figure 6 depicts the initial IADS layout for this instance found by solving the

Maximin Exposure Problem (MmEP) as presented by Lessin et al. (2018a).

Figure 6. Initial IADS layout

Considering the initial IADS layout, we determine which assets to incapacitate

and where to locate specific degradation effects, based on SAM battery type. For

this study, we select three IADS assets (two medium-range and one short-range SAM
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battery) in the Southeast corner of the border region to incapacitate. Additionally,

a representative degradation event (e.g., electronic warfare) is created to affect the

performance of long-range SAM batteries located within the shaded hexagons near

the center of the border region, ranging from 40% (i.e., assets located at the center

of the affected area) to 10% degradation in capability (e.g., the two long-range assets

located at the outermost ring of the affected area). Figure 7 shows the incapacitated

assets and degradation locations for the initial IADS layout.

Figure 7. Initial IADS layout before asset relocations showing incapacitated and de-
graded assets

Assuming no assets are relocated, the incapacitation and degradation of the af-

fected SAM batteries decreases the intruder’s expected minimal exposure from 3.5318

minutes to 2.1647 minutes, representing a 38.7% reduction in exposure to the IADS

assets accumulated during traversal of the minimal exposure path. However, this so-

lution is no longer feasible for the defender because the long-range asset degradation
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reduces the probability of coverage for the long-range assets to 0.4676, which is less

than the required coverage probability of 0.5 (i.e., Ct = [0.5, 0, 0]).

We can determine an upper bound on the intruder’s minimal exposure following

the relocation of surviving IADS assets by solving Problem P3, placing no restrictions

on the maximum relocation time or the number of assets allowed to relocate (i.e., ε2

and ε3 are unrestricted, respectively). This relocation solution is depicted in Figure

8 and yields a minimal exposure of 2.4939 minutes, allowing the defender to recover

up to 24.1% of the minimal exposure lost due to the intruder’s incapacitation and

degradation efforts.

Figure 8. Multi-Objective Sensor Relocation Problem solution with ε2, ε3 unrestricted

Note that, at optimality, this solution requires f2 = 8.6 hours and f3 = 8 asset

relocations for the defender to accomplish. However, this asset relocation solution

may be impractical due to operational time constraints or physical restrictions on
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IADS asset mobility. Therefore, it is important to examine the trade-offs between

the competing objectives and to identify more practical relocation options.

Given that a defender may need to accomplish all asset relocations in a limited

amount of time (e.g., ε2 ≤ 4 hours) or may not be able to relocate as many surviving

assets (i.e, ε3 ≤ 9), we analyzed the defender’s maximization of the intruder’s minimal

exposure over numerous (ε2, ε3)-combinations. Specifically, we solved Problem P3

with ε2 = {1, 1.5, 2, ..., 4} hours and ε3 = {1, 2, ..., 9} asset relocations, with results

depicted in Figure 9, to generate a subset of operationally feasible solutions for the

(ε2, ε3)-combinations, among which a subset of non-inferior solutions can be identified

(i.e., denoted Points A-E in Figures 9 and 10).

Figure 9. Optimal minimal exposure values for discretized (ε2, ε3)-combinations

We note that, hereafter, solutions denoted as non-inferior or Pareto optimal are

only assured to hold this property within the granularity of the (ε2, ε3)-values exam-
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ined for the solution space. It is possible that a higher fidelity examination of the

(ε2, ε3)-values will identify the existence of additional non-inferior solutions and/or

solutions that (weakly) dominate those identified as Pareto optimal within the con-

text of this examination. However, a higher resolution mapping is not practical for

the current application, the defense against an aerial threat, as the solutions de-

picted in Figures 9 and 10 required approximately 39 hours of CPU time to compute.

Such a defense plan is typically conducted over several days or weeks as part of the

contingency planning process prior to adversarial engagements. Accordingly, the ap-

proximately 39 hours required to identify the 63 solutions over a realistic solution set

of values for both ε2 and ε3 and to explore the Pareto frontiers depicted in Figures 9

and 10 is not computationally prohibitive for the application of interest. Moreover,

should computational effort be of concern, upper bounds on ε2 and ε3 may be further

constrained, resulting in the need to solve fewer instances for the same discrete step

size of the bounded objectives (i.e., f2 and f3). Alternatively, a larger step size for

one or both of the objectives’ bounds may suffice; depending on the application of

interest, a single, operationally-acceptable upper bound on ε3 may be justified and af-

fixed, requiring an examination of only a two-dimensional Pareto front corresponding

to a set of ε2-values.

Alternatively, we can examine the relocation solution for each (ε2, ε3)-combination

in terms of the percentage of recoverable minimal exposure, as illustrated in Figure

10. These values represent the percentage of the maximum recoverable minimal expo-

sure (i.e., 2.4939 minutes) the defender can achieve for a given (ε2, ε3)-combination,

where the baseline recovery is the optimal objective value associated with the solution

resulting from the minimum feasible relocation time (i.e., f2 = 0.6 hours) and the

minimum feasible number of relocated assets (i.e., f3 = 1 relocation); this baseline

recovery is represented by the (ε2, ε3) = (1, 1) relocation solution, denoted as Point A
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in Figures 9 and 10, which results in a minimal expected exposure of 2.1733 minutes,

as depicted in Figure 11.

Figure 10. Percentage of maximum recoverable minimal exposure achievable for (ε2, ε3)-
combinations

As the bounds on the maximum asset relocation time (ε2) and/or the number of

asset relocations (ε3) increase, the intruder’s minimal exposure and the defender’s

percentage of maximum recoverable minimal exposure increases, as seen in Figures 9

and 10, respectively. This behavior highlights the conflicting nature of the defender’s

objectives. As the defender, we can use either of these plots to make an informed

asset relocation decision. Specifically, by inspecting Figure 9 we see that the five solu-

tions represented by the (ε2, ε3)-combinations (1, 1), (2, 3), (2, 4), (2.5, 4), and (3, 4),

and respectively labeled Points A-E, are the Pareto optimal solutions for this test

instance, with solution-specific results presented in Table 5. Considering the opera-

tional constraints on relocation time and the number of asset relocations, the Pareto
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optimal solutions in Table 5 represent the defender’s best response to the intruder’s

incapacitation and degradation efforts, given the chosen ε2 discretization.

Table 5. Pareto optimal solutions

Minimal Percentage of
Point (ε2,ε3) Exposure Minimal Exposure

(minutes) Recovered (%)

A (1,1) 2.1733 N/A*
B (2,3) 2.3207 46.0
C (2,4) 2.3608 58.5
D (2.5,4) 2.4637 90.6
E (3,4) 2.4923 99.5

*Minimum feasible relocation solution

Note that for a given pair of Pareto optimal solutions (ε2, ε3) = (a, b) and (ε2, ε3) =

(c, d) where a < c or b < d, it is not necessarily true that (a, b) ⊂ (c, d). That is,

the asset relocations associated with solution (a, b) may not be a subset of the asset

relocations for solution (c, d). For example, the long-range asset relocation in Figure

11 for Pareto optimal solution Point A is not included in the asset relocations for

Pareto optimal solution Point D in Figure 12. Therefore, one cannot consider a

subset of Pareto optimal solutions (e.g., with a < c or b < d) as a series of solutions

to be implemented in turn. Rather, a defender must select one solution appropriate

for a reasonable (ε2, ε3)-combination, given the tactical situation.

Although the unrestricted (ε2, ε3)-solution depicted in Figure 8 results in the max-

imum expected exposure for the intruder, the defender may decide to implement one

of the alternative Pareto optimal solutions. For example, during active combat, the

defender may need to reposition unaffected air defense batteries as fast as possible to

satisfy the minimum coverage requirements of the high-value assets and long-range

SAM batteries. In this situation, the defender would implement the (ε2, ε3) = (1, 1)

relocation solution Point A to recover a feasible defense posture requiring only one,

36-minute, long-range SAM battery relocation. However, if more time is available
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Figure 11. Pareto optimal relocation solution with (ε2, ε3) = (1, 1)

or a higher level of coverage is desired, the defender may choose to implement the

(ε2, ε3) = (2.5, 4) relocation solution Point D for example, which requires f2 = 2.14

hours and f3 = 4 relocations and results in a minimal exposure of 2.4637 minutes.

This solution (shown in Figure 12) achieves 90.6% of the maximum recoverable min-

imal exposure time with a 75.1% reduction in relocation time and a 50.0% reduction

in the number of assets relocated.

However, since the defender seeks to minimize the number of relocations, the

(ε2, ε3) = (2, 3) Pareto optimal relocation solution Point B offers the largest increase

in the intruder’s minimal exposure per unit increase in allowable relocation time, as

evidenced in Table 5 and Figure 10.

It is worth noting that practical instances may exist wherein the defender is re-

stricted to a specific (ε2, ε3)-combination that results in no feasible relocation solution

76



Figure 12. Pareto optimal relocation solution with (ε2, ε3) = (2.5, 4)

because the defender may be unable to provide the minimum required coverage for

either SAM batteries or high-value assets (i.e., Ct or Cf , respectively). In such in-

stances, the defender has several recourses within the MOSRP modeling framework,

to include incrementally reducing the infeasible minimum required coverage level until

a feasible solution can be identified or removing the coverage requirement altogether.

The resulting solutions, although not satisfying the defender’s initial coverage require-

ments, would yield feasible relocation solutions for realistic, operationally-constrained

scenarios.

3.3.3 Sensitivity Analysis.

Anecdotal testing found that the required computational effort to solve a single

instance of Problem P3 for the illustrative scenario was most sensitive to the granu-
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larity of the tessellation imposed upon the border region. Given this research requires

the solution of multiple instances via the ε-constraint Method to explore the Pareto

frontier for a single scenario, we examine herein the effect of tessellation granular-

ity on the required computational effort to solve for the Pareto frontier in Figures 9

and 10, for each of four potential SAM battery spacing levels (i.e., 25, 30, 40, and

50 km). Reported in Table 6 is the effect of SAM battery spacing on the problem

size for an instance of Problem P3 and the required computation time for the en-

tire Pareto frontier, consisting of 63 instances of Problem P3, as determined by the

(ε2, ε3)-discretization adopted in Figures 9 and 10.

Table 6. Effect of potential SAM battery location spacing on instance size and compu-
tation time.

Distance Between Number of Number Number of Number Pareto Frontier
Potential SAM Potential SAM of Decision of Computation
Batteries (km) Battery Locations Arcs Variables Constraints Time (min)

25 600 1,875 23,285 49,683 10,011.6
30 420 1,323 16,005 34,171 2,374.8
40 210 675 8,445 18,043 319.1
50 156 507 6,389 13,659 132.1

Figure 13 depicts the effect of SAM battery spacing on the number of decision

variables and constraints for an instance of Problem P3 for the illustrative scenario

presented in Section 3.3.1. As the distance between potential SAM battery locations

decreases, the numbers of decision variables and constraints for an instance of Problem

P3 both increase exponentially.

Several instance parameters notably affect the respective numbers of decision vari-

ables and constraints for an instance of Problem P3. The number of arcs (i.e., |A|) in

the induced hexagonal tessellation, G, as it affects the number of constraints in (81),

is linearly bounded by the number of potential sensor locations (i.e., |S|). More specif-

ically, the regular hexagonal tessellation yields lim
|S|→1

|A| = 6|S| and lim
|S|→∞

|A| = 3|S|.

More notable is the effect of |S| on the size of the instance, as manifest both via the
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Figure 13. Effect of SAM battery spacing level on problem size.

correspondingly indexed decision variables and several constraints within Problem

P3.

However, the magnitude of |S| results from the granularity adopted for the tes-

sellation. Let dhex and ABR respectively denote the distance between centroids of

adjacent hexagons (i.e., hexagons sharing a side) and the area of the defended border

region. For the corresponding area of
(√

3 d2
hex

)
/2 for each identical hexagon, the

border region requires a minimum of

LBhex =

(
2
√

3

3

)
ABR
d2
hex

, (85)

hexagons in the tessellation (i.e., |S|). Figure 14 illustrates the effect of both dhex and

ABR on LBhex over a range of values that includes the scenario examined in Section

3.3.1.

More readily visible in Figure 14 than depicted via Equation (85) is the contrast

between the linear effect of ABR and the greater-than-linear effect of dhex on the lower

bound on |S|. The latter relationship explains the rapid increase in Pareto frontier

computation times reported in Table 6. Therefore, the defender must be mindful

when selecting the sensor spacing level, especially for instances in which computation
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Figure 14. Effect of dhex and ABR on LBhex

time is of utmost importance.

3.4 Conclusions & Future Work

Given an initial sensor network and two subsets of sensors that have been inca-

pacitated or degraded, we demonstrated the ability to formulate and solve a multi-

objective, bilevel optimization model to relocate surviving sensors to respectively

maximize an intruders minimal expected exposure to traverse a defended border re-

gion, minimize the maximum sensor relocation time, and minimize the total number

of sensors requiring relocation. Adopting the ε-constraint method, we developed a

single-level reformulation that enabled the identification of non-inferior solutions on

the Pareto frontier and, consequently, identified trade-offs between the competing

objectives. Our formulation also allows the defender to specify minimum coverage

requirements for high-value asset locations and emplaced sensors. Additionally, our

modeling framework provides the defender with the ability to quantify qualitative

differences in sensor preferences in terms of which sensors the defender prefers to

employ when interdicting an intruder. We showcased our formulation and solution

approach via a representative air defense asset relocation instance.

80



Of note, our model assumes that the intruder threat corresponds to an attempt

to penetrate the border region that is deliberate rather than persistent. To wit, the

defender seeks to maximize an intruder’s minimum expected exposure upon the com-

pletion of sensor relocation, while minimizing both the number of relocations and the

time required to complete the relocations. The degradation in sensor coverage dur-

ing the relocations is not examined, as our solution approach presumes the defender

can make an assumption about the maximum time until an intrusion attempt may

occur, during which a degradation to sensor coverage is acceptable. Should a reader

seek to apply the model to scenarios wherein degraded coverage is of concern, an

iterative application of our model with small bounds on the allowable time for reloca-

tions can generate a suitable sequence of successive asset relocations. Alternatively,

a temporal relocation model could be adapted to enable the defender to implement

time-phased sensor relocation strategies. Compared to an iterative application of

the model examined in this study, a temporal model would seek to identify a global

optimal solution of phased relocations, yet may be computationally cumbersome for

practical implementation.

Future research could be conducted to increase model fidelity by accounting for the

placement of hierarchical sensors and by considering multiple intruder targets with

varying capabilities. We could also incorporate location-specific sensor probability-

of-coverage functions, thereby accounting for effects such as terrain and altitude.

Alternative intruder path selection metrics could also be considered to examine model

robustness. Lastly, this model, combined with an effective solution methodology,

could be embedded within a two-player, three-stage game, wherein an attacker seeks

to identify effective interdiction and degradation efforts, respectively, to predict a

defender’s likely sensor relocation responses with the intent of penetrating the border

region. More specifically, for a given sensor layout, the intruder would first select a
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bounded number of sensors to incapacitate and locations for a fixed number of sensor

degradation effects. Observing the intruder’s decision, the defender would then react

in the second stage by determining the optimal relocation of the surviving sensors

and, observing the defender’s relocation decision, the intruder would subsequently

react in the third stage by selecting the optimal intrusion path.
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IV. A Multi-objective, Trilevel Sensor Network Intrusion
Problem

4.1 Introduction

We live in an age of heightened security in both the physical and virtual world

(Wong, 2016; Dennison et al., 2018; Jansen, 2018). Existing networks have imple-

mented increasingly advanced methods for detecting intrusive and illicit attacks that

threaten network integrity (Alles et al., 2016; Ashford, 2016). Construction of new

networks focuses heavily on secure network design to prevent or mitigate network

disruptions (Bodeau & Graubart, 2017; Crosman, 2018; James, 2018). Such disrup-

tions can be intentional (e.g., terrorist or cyber attacks) or unintentional (e.g., power

outages due to severe weather). Given these trends, attackers have been forced to

reassess their strategies to decrease their likelihood of detection and increase their

probability of achieving a successful attack. This research focuses on the attack of

defended sensor networks, from the attacker’s perspective.

To decrease the probability of detection, an intelligent attacker must carefully

examine and understand the physical (or virtual) layout of a defender’s sensors and

their relationship to the attacker’s available penetration paths through the defended

network or region. However, an attacker may not be limited to simple observation

of a defended network prior to identifying a path to traverse. Rather, an attacker

may have the ability to conduct an attack on some or all of the defender’s sensors as

well as regions within the defended network to decrease the likelihood of detection

and consequently increase the probability of successful network penetration. To wit,

an attacker may be capable of incapacitating (i.e., physically destroying or rendering

completely ineffective) or degrading (i.e., decreasing the effectiveness) some subset of

the defender’s sensors.
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Sensor networks are increasingly interconnected. With information regarding indi-

vidual sensor health and status readily available across a network through an Internet-

of-Things (IoT) approach, defenders now have the ability to quickly react to changes

within the network. Therefore, if sensors are destroyed or degraded, a defender may

have near-instant knowledge of such events and be able to react to improve the net-

work’s security. For example, in a physical network, a defender may choose to relocate

sensors to more advantageous locations.

However, knowledge of network changes is not necessarily limited to the defender.

Technological advances in adversarial surveillance and reconnaissance may allow an

attacker to observe the defender’s adjustments to the sensor network. This level

of intelligence allows the attacker to make a more informed decision regarding the

ultimate attack strategy.

This paper provides a solution method for the sensor network intrusion problem

to respectively incapacitate a subset of the defender’s sensors and degrade a sub-

set of the defender’s network, after which the surviving sensors may be relocated,

and the attacker subsequently determines the optimal intrusion path through the de-

fender’s sensor network. We address this problem via the formulation and solution

of a trilevel, multi-objective optimization model utilizing new heuristics developed

herein. Given an initial layout of heterogeneous sensors, the attacker first incapaci-

tates (i.e., interdicts) a subset of sensors and degrades (i.e., partially interdicts) the

effectiveness of another subset of sensors, wherein an incapacitation is enduring for an

affected sensor whereas a degradation is limited to a geographic region and is based

on sensor type (i.e., moving an incapacitated sensor does not recover its capability,

but moving a degraded sensor out of an affected region can improve the sensor’s ef-

fectiveness). We then determine the defender’s optimal response to these events by

relocating the surviving sensors, considering multiple, competing objectives. Specif-
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ically, the defender seeks to maximize the attacker’s minimal expected exposure to

traverse the defended border region, minimize the maximum sensor relocation time,

minimize the total number of sensors requiring relocation, and minimize the under

coverage of high-value assets and emplaced sensors. After the defender’s sensor relo-

cations, the attacker selects the intrusion path that minimizes the expected exposure

to the defender’s sensors.

4.1.1 Literature Review.

The modeling efforts in this paper represent an amalgamation of work from var-

ious fields of study, including, but not limited to, facility location and relocation,

interdiction modeling, network intrusion, Wireless Sensor Networks (WSNs), trilevel

programming, multi-objective optimization, and goal programming.

The foundation of the modeling examined in this research is derived from the pub-

lished facility location literature. Schilling et al. (1993) presented a detailed overview

of covering problems in facility location. They classified models as either a Set Cover-

ing Problem (SCP) or a Maximal Covering Location Problem (MCLP), where cover-

age is either required or optimized, respectively. The MCLP was first introduced by

Church & ReVelle (1974) to maximize the amount of demand covered within a spec-

ified service distance by locating a fixed number of facilities. White & Case (1974)

extended the work of Church & ReVelle (1974) by considering equal weights on all

demand points. Church (1984) later introduced the MCLP on a planar surface using

Euclidean and rectilinear distance measures, where potential facility locations are no

longer discrete (and finite). For a more recent review of covering problems in facility

location, see Farahani et al. (2012).

One of the main assumptions of the MCLP is that coverage is binary. That is,

a demand point is either fully covered or not covered by a located facility. However,
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this assumption is often unrealistic. Berman & Krass (2002) extended the MCLP to

the Generalized Maximal Covering Location Problem (GMCLP), allowing for “par-

tial coverage of customers, with the degree of coverage being a non-increasing step

function of the distance to the nearest facility.” Additionally, Berman et al. (2003)

extended the GMCLP by way of a gradual covering decay model wherein the authors

define two critical distances; within the lower distance demand points are completely

covered, whereas demand points beyond the further distance receive no coverage. For

demand points within the critical distances, coverage gradually decreases from full

coverage to no coverage. Drezner et al. (2004) solved the gradual covering problem

on a planar surface. Although the coverage radius is typically an exogenously de-

termined parameter, Suzuki & Drezner (2003) and Berman et al. (2009) considered

the variable radius problem, treating the coverage radii as decision variables. Instead

of demand points receiving coverage from the single nearest facility, Berman et al.

(2009) developed a cooperative cover model in which each facility transmits a “signal”

that decays over distance, and the amount of coverage provided at each demand point

is aggregated across all facilities. Most recently, Colombo et al. (2016) proposed a

Multimode Covering Location Problem which locates a fixed number of facilities of

varying types, with limits on the number of co-located facilities. For demand cover-

age considered in this paper and presented in the models that follow, the defender

employs a cooperative, multimode, gradual-covering decay framework.

Interdiction models can be thought of as a natural extension of facility location

models with a leader-follower framework, wherein the leader (i.e., the attacker) seeks

to destroy and/or degrade a subset of nodes (i.e., facilities) or arcs, and the follower

subsequently seeks to optimize a given objective function (e.g., maximizing flow or

minimizing traversal distance). Wollmer (1964) was the first to model the interdiction

of a fixed number of arcs to maximize the reduction in the maximum flow between

86



an origin and destination node pair across a network. Interdiction using the mini-

mum cost network flow model was also examined by Fulkerson & Harding (1977) and

Golden (1978), allowing for partial interdiction of arcs. Node interdiction was con-

sidered by Corley Jr & Chang (1974) and Whiteman (1999) to respectively interdict

a fixed number of vital network nodes and select the optimal set of military targets.

Motivated by the desire to disrupt drug smuggling traffic, Wood (1993) and Washburn

& Wood (1995) developed bilevel models to respectively minimize the maximum flow

of drug traffic and maximize the probability of detecting an evader. Cormican et al.

(1998) extended this work by considering a stochastic network interdiction model to

minimize the expected maximum flow through a network when interdiction successes

are binary random variables. Lim & Smith (2007) developed complete and partial arc

interdiction models on multicommodity flow networks, wherein an attacker destroys

a set of network arcs to minimize the maximum profit that can be obtained from

shipping commodities across the network. Examining various forms of superaddi-

tive synergy effects of arc interdiction resources, Lunday & Sherali (2012) solved the

network interdiction problem of minimizing the maximum flow between two network

nodes, where the net interdictive effect of the resources on a given arc may be greater

than the sum of their independent effects. In a more recent work, Rashidi et al. (2018)

proposed an attacker-defender model to suppress the spread of wildfires, for which

they develop and test a decomposition algorithm to solve the corresponding bilevel

program.

Although related in their two-player, game theoretic structure, defender-attacker

models have focused on identifying and protecting critical infrastructure assets from

intentional and unintentional disruptions (e.g., see Brown et al., 2006; Qiao et al.,

2007; Scaparra & Church, 2008; Cappanera & Scaparra, 2011; Losada et al., 2012;

Bricha & Nourelfath, 2013; Aliakbarian et al., 2015). However, these defender-focused
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frameworks do not notably inform the current work because the problem considered

herein features a defender who seeks to relocate assets following an attack, rather than

identify or protect vulnerable assets from a future attack. Moreover, the defender’s

objective function in the proposed model is not only coverage-focused; it also considers

a metric to directly counter the intruder’s penetration-oriented objective.

Most of the facility location and network interdiction models, including those

previously mentioned, feature objective functions that focus on maximizing flow,

minimizing path length, or minimizing the probability of detection. However, the

objective functions for the models developed in this study adopt an exposure-based

metric found more commonly in a related field of research pertaining to the location

of sensors in a Wireless Sensor Network (WSN). First introduced by Meguerdichian

et al. (2001), exposure can be thought of informally as the “expected average abil-

ity of observing a target in the sensor field.” More formally, exposure is defined as

“an integral of a sensing function that generally depends on distance from sensors

on a path from a starting point pS to destination point pD” (Meguerdichian et al.,

2001). Unlike some coverage metrics, the element of time is important for exposure

because the ability of a sensor to detect a target can improve as the sensing time (i.e.,

exposure) increases.

For a sensor s, the general sensing model S at an arbitrary point p is:

S(s, p) =
λ

[d(s, p)]K
, (86)

where d(s, p) is the Euclidean distance between the sensor s and the point p, and

positive constants λ and K are technology-dependent parameters (Meguerdichian

et al., 2001). The parameter λ can be thought of as the energy emitted by a target,

and K is an energy decay factor, typically ranging from 2 to 5 (Amaldi et al., 2008).

The sensing function represents the energy received by a sensor s from the target p.
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Furthermore, the exposure of an object in the sensor field during the interval [t1, t2]

along the path p(t) is defined by Meguerdichian et al. (2001) as:

E(p(t), t1, t2) =

∫ t2

t1

I
(
F, p(t)

) ∣∣∣∣dp(t)dt

∣∣∣∣ dt, (87)

wherein the sensor field intensity I
(
F, p(t)

)
is implemented using an All-Sensor Field

Intensity model or a Closest-Sensor Field Intensity model, depending on the applica-

tion and types of sensors used. The All-Sensor Field Intensity model is a summation

of the sensing function values (86) from target p to all sensors in the sensor net-

work, defined as IA(F, p) =
∑n

i=1 S(si, p), whereas the Closest-Sensor Field Intensity

model only utilizes the sensing function value of the closest sensor to the target

(Meguerdichian et al., 2001).

Using the definition of exposure, Meguerdichian et al. (2001) presented an algo-

rithm to find the minimal exposure path in a sensor network. The algorithm first

transforms the problem into a discrete domain utilizing a generalized grid approach

and then creates an edge-weighted graph. The algorithm next applies Dijkstra’s

single-source shortest-path algorithm (Dijkstra, 1959) to find the minimal exposure

path from the source point pS to the destination point pD. Meguerdichian et al.

(2001) extended this initial work by developing a localized minimal exposure path

algorithm using Voronoi diagrams. We utilize the exposure coverage metric since the

attacker is concerned with incapacitating and/or degrading the defender’s sensors to

minimize the defender’s coverage of the attacker’s penetration path across the sensor

network.

The modeling framework developed herein combines an upper-level interdiction

model with a bilevel, defender-attacker (i.e., facility relocation-network intrusion)

model. This framework ultimately requires the adoption of a trilevel programming

formulation. Although many of the bilevel attacker-defender problems have been
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extended to include an additional first-stage defender problem (e.g., see Brown et al.,

2006; San Martin, 2007; Smith et al., 2007; Yao et al., 2007; Alderson et al., 2011;

Liberatore et al., 2012; Yuan et al., 2014; Lozano & Smith, 2017), there are few,

if any, attacker-defender-attacker (ADA) models in the literature. In a defender-

attacker-defender (DAD) framework, the defender first determines which facilities to

fortify to minimize future damage. In the second level, the attacker selects the most

damage-inducing elements to attack, and the defender reacts to the destruction in

the third level to minimize the resulting damage to the system. Alternatively, in

a proposed ADA framework, the attacker acts first to determine the most damage-

inducing elements to attack. The defender then responds to the attack in the second

level to minimize the effectiveness of the attack. Observing the defender’s response,

the attacker makes a final decision in the third level to optimize a specific objective

function. Within the DAD framework, the defender is often referred to as a system

operator in the third level. By comparison, within an ADA model, the attacker could

be considered the system exploiter, using the defender’s system against their will for

the attacker’s advantage. For example, in a network model, the attacker could seek to

penetrate the defender’s network in the third stage, while minimizing the probability

of being detected.

In a trilevel, two-player, ADA scenario, it is unlikely that the attacker and defender

seek to optimize the same objective function (albeit from opposite perspectives). Ei-

ther player may seek to optimize objectives that are of no concern to the other.

As such, this necessitates the implementation of a multi-objective programming ap-

proach at one or more stages of the decision space. Numerous solution techniques

exist to solve multi-objective optimization and facility relocation problems, ranging

from the Weighted Sum (Ehrgott, 2006) and ε-constraint (Mavrotas, 2009) Meth-

ods to genetic algorithms (Holland, 1975) and other metaheuristics. The Weighted
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Sum Method involves selecting weights for each objective that represent their relative

importance and subsequently optimizing the resulting weighted objective function

(Ehrgott, 2006). However, prespecifying appropriate weights for each objective may

be unrealistic, and the objectives may be incommensurable (Sherali & Soyster, 1983).

Detailed surveys of systematic weight selection techniques are presented by Ecken-

rode (1965), Hobbs (1980), and Hwang & Yoon (2012). Similarly, the Lexicographic

Method requires preemptively ranking the objectives in order of importance such that

an incremental improvement in a particular objective preempts arbitrarily large im-

provements in the less important objectives (Sherali & Soyster, 1983). This method

iteratively solves a sequence of single-objective problems, optimizing one objective

at a time and assigning previously determined optimal objective function values as

constraints (Ehrgott, 2006). Alternatively, one can develop preemptive weights for a

single objective function that includes all objectives as shown by Sherali & Soyster

(1983), but potential scaling issues in practice may induce premature termination in

a commercial solver, resulting in the identification of a solution that is not Pareto

optimal. As such, herein we utilize the ε-constraint Method, which bounds the re-

spective values for all but one of the defender’s multiple objective function values

while optimizing the remaining objective. The respective bounds may be iteratively

relaxed, without loss of generality (w.l.o.g.), with the corresponding identification of

optimal solutions for each combination of bounds used to identify non-inferior solu-

tions (Mavrotas, 2009).

Additionally, goal programming has been applied to multi-objective optimization

and facility relocation problems, such as in research conducted by Min (1988), Bhat-

tacharya et al. (1993), and Badri (1999). Goal programming requires specification of

goals for each objective function, upon which the total absolute deviation from the

goals is typically minimized (Marler & Arora, 2004). Lee & Olson (1999) provide
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a review of goal programming formulations and applications. The heuristic solution

approaches we develop apply a preemptively weighted goal programming approach to

maximize the defender’s preeminent exposure-based objective while simultaneously

minimizing the failure to satisfy relatively less important coverage goals.

This research specifically builds upon and extends the work of Lessin et al. (2018a,b).

In their initial work, Lessin et al. (2018a) developed a bilevel mathematical program-

ming model to locate a heterogeneous set of sensors to maximize the minimum ex-

posure of an intruder’s penetration path through a defended region. In a subsequent

work, given an initial sensor layout and two subsets of the sensors that have been

respectively incapacitated or degraded, Lessin et al. (2018b) formulated and solved

a defender-attacker, multi-objective, bilevel optimization model to relocate the sur-

viving sensors subject to multiple, competing objectives. Specifically, the defender

seeks to maximize an intruder’s minimal expected exposure to traverse a defended

border region, minimize the maximum sensor relocation time, and minimize the total

number of sensors requiring relocation. The two previous avenues of research inform

the second and third levels of the ADA modeling framework developed herein.

4.1.2 Major Contributions & Paper Organization.

This paper provides the only known attacker-defender-attacker solution to the

heterogeneous sensor network intrusion problem, extending the work of Lessin et al.

(2018a,b) to optimally incapacitate a subset of the defender’s sensors and degrade a

subset of the defender’s network to ultimately determine the attacker’s optimal pen-

etration path through the defended network. A trilevel, multi-objective formulation

and subsequent bilevel reformulation is developed, the latter of which is solved via

new heuristics. Our model allows flexibility for defender-imposed minimum probabil-

ities of protection for emplaced sensors and high-value asset locations and considers
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specific capabilities of sensors via probability-of-coverage functions and transit speeds

for each sensor type. Our model also permits the defender to quantify qualitative dif-

ferences in sensor preferences in terms of which sensors the defender prefers to employ

when interdicting an attacker.

Section 4.2 presents a trilevel mathematical programming formulation in which

an attacker respectively identifies a subset of the defender’s heterogeneous sensors

to incapacitate and a subset of the defender’s network to degrade, subject to budget

constraints; a defender subsequently relocates their sensors to maximize the attacker’s

minimal exposure, minimize the maximum relocation time, minimize the maximum

number of sensors requiring relocation, and minimize the under coverage of high-

value assets and emplaced sensors; in the third level, the attacker selects an optimal

intrusion path through the defendor’s sensor network. Section 4.3 presents a bilevel

reformulation and new heuristics. Section 4.4 details the representative scenario used

to illustrate the solution approach, presents solutions attained via the respective

heuristics, and discusses the results of selected analyses. Section 4.5 summarizes our

findings and suggests recommendations for future research.

4.2 Model & Methodology

In this section, we present a trilevel mathematical programming formulation for

the optimal intrusion of a heterogeneous sensor network. Given a sensor layout, the

attacker first determines the optimal subset of sensors to incapacitate and the optimal

subset of the defender’s network to degrade to minimize the expected weighted expo-

sure of the resulting minimal exposure path through the defended region. Observing

the attacker’s decision, the defender reacts by relocating surviving sensors to maxi-

mize the minimum expected weighted exposure of an attacker to prevent access across

a defended border region, minimize the maximum sensor relocation time, minimize

93



the total number of sensors requiring relocation, and minimize the under coverage of

high-value assets and emplaced sensors. Lastly, the attacker determines the minimal

exposure path through the region.

4.2.1 Assumptions.

With respect to the attacker’s objectives, we assume that the attacker is solely

focused on the intrusion metric; the damage affected to a defender’s sensors is a means

to that end, not an objective to be optimized. We also assume that the attacker will

use all assets budgeted for incapacitation and degradation, respectively; effectiveness

is of paramount importance, whereas efficiency is not.

We also make several assumptions related to the defender’s objectives and sen-

sors. Regarding the objectives, we assume that, in addition to constructing a sensor

network to inhibit an adversary traversing the border region, the defender also seek

to minimize the maximum time required to relocate sensors, minimize the number

of sensors requiring relocation, and minimize the under coverage of high-value assets

and emplaced sensors (e.g., the most valuable sensors). Minimum probabilities of

desired protection are specified for each high-value asset location of interest and for

each sensor type. We assume the defender has a given initial layout of heterogeneous

sensors; for testing purposes, we consider a combination of three types of sensors with

varying capabilities.

For many applications binary sensor coverage is unrealistic or unrepresentative of

actual sensor capabilities. Rather, a probability of coverage exists for targets located

at a given distance from a sensor location. As the distance from target to sensor

increases, the probability of coverage decreases. Instead of assuming binary sensor

coverage (i.e., covered/not covered), we assume a probability-of-coverage function for

each of the heterogeneous sensor types, as an explicit function of the distance from
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target to sensor, which we parameterize for testing in Section 4.4 using notional,

synthetic sensor data.

Furthermore, we assume the defender’s incoming threat is a single target with a

known, constant velocity. Our model addresses a single attacker who will identify and

traverse a single path through the border region. This assumption is valid because,

although the identified optimal solution to our formulation identifies a single intrusion

path, any alternative path taken by an attacker will yield an expected exposure that is

the same or higher. The defender is not concerned with the specific path an attacker

will traverse, merely the least expected exposure an attacker can attain via any of

the paths. Within our model testing, we assume a constant velocity for the attacker.

A variable velocity could be considered when computing expected exposure times for

arc-sensor combinations, and we now comment on how this can be applied. Such

an approach would be appropriate to account for terrain (e.g., traveling faster when

terrain does not mask an attacker from sensors) but, for testing on a terrain-agnostic

instance herein, there is no compelling reason to consider a variable attacker velocity.

Similarly, our model assumes that the attacker threat corresponds to an attempt to

penetrate the border region that is deliberate rather than persistent. The degradation

in sensor coverage during the relocations is not examined, as our solution approach

presumes the defender can make an assumption about the time until an intrusion

may occur, during which a degradation to sensor coverage is acceptable.

Moreover, we assume sensors that are incapacitated by the attacker are rendered

completely ineffective. Relocating an incapacitated sensor will not recover its capa-

bility, and so our model does not consider the relocation of incapacitated sensors.

Alternatively, sensors that are degraded by the attacker experience a decrease in

effectiveness as a function of the distance between the sensor and the degradation

location, wherein the decrease in coverage capability is also dependent upon the spe-
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cific sensor type. Unlike incapacitated sensors, degraded sensors can be relocated to

reduce the level of degradation due to the adjusted proximity of the sensor to the

geographic center of the degradation attack. Moreover, we allow the relocation of

degraded sensors to sites at which other sensors have been incapacitated.

To formulate instances of our model, we first tessellate the continuous planar space

representing the border region via regular hexagons for computational tractability.

Hexagonal tessellations are computationally easier to construct since they allow clus-

tering in every direction and mitigate the directional restrictions to travel that are

more prevalent when using other regular shapes (e.g., square, rhombus, triangle), as

discussed by Yousefi & Donohue (2004). Although we chose a uniformly-sized tessel-

lation of the border region to evenly space the potential sensor relocation positions,

this approach is not strictly required; unequally-sized tessellations can be used to

vary the density of potential senor locations for situation-specific reasons (e.g., to

align with the effects of instance-specific terrain).

Given this discretization of the solution space, we restrict the location of sensors

to the centroid of each hexagon, whereas the edges of the hexagonal mesh comprise

the induced network over which an attacker may traverse, traveling from artificial

origination node o on the (w.l.o.g.) left side of the hexagonal grid to the artificial

destination node d on the right. Moreover, we are not concerned with the attacker’s

actions outside the defended border region of interest; we make no assumptions re-

garding the number or location of the attacker’s final destination(s), other than their

existence outside the defended border region by way of the artificial destination node

d.

Lastly, given the state of today’s intelligence capabilities, especially for various

nation-states in defense-related applications, it is reasonable to assume that an at-

tacker knows the locations of sensors a defender has emplaced, as well as their ca-
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pabilities. Likewise, a defender will have reasonable estimates for the capabilities of

intruding targets. Together, these respective levels of assumed intelligence on ad-

versaries makes the game a perfect information game. With rapid advancements in

persistent and effective intelligence, surveillance, and reconnaissance, we can also as-

sume that adversaries will be aware of each other’s previous decisions. Subject to the

strength of this assumption, this model constitutes a complete information game as

well.

4.2.2 Model Formulation.

The following list of sets, parameters, and decision variables are used to formulate

the mathematical programming models considered herein.

Sets:

T : the set of all types of sensors available to locate, indexed by t.

S : the set of all potential sites where sensors can be located, indexed by s.

S̄ : the set of all sites where sensors are initially located (i.e.,

S̄ = {s | xts = 1,∀s ∈ S, t ∈ T}), indexed by s̄.

K : the set of all potential sites where sensor degradation attacks can be

centered, indexed by k.

F : the set of all sites where high-value assets are located, indexed by f .

A : the set of arcs in the graph that are equidistant from adjacent potential

sensor sites s ∈ S, and over which an intruding target can traverse,

indexed by (i, j).

N : the set of all nodes at which arcs intersect and through which an

intruding attacker can traverse, indexed by n.
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G = (N,A) : the graph over which an intruding attacker will traverse, as

induced by the set of potential sensor sites s ∈ S.

Parameters:

wt : the exposure weight for sensor type t ∈ T .

estij : the exposure time of a target traversing arc (i, j) ∈ A to a sensor of

type t ∈ T located at site s ∈ S.

τ t: the degradation power constant for sensors of type t ∈ T , where τ t ∈ R.

dsp : the Euclidean distance between site s ∈ S and site p.

θ : the degradation decay factor, where θ ∈ R+.

ζt : the maximum number of sensors of type t ∈ T the attacker can

incapacitate (i.e., render completely ineffective) via kinetic or

non-kinetic measures.

∆ : the maximum number of degradation attacks the attacker can employ.

rt : the transit speed of sensor type t ∈ T .

xts̄ : 1 if a type t ∈ T sensor is initially located at site s̄ ∈ S̄, and 0 otherwise.

Bt : the number of initially located defender sensors of type t ∈ T .

ptsp : the probability that a sensor of type t ∈ T located at site s ∈ S can

cover the point p.

Cf : the minimum probability of coverage desired for each high-value

asset location f ∈ F .

Ct: the minimum probability of coverage desired for each located sensor

of type t ∈ T .
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Decision Variables:

zts̄ : 1 if the attacker incapacitates a type t ∈ T sensor initially located at

site s̄ ∈ S̄, and 0 otherwise.

δk : 1 if the attacker centers a sensor degradation attack at site k ∈ K,

and 0 otherwise.

λts : the percent effectiveness of a sensor of type t ∈ T located at site s ∈ S,

due to degradation attacks. For example, if a type t ∈ T sensor

located at site s ∈ S is degraded by 20%, then λts = 0.8.

xts̄s : 1 if the defender relocates a type t ∈ T sensor from site s̄ ∈ S̄ to site

s ∈ S, and 0 otherwise.

ψmax : the maximum time (in hrs) required to complete sensor relocations.

yij : 1 if the attacker traverses arc (i, j) ∈ A, and 0 otherwise.

Given our assumptions and leveraging the aforementioned notation, we formu-

late the multi-objective, trilevel Sensor Network Intrusion Problem (SNIP) as

follows:

SNIP: min
z,δ,λ

f1(x,y) =
∑

(i,j)∈A

(∑
s̄∈S̄

∑
s∈S

∑
t∈T

λtsw
testijx

t
s̄s

)
yij (88)

s.t. λts = 1−min

{∑
k∈K

τ t(
dsk
)θ δk, 1

}
,∀s ∈ S, t ∈ T, (89)

∑
s̄∈S̄

zts̄ ≤ ζt,∀t ∈ T, (90)

∑
k∈K

δk ≤ ∆, (91)

zts̄ ∈ {0, 1}, ∀s̄ ∈ S̄, t ∈ T, (92)
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δk ∈ {0, 1}, ∀k ∈ K, (93)

max
x,ψmax,uf ,uŝt

f(x,y, ψmax, u
f , uŝt) = · · ·

· · · =
(
f1(x,y),−f2(ψmax),−f3(x),−f4(uf , uŝt)

)
(94)

s.t. f2(ψmax) = ψmax, (95)

f3(x) =
∑
s̄∈S̄

∑
s∈S\{s̄}

∑
t∈T

xts̄s, (96)

f4(uf , uŝt) =
∑
f∈F

uf +
∑
ŝ∈S

∑
t∈T

uŝt, (97)

ds̄s
rt
xts̄s ≤ ψmax,∀s̄ ∈ S̄, s ∈ S, t ∈ T, (98)∑

s∈S

xts̄s = xts̄ − zts̄,∀s̄ ∈ S̄, t ∈ T, (99)

∑
s̄∈S̄

∑
s∈S

xts̄s = Bt −
∑
s̄∈S̄

zts̄, ∀t ∈ T, (100)

∑
s̄∈S̄

∑
t∈T

xts̄s ≤ 1, ∀s ∈ S, (101)

∑
s̄∈S̄

∑
s∈S

∑
t∈T

ln
(

1− λtsptsf
)
xts̄s + of − uf = ln

(
1− Cf

)
,

∀f ∈ F, (102)∑
s̄∈S̄

∑
s∈S\{ŝ}

∑
t∈T

ln
(

1− λtsptsŝ
)
xts̄s + oŝt − uŝt = · · ·

· · · =
∑
s̄∈S̄

ln
(

1− Ct
)
xts̄ŝ,∀ŝ ∈ S, t ∈ T, (103)

xts̄s ∈ {0, 1}, ∀s̄ ∈ S̄, s ∈ S, t ∈ T, (104)

of , uf ≥ 0, ∀f ∈ F, (105)

oŝt, uŝt ≥ 0, ∀ŝ ∈ S, t ∈ T, (106)

min
y

f1(x,y) (107)
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s.t.
∑

j:(i,j)∈A

yij −
∑

j:(j,i)∈A

yji =


1, i = o,

−1, i = d,

0, i = N \ {o, d},

∀i ∈ N, (108)

yij ≥ 0, ∀(i, j) ∈ A. (109)

The attacker’s upper-level objective (88) minimizes the total expected weighted

exposure of the minimal exposure path by incapacitating and/or degrading a subset

of the defender’s sensors. The λts-parameters in the objective function account for the

degradation of SAM battery capability due to the attacker’s employment of sensor

degradation attacks. A sensor of type t ∈ T located at site s ∈ S experiences a (1−

λts)×100% system degradation, which proportionally reduces the sensor’s effectiveness

across its operational range. The effect of multiple degradation attacks are additive

and bounded by complete sensor degradation (i.e., λts = 0). Note, however, that

degraded sensors are permitted to relocate, regardless of the level of degradation.

The percent effectiveness values are calculated via Constraint (89), where τ t is the

degradation power constant associated with each sensor of type t ∈ T and θ is the

degradation decay factor. That is, each degradation attack centered at site k ∈ K has

a different effect on each type of sensor as a result of the respective degradation power

constant. Constraint (90) bounds the number of defender sensors the attacker can

incapacitate, by asset type. Likewise, Constraint (91) bounds the number degradation

attacks the attacker can employ. Constraints (92) and (93) enforce binary restrictions

on the sensor incapacitation and degradation location decision variables, respectively.

The defender’s objective function (94) maximizes the total expected weighted ex-

posure of the attacker’s minimal exposure path (88), minimizes the maximum sensor
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relocation time (95), minimizes the total number of relocated sensors (96), and mini-

mizes the under coverage of high-value assets and emplaced sensors (97), following the

attacker’s incapacitation and degradation efforts. The expected weighted exposure of

an intruder traversing a given arc (i, j) ∈ A to sensors of type t ∈ T relocated (i.e.,

xts̄s = 1) from site s̄ ∈ S̄ to site s ∈ S is represented by
∑̄
s∈S̄

∑
s∈S

∑
t∈T

λtsw
testijx

t
s̄s, with

sensor effectiveness parameters, λts, defined in Constraint (89).

The exposure weights wt may be parameterized to account for qualitative differ-

ences in sensor effectiveness not captured by the quantitative differences inherent in

the sensor probability functions, ptsp. Qualitative differences in sensor performance

may result from factors such as insufficient sensor operator training or operational

technical complexity of a given sensor type. For example, the defender could specify

exposure weights of 1.0, 0.5, and 0.3 for a model having three different sensor types,

thereby affecting a relative preference over the set of sensors within the model formu-

lation. Under this interpretation, the defender is twice as effective at employing the

first type of sensor against a target as compared to the second sensor type.

Constraint (98) provides lower bounds on the maximum relocation time, ψmax.

Constraint (99) ensures the defender can only relocate sensors that are initially located

and not incapacitated. Constraint (100) determines the number of each type of sensor

the defender can relocate. Constraint (101) prevents more than one sensor from being

relocated to the same site. Constraint (102) ensures that all high-value asset locations

receive the required coverage. The form of Constraint (102) results from a logarithmic

transformation of the constraint

1−
∏
s∈S

∏
t∈T

(
1− λtsptsf

)xts̄s
≥ Cf , ∀f ∈ F,

wherein independence is assumed among the probabilities of coverage, ptsf , over sensor

locations, s ∈ S, and sensor types, t ∈ T . (Implied is the assumption that Cf < 1,
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which is appropriate for this probabilistic metric wherein certain coverage is not

attainable.) Likewise, Constraint (103) provides for the coverage of emplaced sensors

by other sensors, as may be required by specific applications to protect valuable

sensors. That is, for every site ŝ ∈ S, if a defender relocates a sensor of type t ∈ T

from site s̄ ∈ S̄ to site ŝ ∈ S (i.e., xts̄ŝ = 1), Constraint (103) requires a specified

level of coverage, Ct, via the effects of other sensors the defender chooses to relocate

(i.e., xts̄s, ∀s̄ ∈ S̄, s ∈ S \ {ŝ}). In contrast, if a defender does not relocate a sensor of

type t ∈ T from site s̄ ∈ S̄ to site ŝ ∈ S (i.e., xts̄ŝ = 0), then the constraint induces

no coverage requirement (i.e., an upper bound on the constraint that corresponds

to Ct = 0). Constraint (104) enforces binary restrictions on the sensor relocation

decision variables. Constraints (105) and (106) are the non-negativity constraints for

the over and under coverage of high-value assets and emplaced sensors, respectively.

Following the incapacitation and degradation attacks on the defender’s sensors

and the defender’s subsequent relocation of surviving sensors, the attacker’s lower-

level objective function (107) seeks to minimize the total expected weighted exposure

of the minimal exposure path (88) through the defended region. Constraint (108)

induces the flow balance constraints for the path from the attacker’s point of origin,

o, to destination point, d. Lastly, Constraint (109) is the non-negativity constraint

associated with the minimal exposure path variables.

Multi-level optimization problems are inherently difficult to solve. With multiple

binary decision variables in the first and second-level problems, solving an instance

of the SNIP via an enumerative approach is combinatorially complex. Consider,

for example, an instance where the defender has Bt = [2, 5, 5] sensors of which the

attacker can incapacitate ζt = [1, 2, 3] sensors and additionally locate ∆ = 3 degra-

dation attacks across 400 potential locations. This relatively small instance results in(
2
1

)(
5
2

)(
5
3

)(
400
3

)
= 2, 117, 360, 000 possible incapacitation/degradation combinations for
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the attacker in the upper-level problem alone. For each of these feasible upper-level

solutions, the defender could have up to
(

400
1

)(
399
3

)(
396
2

)
= 328, 713, 470, 316, 000 possi-

ble sensor relocation combinations. Hence, it would be computationally burdensome,

or altogether impractical, to enumerate the first and second-level attacker and de-

fender decision spaces, respectively, and then solve the resulting third-level, defender

routing problem, for each feasible first and second-level solution combination.

Another alternative to find an exact solution is to reformulate the SNIP to a single-

level optimization problem using one of several available techniques. There exist two

often used methods to transform a multilevel mathematical programming formulation

into a mathematical programming formulation having fewer levels (preferably only

one level) to consider. One may replace the third-level optimization problem, the

attacker’s shortest path problem, with its Karush-Kuhn-Tucker (KKT) necessary (and

sufficient) optimality conditions. Alternatively, if the second-level problem bounds the

values of objectives (95), (96), and (97) while maximizing objective (88), one can take

the dual of the third-level optimization problem. In either case, a bilevel optimization

problem results.

However, with binary restricted defender variables, we cannot take the dual of

the resulting lower-level optimization problem within the corresponding bilevel pro-

gram to further transform the problem into a single-level formulation. Unfortunately,

an integer-valued solution is also not guaranteed if we relax the binary restrictions

on the defender’s sensor relocation variables because covering Constraints (102) and

(103) preclude the defender’s problem from being totally unimodular. Likewise, we

cannot replace the second-level problem with its necessary (and sufficient) KKT op-

timality conditions for its linear relaxation, as an integer-valued optimal solution is

not assured. Moreover, we considered and found a decomposition approach unsuit-

able due to the combinatorial nature of the upper-level decisions within the trilevel
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programming framework. As a result, we propose two heuristic solution methods in

the following section.

4.3 Heuristic Solution Methods

In the absence of a computationally tractable, exact solution method to solve the

SNIP, we develop two heuristics using a game theoretic, tree search technique. The

SNIP can be seen as a two-player, three-stage game with perfect and complete in-

formation. In the first-level problem, the attacker selects a subset of the defender’s

sensors to incapacitate and determines where to locate a limited number of sensor

degradation attacks. The defender subsequently determines where to locate the sur-

viving sensors to maximize the expected exposure of the attacker’s minimal exposure

path, which is determined in the third-level problem. The optimal solution to SNIP is

represented by the set of attacker-defender-attacker (i.e., incapacitate and/or degrade

→ relocate→ route) strategies in which neither player’s objective function value (i.e.,

expected exposure) can improve by a change in either player’s strategy.

4.3.1 Heuristic 1 (H1): Piecewise incapacitation and degradation strat-

egy determination.

Although it is theoretically possible to search the entire game tree corresponding

to a SNIP instance and determine the subgame perfect Nash equilibrium, the combi-

natorial nature of even small SNIP instances is cumbersome and renders this approach

computationally impractical. Therefore, we consider an enumeration technique only

for the attacker’s upper-level problem, and solve a reformulation of the second and

third-level optimization problems for each of the attacker’s fixed upper-level decisions.

However, even an enumeration of the upper level decision space is challenging;

whereas the number of possible incapacitation strategies is limited by the available
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resources for attack and the number (and location) of sensors, the number of sensor

degradation strategies corresponds to the granularity of the instance, as the deci-

sion for each sensor degradation relates to the location for the center of the attack,

and it is not restricted to the current location of sensors. To limit the number of

upper-level attacker strategies enumerated, we consider a partial enumeration tech-

nique; we enumerate only the attacker’s upper-level incapacitation strategies. We

then decompose the problem of identifying the optimal attacker strategy (i.e., a sen-

sor incapacitation/degradation location combination) into a sequence of problems for

each potential incapacitation strategy, the first of which is identifying the defender’s

optimal relocation strategy for the fixed incapacitation strategy, in the absence of

degradations; the second is to identify the attacker’s optimal degradation strategy,

given the fixed incapacitation strategy and the previously identified relocation strat-

egy; and the third of which is to identify the defender’s optimal relocation strategy,

given the the fixed incapacitation strategy and the previously identified degradation

strategy. Although this heuristic represents a decrease in the computational burden

of finding an optimal solution via game tree enumeration, such a piecewise approach

is not guaranteed to identify an optimal solution to the original problem. For that

reason, we test H1 in the following section with respect to solution quality and re-

quired computational effort, and we compare it with a heuristic that manifests an

even greater level of problem decomposition.

To reformulate the second and third-level problems of the SNIP as a single-level

optimization problem for implementation in the solution heuristic, we utilize the ε-

constraint method and first reformulate the two lower-level problem formulations to

Problem P2 as follows:

P2: max
x,ψmax,uf ,uŝt

min
y

∑
(i,j)∈A

(∑
s̄∈S̄

∑
s∈S

∑
t∈T

λtsw
testijx

t
s̄s

)
yij (110)
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s.t. ψmax ≤ ε2, (111)∑
s̄∈S̄

∑
s∈S\{s̄}

∑
t∈T

xts̄s ≤ ε3, (112)

∑
f∈F

uf +
∑
ŝ∈S

∑
t∈T

uŝt ≤ ε4, (113)

Constraints (98)− (106), and (108)− (109).

Similar to Wood (1993), Colson et al. (2007), Amaldi et al. (2008), and Lessin

et al. (2018a), we reformulate Problem P2 by replacing the attacker’s lower-level

problem with its dual formulation. Treating the defender variables xts̄s as parameters,

the attacker’s lower-level minimization problem becomes a shortest path problem in

which the expected weighted exposure objective is minimized, subject to Constraints

(108) and (109). Replacing the attacker’s primal, lower-level problem with its dual

formulation as represented in Equations (114)-(117),

max
π

πd − πo (114)

s.t. − πi + πj ≤
∑
s̄∈S̄

∑
s∈S

∑
t∈T

λtsw
testijx

t
s̄s, ∀(i, j) ∈ A, (115)

πo = 0, (116)

πi unrestricted,∀i ∈ N \ {o}, (117)

where πi is the dual variable associated with the ith Constraint (108), we obtain the

following single-level reformulation of Problem P2, denoted Problem P3:

P3: max
x,ψmax,uf ,uŝt,π

πd − πo (118)

s.t. ψmax ≤ ε2, (119)∑
s̄∈S̄

∑
s∈S\{s̄}

∑
t∈T

xts̄s ≤ ε3, (120)

107



∑
f∈F

uf +
∑
ŝ∈S

∑
t∈T

uŝt ≤ ε4, (121)

ds̄s
rt
xts̄s ≤ ψmax,∀s̄ ∈ S̄, s ∈ S, t ∈ T, (122)∑

s∈S

xts̄s = xts̄ − zts̄, ∀s̄ ∈ S̄, t ∈ T, (123)

∑
s̄∈S̄

∑
s∈S

xts̄s = Bt −
∑
s̄∈S̄

zts̄, ∀t ∈ T, (124)

∑
s̄∈S̄

∑
t∈T

xts̄s ≤ 1, ∀s ∈ S, (125)

∑
s̄∈S̄

∑
s∈S

∑
t∈T

ln
(

1− λtsptsf
)
xts̄s + of − uf = ln

(
1− Cf

)
,

∀f ∈ F, (126)∑
s̄∈S̄

∑
s∈S\{ŝ}

∑
t∈T

ln
(

1− λtsptsŝ
)
xts̄s + oŝt − uŝt = · · ·

· · · =
∑
s̄∈S̄

ln
(

1− Ct
)
xts̄ŝ,∀ŝ ∈ S, t ∈ T, (127)

− πi + πj ≤
∑
s̄∈S̄

∑
s∈S

∑
t∈T

λtsw
testijx

t
s̄s, ∀(i, j) ∈ A, (128)

πo = 0, (129)

πi unrestricted,∀i ∈ N \ {o}, (130)

xts̄s ∈ {0, 1},∀s̄ ∈ S̄, s ∈ S, t ∈ T, (131)

of , uf ≥ 0, ∀f ∈ F, (132)

oŝt, uŝt ≥ 0, ∀ŝ ∈ S, t ∈ T. (133)

Problem P3 provides a single-level model formulation to determine the defender’s

optimal relocation of the surviving sensors to maximize the exposure of the attacker’s

least exposed path, minimize the maximum time required for any sensor relocation,

minimize the number of sensor relocations, and minimize the under coverage of high-

value assets and emplaced sensors, wherein the latter three objectives can be explored
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by imposing varying bounds via ε2, ε3, and ε4, respectively. The attacker’s decision

variables zts̄ and λts are fixed input parameters from the first-level SNIP problem. To

further simplify our solution approach, we make two additional assumptions which

allow the attacker to plan for the worst-case defender relocations, from the attacker’s

perspective. First, we set ε2 = γ as an upper bound on the defender’s second objec-

tive, where γ is the minimum amount of time until the attacker will traverse back

through the defended region. This parameter setting ensures the defender accom-

plishes all sensor relocations before needing to reengage the attacker. Second, we set

ε3 =
∑̄
s∈S̄

∑
t∈T

(xts̄− zts̄) as upper bounds on the third objective, allowing the defender to

relocate all surviving sensors, if desired.

Instead of bounding the defender’s fourth objective of under coverage of high-value

assets and emplaced sensors via ε4 in (121), we propose a hybrid approach wherein

the defender preemptively weights the exposure objective (118) and the coverage goal

(97), while maintaining ε-bounded constraints for the sensor relocation oriented ob-

jectives (95) and (96). Removing ε-constraint (121), and adding preemptive, defender

specified weights w1 and w2 to the objective function, results in the hybrid model,

denoted Problem P3*:

P3*: max
x,ψmax,uf ,uŝt,π

w1(πd − πo)− w2

(∑
f∈F

uf +
∑
ŝ∈S

∑
t∈T

uŝt

)
(134)

s.t. Constraints (119)− (120), and (122)− (133),

wherein weights w1 and w2 are specified based on the defender’s preferences between

the exposure and coverage oriented objectives. For example, the defender may seek to

achieve a bounded trade-off between the exposure objective and the coverage penalty

objective where w1 = ε and w2 = 1−ε, for 0 < ε < 1. Alternatively, the defender may

wish to impose a large penalty for failing to meet the minimum coverage requirements
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Cf and Ct, thereby setting w2 = M (i.e., where M is a large positive value) and

w1 = 1.

Although the reformulation of Problem P3 to the hybrid model P3* appears

defender-focused in its intent, the impetus for constructing P3* is indeed attacker-

focused. When trying to determine the attacker’s optimal sensor incapacitation and

degradation strategy for intrusion of a defended border region, instances can exist

wherein, for a given incapacitation/degradation strategy, a defender-feasible solution

does not exist for Problem P3 because of the inability to meet the minimum respec-

tive coverage requirements for high-value assets and/or emplaced sensors. Model P3*

therefore enables the determination of a defender-feasible solution for instances in

which strictly imposed defender coverage requirements are unattainable. This hybrid

approach to objectives (118) and (97) provides the attacker with the ability to identify

(potentially optimal) strategies that otherwise would not be found.

For a fixed attacker incapacitation strategy and the defender’s relocation solution

from Problem P3*, we solve the following variant of a covering location problem,

denoted Problem P4, to determine the attacker’s optimal sensor degradation loca-

tions.

P4: max
λ,δ

∑
s∈S

∑
t∈T

( ∑
(i,j)∈A

∑
s̄∈S̄

wtestijx
t
s̄syij

)
(1− λts) (135)

s.t. 1− λts ≤ 1, ∀s ∈ S, t ∈ T (136)

1− λts ≤
∑
k∈K

τ t(
dsk
)θ δk, ∀s ∈ S, t ∈ T, (137)

∑
k∈K

δk ≤ ∆, (138)

δk ∈ {0, 1}, ∀k ∈ K. (139)

where (1 − λts) represents the percent degradation of a type t ∈ T sensor located at
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site s ∈ S, resulting from a degradation attack located at site k ∈ K.

If we let the expected weighted exposure of a type t ∈ T sensor located at site

s ∈ S be denoted as:

ets =
∑

(i,j)∈A

∑
s̄∈S̄

wtestijx
t
s̄syij,∀s ∈ S, t ∈ T,

and denote the percent degradation of a type t ∈ T sensor located at site s ∈ S as

(1− λts) = vts, then Problem P4 is equivalent to Problem P5 below:

P5: max
v,δ

∑
s∈S

∑
t∈T

etsv
t
s (140)

s.t. vts ≤ 1, ∀s ∈ S, t ∈ T (141)

vts ≤
∑
k∈K

τ t(
dsk
)θ δk, ∀s ∈ S, t ∈ T, (142)

∑
k∈K

δk ≤ ∆, (143)

δk ∈ {0, 1}, ∀k ∈ K. (144)

The formulation in Problem P5 is an extension of the gradual covering decay

model introduced by Berman et al. (2003) where, in this case, the attacker seeks to

maximize the degradation of the defender’s sensors whereby each degradation attack

location (i.e., facility) provides a specified level of degradation (i.e., demand coverage)

for each of the defender’s sensors based on the sensor (i.e., demand) type. To the best

of our knowledge, this is the only known covering problem in facility location in which

facilities provide coverage of a heterogeneous set of demand points, and the coverage

level associated with each demand point is dependent upon the specific demand type

and the distance from each demand point.

After solving Problem P4 (or P5) to determine the attacker’s optimal sensor degra-
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dation attack locations, we re-solve Problem P3*, given the attacker’s sensor degra-

dation solution δk,∀k ∈ K, to determine the defender’s optimal sensor relocation

decision and the attacker’s minimal exposure path decision. A detailed description

of Heuristic 1 is presented below.

Heuristic 1: Piecewise incapacitation and degradation strategy determination

Step 1. Enumerate attacker sensor incapacitation combinations,

Z =
{
zts̄a ,∀s̄ ∈ S̄, t ∈ T |a = 1, ..., n =

(
β1

ζ1

)
· · ·
(
βt

ζt

)}
.

Set (z̃, δ̃, x̃, ỹ) = (∅, ∅, ∅, ∅) and ν
[
(z̃, δ̃, x̃, ỹ)

]
= 0.

Set a← 1.
Step 2. Initialize: Let δk = {∅},∀k ∈ K.
while (a < n) do

Step 3. Solve Problem P3* (zts̄a , δk).
Input : The attacker’s sensor incapacitation decision zts̄a ,∀s̄ ∈ S̄, t ∈ T

and sensor degradation locations δk,∀k ∈ K
Output: The defender’s sensor relocation decision

xts̄s,∀s̄ ∈ S̄, s ∈ S, t ∈ T , and the attacker’s minimal exposure
path decision yij,∀(i, j) ∈ A

Step 4. Solve Problem P4 (xts̄s,y).
Input : The defender’s sensor relocation decision

xts̄s,∀s̄ ∈ S̄, s ∈ S, t ∈ T , and the attacker’s minimal exposure
path decision yij, ∀(i, j) ∈ A

Output: The attacker’s degradation location decision δk,∀k ∈ K

Step 5. Re-solve Problem P3* (zts̄a , δk).

if ν [(z, δ,x,y)] < ν
[
(z̃, δ̃, x̃, ỹ)

]
then

Set (z̃, δ̃, x̃, ỹ)← (z, δ,x,y).
end
Set a← a+ 1. Go to Step 2.

end

Return solution (z̃, δ̃, x̃, ỹ).
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4.3.2 Heuristic 2 (H2): Sequential incapacitation and degradation

strategy determination.

As a baseline for comparing solution approaches, we develop an alternative, greedy

construction heuristic to solve an instance of the SNIP. We sequentially identify the

sensors to incapacitate and degrade, respectively, in two stages. Within each category

of attack, we iteratively identify individual sensors for either incapacitation or degra-

dation, as appropriate, allowing the defender to relocate sensors after each decision.

Such an approach does not entail an actual relocation of sensors by the defender;

rather, it identifies the defender’s best response to all previous attacker decisions,

allowing the determination of the best subsequent attacker decision.

In the first stage of H2, given an attacker’s type-specific sensor incapacitation

budget, ζt, ∀ t ∈ T , we iteratively determine the most advantageous sensor to inca-

pacitate in each of
∑
t∈T

ζt iterations, assuming a preemptive incapacitation by sensor

type according to decreasing capability over the sensor types. For example, if type

t = 1 is a more capable sensor than type t = 2, then H2 will iteratively identify the ζ1

sensors of type t = 1 to incapacitate, then iteratively identify the ζ2 sensors of type

t = 2 to incapacitate.

The selection of the first sensor to incapacitate considers the initial sensor layout.

Each subsequent selection considers the optimal relocation solution to Problem P3*,

given previously identified incapacitation decisions.

Given a sensor layout and an iteration-specific sensor type for incapacitation,

t̄ ∈ T , H2 solves the following mathematical program to determine which sensor

z t̄s̄, ∀ s̄ ∈ S̄, to incapacitate in the current iteration:

GCHz: max
z

∑
(i,j)∈A

∑
s̄∈S̄

wt̄es̄t̄ijx
t̄
s̄yijz

t̄
s̄ (145)
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s.t.
∑
s̄∈S̄

z t̄s̄ = 1, (146)

z t̄s̄ ∈ {0, 1}, ∀s̄ ∈ S̄. (147)

Within this formulation, the attacker seeks to identify the sensor that has the

greatest contribution to the expected exposure calculation in (145).

In the second stage of H2, we determine the attacker’s sensor degradation strategy.

Given an attacker’s sensor degradation budget, we determine the most advantageous

sensor degradation location in each of ∆ iterations by solving the following modifica-

tion of Problem P4:

GCHδ: max
λ,δ

∑
(i,j)∈A

∑
s̄∈S̄

∑
t∈T

wtes̄tijx
t
s̄yij(1− λts̄) (148)

s.t. 1− λts̄ ≤ 1, ∀s̄ ∈ S̄, t ∈ T, (149)

1− λts̄ ≤
∑
k∈K

τ t(
ds̄k
)θ δk, ∀s̄ ∈ S̄, t ∈ T, (150)

δk ∈ {0, 1}, ∀k ∈ K, (151)

where the attacker seeks to maximize the defender’s degradation in expected attacker

exposure, where (1 − λts̄) represents the percent degradation of a type t ∈ T sensor

located at site s̄ ∈ S̄, resulting from a degradation attack δk located at site k ∈ K in

a given iteration. For each successive iteration, one additional degradation location

is selected and the previous degradation location decisions remain unchanged. That

is, in each iteration q ∈ [1, . . . ,∆],
∑
k∈K

δk = q and δk(q−1) ≤ δkq,∀k ∈ K, q ∈

[2, . . . ,∆], where δkq represents the attacker’s degradation decision in iteration q.

The combined sensor incapacitation and degradation decisions found via GCHz and

GCHδ, constitute the greedy sensor attack strategy.
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4.4 Testing, Results, & Analysis

We solve the SNIP (88)-(109) using H1 and H2 for an illustrative scenario on a

2.5 GHz PC with 192 GB of RAM, using the commercial solver IBM ILOG CPLEX

12.7. We compare the results of the heuristics for three attacker sensor incapacita-

tion instances. The following subsections present a representative network intrusion

application, discuss test instance generation, and provide numerical results of the

testing.

4.4.1 Representative Scenario for the Intrusion of an Air Defense Net-

work.

We demonstrate the applicability of the SNIP (88)-(109) formulation and our

heuristic solution approaches to the sensor network intrusion problem with an illus-

trative and representative air defense network intrusion scenario. This application is

representative of the general problem class in that an attacker has a limited budget

with which to incapacitate (i.e., by kinetic or non-kinetic attack) and degrade (e.g.,

render less capable due to electronic countermeasures) a subset of the defender’s sen-

sors (i.e., air defense batteries), after which the defender can relocate the surviving

sensors subject to assumed constraints on the maximum sensor relocation time and

the maximum number of sensors which can be relocated. Following the defender’s

sensor relocations, the attacker determines the optimal intrusion path through the

defended sensor network to minimize the expected exposure to the defender’s sensors.

Adopting the viewpoint of an attacker, we seek to incapacitate and degrade a

subset of the defender’s ground-based assets of an Integrated Air Defense System

(IADS), and the defender subsequently relocates the surviving assets to prevent the

attacker’s intrusion through the defended border region. We assume the attacker has

a limited incapacitation and degradation budget for the defender’s initially located
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long-range (e.g., SA-21 Growler), medium-range (e.g., SA-22 Greyhound), and short-

range (e.g., SA-24 Grinch) Surface to Air Missile (SAM) batteries (Foss & O’Halloran,

2014). Although these weapons do not represent the full range of SAM technologies an

attacker could encounter, they are representative of the various threats that countries

employing antiaccess/area-denial (A2/AD) strategies are likely to possess and employ

(Schmidt, 2016).

Given a 600 km long by 520 km wide border region with an initial IADS layout

consisting of two long-range, five medium-range, and five short-range SAM batteries

(i.e., Bt = [2, 5, 5]), the attacker seeks to optimally incapacitate and degrade a subset

of the defender’s air defense batteries, and after the defender’s relocation of surviving

assets, determine the optimal intrusion path through the region.

Figure 15 depicts the initial IADS layout for this instance found by solving the

Maximin Exposure Problem (MmEP) as presented by Lessin et al. (2018a).

To facilitate the solution of the illustrative scenario in Figure 15, we enumerate the

set of possible attacker incapacitation decisions for three budget-constrained attack

instances, as detailed in Table 7.

Table 7. Test instance attacker incapacitation and degradation budget parameter values

Instance

Number of Incapacitations, ζt Number of
Degradations,

∆
Long-range Medium-range Short-range

(t = 1) (t = 2) (t = 3)

1 1 2 0 2
2 0 3 0 2
3 1 1 0 1

In each of the three instances, the attacker is respectively limited to the destruction

of ζt = [1, 2, 0], ζt = [0, 3, 0], and ζt = [1, 1, 0] of the defender’s initially located air

defense assets. We make these operationally-constrained incapacitation assumptions

to scope the attacker’s incapacitation search space. This results in 20, 10, and 10

unique H1 incapacitation strategies zts̄ for each of the respective instances. For each
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Figure 15. Initial IADS layout

potential incapacitation strategy, the attacker determines the optimal locations of

∆ = 2 sensor degradations in the first two instances and ∆ = 1 sensor degradation

in the third instance, via the solution of H1.

Following the attacker’s incapacitation and degradation decisions, the defender

relocates the surviving air defense assets. We operationally constrain the defender

to relocate at most ε3 = 8 air defense assets within ε2 = 3 hours. Degraded assets

experience a proportional reduction in system effectiveness across the system’s oper-

ating range, based on the distance from the affected asset to the degradation center,

as determined by constraints (136) and (137). We assume degradation power con-

stant values of τ t = [800, 1500, 2000] for each air defense asset of type t ∈ T and a

degradation decay factor of θ = 1.5. The defender seeks to protect three high-value

assets located at F = {(500, 100), (350, 400), (500, 550)}, with minimum probabilities
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of protection of Cf = [0.75, 0.5, 0.5], respectively. The defender also seeks to protect

long-range SAM batteries with a minimum probability of 0.5 (i.e., Ct = [0.5, 0, 0]).

Additionally, we assume transit speeds of rt = [50, 70, 90] km/hr for the long-range,

medium-range, and short-range SAM batteries, respectively. We further assume equal

exposure weights (i.e., wt = [1, 1, 1]).

We also specify a probability-of-kill function for each SAM battery type, based

on representative SAM battery capabilities found in Foss & O’Halloran (2014). The

construction of the probability-of-kill curves for instances herein is notional but rep-

resentative; we utilized a logit model for the probability of kill as a function of the

range, assuming a probability of 0.99 for a range of zero and a probability of between

0.04 and 0.11 at the maximum effective range (rmax) (Foss & O’Halloran, 2014). To

artificially induce different interceptor performance, we specified a probability of 0.55

at 65% of rmax for the long-range SAM batteries, a probability of 0.2 at 90% of rmax

for the medium-range SAM batteries, and a probability of 0.5 at 60% of rmax for the

short-range SAM batteries. The probability-of-kill function for each SAM battery

type is listed in Table 8. These functions are used to calculate the exposure values

for each arc resulting from the hexagonal tessellation of the border region and mirror

the parameterization used in previous studies (Lessin et al., 2018a,b).

Table 8. SAM battery probability-of-kill functions

SAM Battery Type ptsp

Long-range (t = 1) e−0.0270428dsp

0.010101+e−0.0270428dsp

Medium-range (t = 2) e−0.332301dsp

0.010101+e−0.332301dsp

Short-range (t = 3) e−1.27642dsp

0.010101+e−1.27642dsp

In addition to the aforementioned SAM battery types, the long-range assets re-

quire separate targeting and tracking radars to engage a target. For this illustrative
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scenario, we assume that each SAM battery possesses the required radar coverage to

engage intruding targets. We make this assumption to avoid the increase in model

complexity to include the radar location decisions within the current framework.

Furthermore, we assume for this study the defender’s incoming threat consists

only of an aircraft with velocity of 1,800 km/hr (i.e., |v| = 1, 800 km/hr), as opposed

to a wide range of threats not limited to, but including, cruise missiles and ballistic

missiles. This assumption determines the coverage capabilities for each SAM bat-

tery instead of requiring the model to account for a myriad of target types. This

assumption is made to demonstrate the solution for an illustrative scenario, but it is

appropriate for two reasons. First, a single attacker is considered as representative

of a strike package, a technique for organizing multiple attacking aircraft in a single

sortie (e.g., see McLemore, 2010). Second, any alternative path taken by an attacker

will yield an exposure that is no lesser and most likely much greater.

Test instances for our analysis were generated by first constructing a hexagonal

grid with potential sensor (i.e., SAM battery) locations positioned at the centroid

of each hexagon. Neighboring hexagon centroids (i.e., potential SAM battery loca-

tions) are located at a defender-specified distance (in km) from each other. Herein,

we adopt a distance of 30 km for testing in Section 4.4.2 and as depicted in Figure

15. The granularity of grid construction is easily adapted to suit a given situation

or modeler’s desired fidelity. The adoption of a two-dimensional network for aircraft

traversal implicitly assumes an attacker flies below (or at) a given altitude ceiling.

Such an assumption is reasonable if either (a) the attacker utilizes such tactics within

their doctrinal framework or (b) if the ground-based air defense assets are comple-

mented within the IADS by interceptor aircraft that operate at high altitudes. Given

the precepts of Energy-Maneuverability Theory (Boyd et al., 1966), the doctrinal

employment of interceptors conducting Combat Air Patrols (CAPs) requires the air-
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craft to patrol at (and begin maneuvers from) relatively high altitudes, reinforcing

the division of effort among air- and ground-based assets within an IADS by altitude

and, hence, the validity of the two-dimensional modeling assumption.

The attacker’s goal is to traverse the border region from an artificial origination

node, o, on the (w.l.o.g.) west side of the border region to an artificial destination

node, d, on the (w.l.o.g.) east side of the border region, where these nodes are con-

nected by arcs to the leftmost and rightmost hexagon arc nodes, respectively. For

each possible instance-specific, attacker incapacitation strategy, the attacker deter-

mines the combined sensor incapacitation and degradation strategy via H1 and selects

the strategy with the minimum expected exposure objective function (88) value as

optimal, for each test instance in Table 7. The attacker also determines the optimal

combined sensor incapacitation and degradation strategy via H2 for each of the three

test instances. The instance-respective solutions identified by H1 and H2 are then

compared with respect to solution quality and required computation time.

4.4.2 Results.

Table 9 shows the attacker’s minimal exposure objective function (88) values for

the solutions identified via H1, for each of the test instances.

We note from the results presented in Table 9 that, over Instances 1-3, respec-

tively, the best identified strategy attained an expected exposure that was 5.6, 59.7,

and 15.6 seconds, on average, lesser than identified by the alternative incapacitation

strategies. Moreover, when compared to the best reported strategy, the worst inca-

pacitation strategy for each of the instances corresponded respectively to increases

in the expected exposure time to the attacker by 15.7, 80.6, and 35.1 seconds. Also

of note within Instance 2, both Incapacitation Strategies 3 and 9 yielded the same

objective function value and, although not depicted here, identical intrusion paths as

120



Table 9. Heuristic 1 attacker objective function values for each test instance

Incapacitation
Strategy+

Expected Exposure (seconds)

Instance 1 Instance 2 Instance 3

1 0.587 129.225 2.967
2 1.410 129.225 36.232
3 8.838 63.769* 1.696
4 11.883 133.573 1.161*
5 0.591 140.529 4.861
6 3.795 144.393 9.049
7 0.090 83.130 15.511
8 0.328 83.130 36.232
9 2.375 63.769* 11.438
10 1.410 144.394 33.177
11 9.732
12 9.516
13 15.815
14 1.163
15 8.399
16 11.883
17 2.784
18 5.691
19 0.090*
20 11.883

*Best instance-specific incapacitation strategy
+An Incapacitation Strategy number is specific to each

instance, not common across instances.

well. Thus, alternative best solutions are possible and should be examined, as exter-

nal circumstances not represented within the math programming formulation (e.g.,

relative risk to the attacker’s asset that implements the incapacitation strategy) may

warrant a preference among them.

As an example depiction of the best solution for one of the test instances, Figure

16 illustrates the solution identified by H1 for Instance 3, corresponding to a minimal

expected exposure of 1.161 seconds for the attacker. The associated intrusion path

shown in Figure 16 represents the optimal attacker path through the defender’s air de-

fense network, following the defender’s sensor relocations subsequent to the attacker’s

initial ζt = [1, 1, 0] asset incapacitations and ∆ = 1 degradation attack.

Table 10 compares the best solution identified by H1 for each test instance with the
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Figure 16. Heuristic 1 solution to Instance 3

corresponding solution identified via H2, both with respect to solution quality (i.e.,

the attacker’s minimal expected exposure objective function value, f1) and required

computation time.

Table 10. Comparison of heuristic solution quality and computation time

Instance
Expected Exposure (seconds) Computation Time (hours)

Heuristic 1 Heuristic 2 Heuristic 1 Heuristic 2

1 0.090 0.518 57.094 7.493
2 63.769 31.942 29.700 8.314
3 1.161 0.776 25.460 5.292

H2 yielded better solutions than H1 for the attacker in all but the first test in-

stance analyzed herein. Moreover, H2 was less computationally burdensome than H1,

obtaining solutions in 79.4% less time, on average; whereas H2 iteratively constructs

one incapacitation strategy before iteratively identifying the degradation strategy,
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the combinatorial nature of H1 requires the identification of the optimal degradation

strategy for every possible incapacitation strategy, for a given attacker incapacita-

tion budget, ζt. As the attacker’s incapacitation budget increases, the combinatorial

nature of the instance’s complexity increases the number of incapacitation strategies

that must be considered, and the disparity in computation time between the two

heuristics increases as well. Of course, this combinatorial effect also decreases beyond

a certain point, where the attacker incapacitation budget approaches the respective

cardinalities for the set of targets (e.g., if the attacker can interdict every sensor, then

only one incapacitation strategy exists).

Figures 17 and 18 comparatively illustrate the solutions respectively identified

by H1 and H2 for Instance 2. Whereas H1 yielded an attacker’s minimal expected

exposure of 63.8 seconds, H2 identified a solution having 31.9 seconds of expected

exposure, a 49.4% decrease in defender coverage to the attacker’s advantage.

Examining Figures 17 and 18, we note that both heuristics selected the same

attacker incapacitation strategies and network routing decisions. However, the sensor

relocation decisions and the degradation strategies differ. Ultimately, the difference in

degradation strategies has the greatest impact on the attacker’s decrease in expected

exposure. It’s worth noting that, by its construct, H1 will necessarily consider the

incapacitation strategy that H2 will select. Therefore, any difference in the heuristics’

recommended solutions is attributable to the piecewise identification of the attacker’s

degradation strategy adopted in H2.

The difference in solutions for Instance 2 serve to highlight the underlying as-

sumptions within the heuristics that affect different performance, particularly when

developing a degradation strategy. In solving P4, H1 seeks to identify all degradations

in one optimization problem, but it does so with respect to the intruder path for a

fixed incapacitation strategy. In contrast, when iteratively identifying degradations
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Figure 17. Heuristic 1 solution to Instance 2

to implement, H2 also iteratively identifies and considers the intruder path, given all

previously identified incapacitation and degradation strategies (and corresponding

defender relocations). Thus, H2 exhibits a greater consideration for the defender’s

adaptation to attacker decisions.

Both solutions procedures, as heuristics, are readily noted as unable to guarantee

the identification of a global optimal solution by decomposing the SNIP optimization

problem into a set of stepwise optimization subproblems. However, an optimizer’s

most likely conjecture would portend that a heuristic involving lesser decomposition

(i.e., H1) would yield better solutions than one involving a greater degree of problem

decomposition (i.e., H2), even though it would likely require a greater computational

effort. For the problem instances tested herein, the implied assumption about the

relative required computational held forth, but the conjecture about problem decom-
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Figure 18. Heuristic 2 solution to Instance 2

position did not. This result motivates the study of alternative heuristics that may

not comport with an optimizer’s theoretical intuition.

4.5 Conclusions & Recommendations

Given a defender’s initial sensor network, we formulated a trilevel mathematical

programming model to identify a subset of the defender’s heterogeneous sensors to

incapacitate and a subset of the defender’s network to degrade, subject to budget

constraints. In the model, the defender subsequently responds to the attacker’s ini-

tial sensor incapacitation and degradation attacks and relocates the surviving sensors,

seeking to optimize multiple, competing objectives. Lastly, the attacker selects the

optimal intrusion path through the defender’s sensor network to minimize the ex-

pected exposure to the defender’s sensors. We also derived a bilevel reformulation

which we solved by developing two new heuristics. The heuristics were compared
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based on solution quality and computation time and were examined via the solution

of three different synthetic-but-representative test instances, for varying attacker in-

capacitation and degradation budgets. Due to the combinatorial complexity of the

attacker’s potential incapacitation strategies, H1 was more computationally burden-

some than H2. Moreover, H2 yielded more favorable attacker solutions in terms of

minimizing the exposure to the defender’s sensors than H1 in 2 out of the 3 test

instances considered herein.

Future research could be conducted to account for the stochastic nature of var-

ious aspects of the ADA modeling framework assumed to be deterministic in this

study. For example, the exact number and/or location of defender assets may not be

known. We could also consider incapacitation attacks with stochastic probabilities of

success (i.e., an incapacitation decision would not necessarily result in the complete

incapacitation of a defender’s sensor, but may yield a partial decrease in the sensor’s

effectiveness, wherein the sensor could be allowed to relocate but would experience a

decrease in capability). The attacker could also decide to make no defender-related

coverage or sensor relocation assumptions, resulting in a single, exposure-focused ob-

jective function for the defender. A single objective ADA framework could generate

alternative heuristic (or potentially exact) solution approaches that may decrease

computation time and improve solution quality.
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V. Conclusion

This research provides a mathematical lens to analyze the emerging A2/AD threat

to understand how to engage and defeat air defense systems. To accomplish this task,

this dissertation focused on three main avenues of research, each building upon the

previous work. Chapter II proposed a bilevel math programming model for locating a

heterogeneous set of sensors to maximize the minimum exposure of an intruder’s pen-

etration path through a defended region. Building upon the initial work in Chapter

II, Chapter III formulated a multi-objective, bilevel optimization model to relocate

surviving sensors to maximize an intruder’s minimal expected exposure to traverse

a defended border region, minimize the maximum sensor relocation time, and mini-

mize the total number of sensors requiring relocation. Finally, Chapter IV presented

a trilevel, attacker-defender-attacker mathematical programming formulation for the

heterogeneous sensor network intrusion problem to optimally incapacitate a subset of

the defender’s sensors and degrade a subset of the defender’s network to ultimately

determine the attacker’s optimal penetration path through a defended network.

5.1 Contributions

The research presented in this dissertation represents an amalgamation and ex-

tension of work from various fields of study, including, but not limited to, facility

location and relocation, Wireless Sensor Networks (WSNs), interdiction modeling,

network intrusion, game theoretic bilevel and trilevel programming, multi-objective

optimization, and goal programming.

A majority of the research implementing breach- and exposure-coverage metrics

focuses on determining the maximal breach path or calculating the minimal expo-

sure path for a given sensor layout. The first research goal, however, was to find
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the optimal deployment of a given set of sensors to maximize the minimal exposure

of an intruder’s traversal of a defended region, extending the work of Amaldi et al.

(2008). The notion of weighted exposure was also proposed herein, considering a

heterogeneous set of sensors as opposed to utilizing only one sensor type. The benefit

of exposure weights is that they allow the defender to account for qualitative differ-

ences in sensor effectiveness not captured by the quantitative differences inherent in

the sensor probability functions. Qualitative differences in sensor performance may

result from factors such as insufficient sensor operator training or operational techni-

cal complexity of a given sensor type. The Minimax Exposure Problem formulation

also allows the defender to specify required minimum probabilities of coverage for a

subset of the located sensors (e.g., the most valuable sensors) and for high-value asset

locations in the defended region (e.g., fielded force locations, population centers, com-

mand and control centers, etc.), not considered by other works in the literature. This

feature enables the balancing of the exposure objective with the protection of sensors

and other high-value, defender locations. The robustness of the exposure metric for

border protection was also demonstrated by formulating and analyzing three addi-

tional alternative intrusion path metrics. The optimal objective value of the minimal

exposure solution was shown to result in the worst-case exposure of an intruder’s

traversal of the defended region, regardless of the intruder’s chosen metric for intru-

sion path determination. This research highlights the importance of considering an

exposure metric for determining the optimal intrusion path through an IADS.

This research also provided the only known exposure-based solution to the hetero-

geneous sensor relocation problem to optimally respond to the incapacitation and/or

degradation of sensors and their respective capabilities within a sensor network. Most

relocation problems in the literature are single-level problems, focused on optimizing

some coverage-related objective function. Alternatively, the multi-objective, bilevel
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modeling framework developed herein combined an upper-level problem that ac-

counted for the defender’s coverage and relocation related objectives and a lower-

level attacker problem that determined an optimal intrusion path. The single-level

reformulations presented in Chapters II and III enabled the determination of exact so-

lutions using a commercial solver, as demonstrated with the representative air defense

scenario considered herein.

Lastly, this dissertation presented the only known attacker-defender-attacker solu-

tion to the heterogeneous sensor network intrusion problem to optimally incapacitate

a subset of the defender’s sensors and degrade a subset of the defender’s network

to ultimately determine the attacker’s optimal penetration path through a defended

network. There are few, if any, attacker-defender-attacker models in the literature.

This research is the first of its kind (i.e., incapacitate and/or degrade → relocate →

route) to address the problem of sensor network intrusion. As part of the heuristic

solution approach constructed to determine the attacker’s degradation strategy, an

extension of the gradual covering decay model (Berman et al., 2003) was proposed

where, in this case the attacker seeks to maximize the degradation of the defender’s

sensors whereby each degradation attack location (i.e., facility) provides a specified

level of degradation (i.e., demand coverage) for each of the defender’s sensors based

on the sensor (i.e., demand) type. This is the only known covering problem in fa-

cility location in which facilities provide coverage of a heterogeneous set of demand

points, and the coverage level associated with each demand point is dependent upon

the specific demand type and the distance from each demand point.

5.2 Recommendations for Future Research

There are numerous aspects of the research conducted within this study that could

be altered, extended, or combined with other avenues of research. Future research
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could be conducted to increase model fidelity by accounting for the placement of

hierarchical sensors, adopting alternative intrusion path metrics, or by considering

multiple intrusion targets with disparate capabilities. A natural extension may be to

pair the research conducted herein with the Weapon-Target Assignment (WTA) prob-

lem to determine the optimal assignment of a limited number of defender interceptor

weapons to intruding targets. Sensor location solutions from the Maximin Exposure

Problem (MmEP) or the Multi-Objective Sensor Relocation Problem (MOSRP) could

be used as initial weapon employment locations for the WTA problem. Alternatively,

a multi-level mathematical programming formulation could be developed wherein the

MmEP or MOSRP is an upper-level problem to a lower-level WTA problem, since the

optimal sensor location decisions are naturally linked to the WTA decision variables.

The sensor probability-of-coverage functions could also be refined to account for

location-specific effects such as terrain and altitude, depending on the application of

interest. The proposed models could be extended to consider a third dimension for

the discretization of the defended region of interest, accounting for altitude. Alter-

native discretization schemes (e.g., truncated octahedrons) might also be considered,

especially for a three dimensional discretization. Moreover, one might seek to forgo

the discretization altogether and allow the intruder to operate in continuous space.

Alternatively, a follow-on study could set aside the discrete expectation framework

for identifying an intruder exposure-minimizing path, instead embedding the routing

problem within a simulation (e.g., see Ryan et al. (1998, 1999)).

Considering an attacker that is persistent rather than deliberate wherein sensor

coverage during relocations is of import, an iterative application of the relocation

model with small bounds on the allowable time for relocations could be constructed to

generate a suitable sequence of successive asset relocations. Alternatively, a temporal

relocation model could be adapted to enable the defender to implement time-phased
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sensor relocation strategies.

Various aspects of the modeling frameworks assumed to be deterministic in this

research could instead be examined as stochastic. For example, the exact number

and/or location of defender assets may not be known. Incapacitation attacks could

instead be considered with stochastic probabilities of success (i.e., an incapacitation

decision would not necessarily result in the complete incapacitation of a defender’s

sensor, but may yield a partial decrease in the sensor’s effectiveness, wherein the

sensor could be allowed to relocate but would experience a decrease in capability).

The attacker could also decide to make no defender-related coverage or sensor re-

location assumptions, resulting in a single, exposure-focused objective function for

the defender. A single objective attacker-defender-attacker framework could gener-

ate alternative heuristic (or potentially exact) solution approaches that may decrease

computation time and improve solution quality. Moreover, an exploration of appropri-

ate meta-heuristic solution approaches (e.g., genetic algorithms) could be considered

for any of the models proposed in this research.
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Appendix A. 2018 WDSI Proceedings: A Multi-objective
Bilevel Optimization Model for the Relocation of Integrated

Air Defense System Assets
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ABSTRACT 
 
Given a subset of ground-based air defense weapon systems within an Integrated Air Defense System 
(IADS) that have been incapacitated, we formulate a multi-objective bilevel optimization model to 
relocate surviving assets to maximize an intruder’s minimal exposure across a defended border region, 
minimize the maximum asset relocation time, and minimize the total number of assets requiring 
relocation. Our formulation also allows the defender to specify minimum coverage requirements for high-
value asset locations and emplaced weapon systems. Adopting the ε-constraint method, we develop a 
single-level reformulation that enables the identification of Pareto-optimal solutions and identifies trade-
offs between the competing objectives. 
 
Keywords: Bilevel programming, Multi-objective optimization, Asset relocation, Minimal exposure path, 
Air defense 
 

INTRODUCTION 
 

Unlike previously fielded air defense systems, emerging antiaccess/area-denial (A2/AD) IADS assets will 
be highly mobile, “with some systems demonstrating a ‘shoot-and-move’ time in minutes rather than hours 
or days” [12]. Instead of planning only the first salvo of strategic attacks against an enemy IADS, it is 
important to investigate and understand how an enemy may reposition its assets so that we can predict 
reactions to intended disruption of an IADS. The objective of this paper is to formulate a multi-objective 
bilevel optimization model to relocate surviving ground-based elements of an IADS and develop a 
reformulation that enables direct solution via a commercial solver.   
 

LITERATURE REVIEW 
 
A majority of facility relocation problems in the literature are applied to the relocation of fire companies 
[7], ambulances [3], and emergency vehicles [6]. These works have also been extended from single-
objective to multi-objective formulations. Sathe & Miller-Hooks [11] set forth a model to locate military 
units, police forces, and first responders, and to relocate idle units in response to an event, maximizing 
secondary coverage and minimizing cost. Melachrinoudis & Min [9] presented a multi-objective 
application involving the relocation and phase-out of a combined manufacturing plant and warehousing 
facility. The location and relocation of mobile servers in a transportation network were considered by 
Berman & Rahnama [2], wherein the authors sought to balance coverage, response time, and relocation 
costs. Recently, Paul et al. [10] provided a multi-objective, maximal conditional covering location 
problem applied to the relocation of hierarchical emergency response facilities to respond to large-scale 
emergencies. Incorporating ideas from facility relocation and multi-objective optimization will allow us 
to understand how an enemy IADS may adjust during conflict.  
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MODEL FORMULATION & SOLUTION METHODOLOGY 
 
In this section, we present a baseline formulation for the optimal relocation of IADS assets following an 
enemy attack. Given a specified set of surviving IADS assets, we determine the optimal layout that 
maximizes the minimal exposure of an intruder to prevent access across the IADS, minimizes the 
maximum asset relocation time, and minimizes the total number of assets requiring relocation, while also 
ensuring adequate coverage of high-value asset locations and a subset of Surface to Air Missile (SAM) 
batteries. 
 
Assumptions 
 
We make several assumptions related to the defender's objectives and IADS assets. In addition to adjusting 
an IADS to inhibit an adversary traversing the border region, we also seek to minimize the maximum time 
required to relocate assets, as well as to minimize the number of assets requiring relocation. Additionally, 
we require protection of a specified set of high-value asset locations (e.g., fielded force locations, 
command and control centers, etc.) and a subset of the located assets (e.g., long-range SAM batteries). A 
minimum probability of protection will be specified for each high-value asset location and for each IADS 
asset type. We assume a given allocation of SAM batteries; specifically, our model includes a combination 
of long-range (e.g., SA-21), medium-range (e.g., SA-22), and short-range (e.g., SA-24) missile batteries. 
Although these weapons do not comprise the full range of SAM technologies the U.S. could encounter, 
they are representative of the various threats that countries employing A2/AD strategies are likely to 
possess and employ [5]. In addition to the aforementioned SAM battery types, the long-range assets will 
require separate targeting and tracking radars to engage a target. However, to simplify the model, we 
assume that each SAM battery possesses the required radar coverage to engage enemy targets.  
 
Instead of assuming binary SAM battery coverage (i.e., covered/not covered), we implement a 
representative, but unclassified, probability-of-kill curve as a function of the distance from target to SAM 
battery, for each SAM battery type.  
 
Furthermore, we assume for this study the defender's incoming threat consists only of aircraft, vis-à-vis a 
wide range of threats not limited to, but including, cruise missiles and ballistic missiles. This assumption 
will determine the coverage capabilities for each SAM battery instead of requiring the model to account 
for a myriad of target types. Additionally, we assume IADS assets that are attacked by the intruder are 
completely incapacitated. That is, no partial capability remains for the attacked assets. Incapacitated 
assets, therefore, cannot be relocated. However, we allow the model to relocate unaffected assets to sites 
of incapacitated assets. 
To formulate instances of our model, we first construct a hexagonal tessellation over the border region of 
interest. We choose to discretize an IADS border region using a mesh of uniformly-sized regular 
hexagons, as Yousefi & Donohue [14] demonstrated it to be superior to alternative uniform tessellation 
means (e.g., square, rhombus, triangle). Intruding aircraft can traverse the arcs of the graph, traveling from 
an artificial origination node o on the (w.l.o.g.) left side of the hexagonal grid to the artificial destination 
node d on the right. Potential SAM battery locations will exist at the center of each hexagon in the grid.  
 
Lastly, we assume the adversaries know each other’s capabilities, and the intruder has sufficiently capable 
intelligence to know the location of IADS assets, once emplaced.  Our bilevel program is formulated as a 
zero-sum, two-player, extensive form, complete-and-perfect information game using the following 
notation.  
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Sets 
𝑇𝑇:  the set of all types of IADS assets available to locate, indexed by 𝑡𝑡. 
𝑆𝑆:  the set of all potential sites where SAM batteries can be located, indexed by 𝑠𝑠. 
𝑆𝑆̅:  the set of all sites where SAM batteries are initially located (i.e., 𝑆𝑆̅ = {𝑆𝑆|𝑥𝑥𝑠𝑠̅𝑡𝑡 = 1,∀�̅�𝑠 ∈ 𝑆𝑆̅, 𝑡𝑡 ∈ 𝑇𝑇}), 

indexed by �̅�𝑠.  
�̂�𝑆:  the set of all sites where SAM batteries are located following asset relocations (i.e., �̂�𝑆 =

{𝑆𝑆|𝑥𝑥𝑠𝑠̅𝑠𝑠𝑡𝑡 = 1,∀�̅�𝑠 ∈ 𝑆𝑆̅, 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇}), indexed by �̂�𝑠, where 𝑥𝑥𝑠𝑠̅𝑠𝑠𝑡𝑡 = 1 indicates a decision to   
      relocate a SAM battery of type 𝑡𝑡 ∈ 𝑇𝑇 from site �̅�𝑠 ∈ 𝑆𝑆̅ to site 𝑠𝑠 ∈ 𝑆𝑆. 
𝐹𝐹:  the set of all sites where high-value assets are located, indexed by 𝑓𝑓. 
𝐴𝐴:  the set of arcs in the graph that are equidistant from adjacent potential SAM battery sites 𝑠𝑠 ∈ 𝑆𝑆, and 

over which an intruding aircraft can traverse, indexed by 𝑎𝑎. 
𝑁𝑁:  the set of all nodes at which arcs intersect and through which an intruding aircraft can traverse, 

indexed by 𝑛𝑛.  
𝐺𝐺(𝑁𝑁,𝐴𝐴) :  the graph over which an intruding aircraft will traverse, as induced by the set of potential 

SAM battery sites 𝑠𝑠 ∈ 𝑆𝑆.  
 
Parameters 
𝑤𝑤𝑡𝑡:  the exposure weight for asset type 𝑡𝑡 ∈ 𝑇𝑇. 
𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡:  the exposure time of an aircraft traversing arc (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 to an asset of type 𝑡𝑡 ∈ 𝑇𝑇 located at site 𝑠𝑠 ∈

𝑆𝑆.  
𝑑𝑑𝑠𝑠̅𝑠𝑠:  the Euclidean distance between SAM battery sites �̅�𝑠 ∈ 𝑆𝑆̅ and 𝑠𝑠 ∈ 𝑆𝑆. 
𝑟𝑟𝑡𝑡:  the transit speed of IADS asset type 𝑡𝑡 ∈ 𝑇𝑇. 
𝑥𝑥𝑠𝑠̅𝑡𝑡:  1 if a type 𝑡𝑡 ∈ 𝑇𝑇 IADS asset is initially located at site �̅�𝑠 ∈ 𝑆𝑆̅, and 0 otherwise. 
𝑧𝑧𝑠𝑠̅𝑡𝑡:  1 if a type 𝑡𝑡 ∈ 𝑇𝑇 IADS asset initially located at site �̅�𝑠 ∈ 𝑆𝑆̅ is incapacitated, and 0 otherwise. 
𝐵𝐵𝑡𝑡:  the maximum number of type 𝑡𝑡 ∈ 𝑇𝑇 IADS assets to locate. 
𝑝𝑝𝑠𝑠𝑠𝑠𝑡𝑡 :  the probability that a SAM battery of type 𝑡𝑡 ∈ 𝑇𝑇  located at site 𝑠𝑠 ∈ 𝑆𝑆 can cover the point 𝑝𝑝.  
𝐶𝐶𝑓𝑓:  the minimum probability of protection required for each high-value asset location 𝑓𝑓 ∈ 𝐹𝐹. 
𝐶𝐶𝑡𝑡:  the minimum probability of protection required for each located SAM battery of type 𝑡𝑡 ∈ 𝑇𝑇.  
 
Decision Variables  
𝑥𝑥𝑠𝑠̅𝑠𝑠𝑡𝑡 :  1 if a type 𝑡𝑡 ∈ 𝑇𝑇 IADS asset is relocated from site �̅�𝑠 ∈ 𝑆𝑆̅ to site 𝑠𝑠 ∈ 𝑆𝑆; 0 otherwise. 
𝑦𝑦𝑖𝑖𝑖𝑖:  1 if arc (𝑖𝑖, 𝑗𝑗) is in the minimal exposure path; 0 otherwise. 
𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚:  the maximum time (in hours) required to complete asset moves. 
 
Formulation  
 
Given our assumptions and leveraging the aforementioned notation, we formulate the multi-objective, 
bilevel program IADS Multi-Objective Asset Relocation Problem (IADS-MOARP), denoted Problem 
P1, as follows: 
 

max
𝒙𝒙,𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚

 𝑓𝑓(𝒙𝒙,𝒚𝒚,𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚) = �𝑓𝑓1(𝒙𝒙,𝒚𝒚),−𝑓𝑓2(𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚),−𝑓𝑓3(𝒙𝒙)�   (1) 

𝑠𝑠. 𝑡𝑡. 𝑓𝑓1(𝒙𝒙,𝒚𝒚) = � ����𝑤𝑤𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡𝑥𝑥𝑠𝑠̅𝑠𝑠𝑡𝑡
𝑡𝑡∈𝑇𝑇 𝑠𝑠∈𝑆𝑆𝑠𝑠̅∈𝑆𝑆̅

�
(𝑖𝑖,𝑖𝑖)∈𝐴𝐴

𝑦𝑦𝑖𝑖𝑖𝑖 , (2) 

 𝑓𝑓2(𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚) = 𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚, (3) 
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The objective function (1) maximizes the total expected weighted exposure of the minimal exposure path 
(2), minimizes the maximum IADS asset relocation time (3), and minimizes the total number relocated 
IADS assets (4). Constraint (5) provides lower bounds on the maximum relocation time, 𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚. Constraint 
(6) ensures we can only relocate assets that are initially located and not incapacitated. Constraint (7) 
determines the number of each type of IADS asset the defender can relocate. Constraint (8) prevents more 
than one SAM battery from being relocated to the same site. Constraint (9) ensures that all high-value 
asset locations receive the required coverage. The form of Constraint (9) results from a logarithmic 
transformation of the constraint 
  

1 −���1 − 𝑝𝑝𝑠𝑠𝑓𝑓𝑡𝑡 �
𝑚𝑚𝑠𝑠�𝑠𝑠
𝑡𝑡
≥ 𝐶𝐶𝑓𝑓,

 

𝑡𝑡∈𝑇𝑇

 

𝑠𝑠∈𝑆𝑆

 ∀𝑓𝑓 ∈ 𝐹𝐹, 

 
wherein independence is assumed among the probabilities of coverage, 𝑝𝑝𝑠𝑠𝑓𝑓𝑡𝑡 , over SAM battery locations, 
𝑠𝑠 ∈ 𝑆𝑆, and SAM battery types, 𝑡𝑡 ∈ 𝑇𝑇. (Implied is the assumption that 𝐶𝐶𝑓𝑓 < 1, which is appropriate for this 
probabilistic metric wherein guaranteed coverage is not attainable.) Likewise, Constraint (10) provides 
for the coverage of SAM batteries by other SAM batteries. Constraint (11) enforces binary restrictions on 
the IADS asset relocation decision variables. The lower-level objective function (12) seeks to minimize 
the total expected weighted exposure of the minimal exposure path (2). Constraint (13) induces the flow 
balance constraints of the minimal exposure path from the intruder's point of origin, o, to destination point, 
d. Lastly, Constraint (14) is the non-negativity constraint associated with the minimal exposure path 
variables. 
 

 𝑓𝑓3(𝒙𝒙) = � � �𝑥𝑥𝑠𝑠̅𝑠𝑠𝑡𝑡 ,                         
𝑡𝑡∈𝑇𝑇 𝑠𝑠∈𝑆𝑆\{𝑠𝑠̅}𝑠𝑠̅∈𝑆𝑆̅

 (4) 

 �
𝑑𝑑𝑠𝑠̅𝑠𝑠 
𝑟𝑟𝑡𝑡 �

𝑥𝑥𝑠𝑠̅𝑠𝑠𝑡𝑡 ≤ 𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚, ∀�̅�𝑠 ∈ 𝑆𝑆̅, 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇, (5) 

 �𝑥𝑥𝑠𝑠̅𝑠𝑠𝑡𝑡 = 𝑥𝑥𝑠𝑠̅𝑡𝑡 − 𝑧𝑧𝑠𝑠̅𝑡𝑡 ,
𝑠𝑠∈𝑆𝑆

        ∀�̅�𝑠 ∈ 𝑆𝑆̅, 𝑡𝑡 ∈ 𝑇𝑇, (6) 

 ��𝑥𝑥𝑠𝑠̅𝑠𝑠𝑡𝑡 = 𝐵𝐵𝑡𝑡 −�𝑧𝑧𝑠𝑠̅𝑡𝑡

𝑠𝑠̅∈𝑆𝑆̅

, ∀𝑡𝑡 ∈ 𝑇𝑇,            
𝑠𝑠∈𝑆𝑆 𝑠𝑠̅∈𝑆𝑆̅

 (7) 

 ��𝑥𝑥𝑠𝑠̅𝑠𝑠𝑡𝑡 ≤ 1, ∀𝑠𝑠 ∈ 𝑆𝑆,                                
𝑡𝑡∈𝑇𝑇 𝑠𝑠̅∈𝑆𝑆̅

 (8) 

 ��� ln�1 − 𝑝𝑝𝑠𝑠𝑓𝑓𝑡𝑡 �𝑥𝑥𝑠𝑠̅𝑠𝑠𝑡𝑡 ≤ ln(1 − 𝐶𝐶𝑓𝑓), ∀𝑓𝑓 ∈ 𝐹𝐹,
𝑡𝑡∈𝑇𝑇 𝑠𝑠∈𝑆𝑆𝑠𝑠̅∈𝑆𝑆̅

 (9) 

 � � � ln(1 − 𝑝𝑝𝑠𝑠�̂�𝑠𝑡𝑡 )𝑥𝑥𝑠𝑠̅𝑠𝑠𝑡𝑡 ≤ ln(1 − 𝐶𝐶𝑡𝑡), ∀�̂�𝑠 ∈ �̂�𝑆, 𝑡𝑡 ∈ 𝑇𝑇,
𝑡𝑡∈𝑇𝑇 𝑠𝑠∈𝑆𝑆\{�̂�𝑠}𝑠𝑠̅∈𝑆𝑆̅

 (10) 

 𝑥𝑥𝑠𝑠̅𝑠𝑠𝑡𝑡 ∈ {0,1}, ∀�̅�𝑠 ∈ 𝑆𝑆̅, 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇, (11) 
 min

  𝒚𝒚
   𝑓𝑓1(𝒙𝒙,𝒚𝒚)                                                       (12) 

 𝑠𝑠. 𝑡𝑡.  � 𝑦𝑦𝑖𝑖𝑖𝑖 − � 𝑦𝑦𝑖𝑖𝑖𝑖
𝑖𝑖:(𝑖𝑖,𝑖𝑖)∈𝐴𝐴𝑖𝑖:(𝑖𝑖,𝑖𝑖)∈𝐴𝐴

= �
1,                     𝑖𝑖 = 𝑜𝑜,

−1,                      𝑖𝑖 = 𝑑𝑑,    
0, 𝑖𝑖 = 𝑁𝑁\{𝑜𝑜,𝑑𝑑},

∀𝑖𝑖 ∈ 𝑁𝑁, (13) 

          𝑦𝑦𝑖𝑖𝑖𝑖 ≥ 0, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴. (14) 
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Methodology 
 
Instead of solving IADS-MOARP (1)-(14) using a weighted sum or lexicographic approach, we utilize 
the ε-constraint method to identify a set of non-inferior solutions. We first reformulate Problem P1 (i.e., 
IADS-MOARP) to Problem P2 as follows:  
 
 
 
 
 
 
 
 
 
In this reformulation, we replaced the objective function (1) with the defender and intruder objectives of 
maximizing and minimizing the total expected weighted exposure of the minimal exposure path (2), 
respectively. We utilize Constraints (16) and (17) to respectively bound our second and third objective 
functions:  the maximum asset relocation time and the total number of asset relocations.  
 
Similar to other bilevel math programming works [1][4][8][13], we reformulate the bilevel Problem P2 
by replacing the lower-level problem with its dual formulation. Treating the upper-level variables 𝑥𝑥𝑠𝑠̅𝑠𝑠𝑡𝑡  as 
parameters, the lower-level minimization problem becomes a shortest path problem in which the expected 
weighted exposure objective is minimized, subject to Constraints (13) and (14). Replacing the primal, 
lower-level problem with its dual formulation as represented in Equations (18)-(21),  
 
 
 
 
 
 
 
 
where 𝜋𝜋𝑖𝑖 is the dual variable associated with the 𝑖𝑖th Constraint (13), we obtain the following reformulation 
of Problem P2, denoted Problem P3: 
 
 
 
 
Problem P3 provides a baseline, single-level model to determine the optimal relocation of surviving air 
defense assets following an attack.  

 
CONCLUSION 

 
Problem P3 can be solved directly using a commercial solver and iteratively while incrementally 
decreasing the values of  𝜀𝜀2 and 𝜀𝜀3 to map the efficient Pareto frontier for an instance of Problem P1, 
thereby examining the tradeoffs between the competing objectives of maximizing the intruder’s minimal 
exposure, minimizing the maximum asset relocation time, and minimizing the total number of asset 
relocations. 

max
𝒙𝒙,𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚

 min
𝒚𝒚

 � ����𝑤𝑤𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡𝑥𝑥𝑠𝑠̅𝑠𝑠𝑡𝑡
𝑡𝑡∈𝑇𝑇 𝑠𝑠∈𝑆𝑆𝑠𝑠̅∈𝑆𝑆̅

�
(𝑖𝑖,𝑖𝑖)∈𝐴𝐴

𝑦𝑦𝑖𝑖𝑖𝑖 (15) 

𝑠𝑠. 𝑡𝑡. 𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜀𝜀2, (16) 

 � � �𝑥𝑥𝑠𝑠̅𝑠𝑠𝑡𝑡 ≤ 𝜀𝜀3,                         
𝑡𝑡∈𝑇𝑇 𝑠𝑠∈𝑆𝑆\{𝑠𝑠̅}𝑠𝑠̅∈𝑆𝑆̅

 (17) 

 Constraints (5)-(11) and (13)-(14).  

max
𝝅𝝅

  𝜋𝜋𝑑𝑑 − 𝜋𝜋𝑜𝑜 (18) 

𝑠𝑠. 𝑡𝑡. −𝜋𝜋𝑖𝑖 + 𝜋𝜋𝑖𝑖 ≤���𝑤𝑤𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡𝑥𝑥𝑠𝑠̅𝑠𝑠𝑡𝑡
𝑡𝑡∈𝑇𝑇 𝑠𝑠∈𝑆𝑆𝑠𝑠̅∈𝑆𝑆̅

, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, (19) 

 𝜋𝜋𝑜𝑜 = 0, (20) 
 𝜋𝜋𝑖𝑖 unrestricted,∀𝑖𝑖 ∈ 𝑁𝑁\{𝑜𝑜}, (21) 

max
𝒙𝒙,𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚,𝝅𝝅

 𝜋𝜋𝑑𝑑 − 𝜋𝜋𝑜𝑜   (22) 
𝑠𝑠. 𝑡𝑡. Constraints (5)-(11), (16)-(17), and (19)-(21).   
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