10,023 research outputs found

    Sensor networks and distributed CSP: communication, computation and complexity

    Get PDF
    We introduce SensorDCSP, a naturally distributed benchmark based on a real-world application that arises in the context of networked distributed systems. In order to study the performance of Distributed CSP (DisCSP) algorithms in a truly distributed setting, we use a discrete-event network simulator, which allows us to model the impact of different network traffic conditions on the performance of the algorithms. We consider two complete DisCSP algorithms: asynchronous backtracking (ABT) and asynchronous weak commitment search (AWC), and perform performance comparison for these algorithms on both satisfiable and unsatisfiable instances of SensorDCSP. We found that random delays (due to network traffic or in some cases actively introduced by the agents) combined with a dynamic decentralized restart strategy can improve the performance of DisCSP algorithms. In addition, we introduce GSensorDCSP, a plain-embedded version of SensorDCSP that is closely related to various real-life dynamic tracking systems. We perform both analytical and empirical study of this benchmark domain. In particular, this benchmark allows us to study the attractiveness of solution repairing for solving a sequence of DisCSPs that represent the dynamic tracking of a set of moving objects.This work was supported in part by AFOSR (F49620-01-1-0076, Intelligent Information Systems Institute and MURI F49620-01-1-0361), CICYT (TIC2001-1577-C03-03 and TIC2003-00950), DARPA (F30602-00-2- 0530), an NSF CAREER award (IIS-9734128), and an Alfred P. Sloan Research Fellowship. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the US Government

    NETEMBED: A Network Resource Mapping Service for Distributed Applications

    Full text link
    Emerging configurable infrastructures such as large-scale overlays and grids, distributed testbeds, and sensor networks comprise diverse sets of available computing resources (e.g., CPU and OS capabilities and memory constraints) and network conditions (e.g., link delay, bandwidth, loss rate, and jitter) whose characteristics are both complex and time-varying. At the same time, distributed applications to be deployed on these infrastructures exhibit increasingly complex constraints and requirements on resources they wish to utilize. Examples include selecting nodes and links to schedule an overlay multicast file transfer across the Grid, or embedding a network experiment with specific resource constraints in a distributed testbed such as PlanetLab. Thus, a common problem facing the efficient deployment of distributed applications on these infrastructures is that of "mapping" application-level requirements onto the network in such a manner that the requirements of the application are realized, assuming that the underlying characteristics of the network are known. We refer to this problem as the network embedding problem. In this paper, we propose a new approach to tackle this combinatorially-hard problem. Thanks to a number of heuristics, our approach greatly improves performance and scalability over previously existing techniques. It does so by pruning large portions of the search space without overlooking any valid embedding. We present a construction that allows a compact representation of candidate embeddings, which is maintained by carefully controlling the order via which candidate mappings are inserted and invalid mappings are removed. We present an implementation of our proposed technique, which we call NETEMBED – a service that identify feasible mappings of a virtual network configuration (the query network) to an existing real infrastructure or testbed (the hosting network). We present results of extensive performance evaluation experiments of NETEMBED using several combinations of real and synthetic network topologies. Our results show that our NETEMBED service is quite effective in identifying one (or all) possible embeddings for quite sizable queries and hosting networks – much larger than what any of the existing techniques or services are able to handle.National Science Foundation (CNS Cybertrust 0524477, NSF CNS NeTS 0520166, NSF CNS ITR 0205294, EIA RI 0202067

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications

    Dense Piecewise Planar RGB-D SLAM for Indoor Environments

    Full text link
    The paper exploits weak Manhattan constraints to parse the structure of indoor environments from RGB-D video sequences in an online setting. We extend the previous approach for single view parsing of indoor scenes to video sequences and formulate the problem of recovering the floor plan of the environment as an optimal labeling problem solved using dynamic programming. The temporal continuity is enforced in a recursive setting, where labeling from previous frames is used as a prior term in the objective function. In addition to recovery of piecewise planar weak Manhattan structure of the extended environment, the orthogonality constraints are also exploited by visual odometry and pose graph optimization. This yields reliable estimates in the presence of large motions and absence of distinctive features to track. We evaluate our method on several challenging indoors sequences demonstrating accurate SLAM and dense mapping of low texture environments. On existing TUM benchmark we achieve competitive results with the alternative approaches which fail in our environments.Comment: International Conference on Intelligent Robots and Systems (IROS) 201

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    The Sensor Network Workbench: Towards Functional Specification, Verification and Deployment of Constrained Distributed Systems

    Full text link
    As the commoditization of sensing, actuation and communication hardware increases, so does the potential for dynamically tasked sense and respond networked systems (i.e., Sensor Networks or SNs) to replace existing disjoint and inflexible special-purpose deployments (closed-circuit security video, anti-theft sensors, etc.). While various solutions have emerged to many individual SN-centric challenges (e.g., power management, communication protocols, role assignment), perhaps the largest remaining obstacle to widespread SN deployment is that those who wish to deploy, utilize, and maintain a programmable Sensor Network lack the programming and systems expertise to do so. The contributions of this thesis centers on the design, development and deployment of the SN Workbench (snBench). snBench embodies an accessible, modular programming platform coupled with a flexible and extensible run-time system that, together, support the entire life-cycle of distributed sensory services. As it is impossible to find a one-size-fits-all programming interface, this work advocates the use of tiered layers of abstraction that enable a variety of high-level, domain specific languages to be compiled to a common (thin-waist) tasking language; this common tasking language is statically verified and can be subsequently re-translated, if needed, for execution on a wide variety of hardware platforms. snBench provides: (1) a common sensory tasking language (Instruction Set Architecture) powerful enough to express complex SN services, yet simple enough to be executed by highly constrained resources with soft, real-time constraints, (2) a prototype high-level language (and corresponding compiler) to illustrate the utility of the common tasking language and the tiered programming approach in this domain, (3) an execution environment and a run-time support infrastructure that abstract a collection of heterogeneous resources into a single virtual Sensor Network, tasked via this common tasking language, and (4) novel formal methods (i.e., static analysis techniques) that verify safety properties and infer implicit resource constraints to facilitate resource allocation for new services. This thesis presents these components in detail, as well as two specific case-studies: the use of snBench to integrate physical and wireless network security, and the use of snBench as the foundation for semester-long student projects in a graduate-level Software Engineering course

    Trading Safety Versus Performance: Rapid Deployment of Robotic Swarms with Robust Performance Constraints

    Full text link
    In this paper we consider a stochastic deployment problem, where a robotic swarm is tasked with the objective of positioning at least one robot at each of a set of pre-assigned targets while meeting a temporal deadline. Travel times and failure rates are stochastic but related, inasmuch as failure rates increase with speed. To maximize chances of success while meeting the deadline, a control strategy has therefore to balance safety and performance. Our approach is to cast the problem within the theory of constrained Markov Decision Processes, whereby we seek to compute policies that maximize the probability of successful deployment while ensuring that the expected duration of the task is bounded by a given deadline. To account for uncertainties in the problem parameters, we consider a robust formulation and we propose efficient solution algorithms, which are of independent interest. Numerical experiments confirming our theoretical results are presented and discussed
    • …
    corecore