6 research outputs found

    Cardiac Inter Beat Interval and Atrial Fibrillation Detection using Video Plethysmography

    Get PDF
    Facial videoplethysmography provides non-contact measurement of heart activity based on blood volume pulsations detected in facial tissue. Typically, the signal is extracted using a simple webcam followed by elaborated signal processing methods, and provides limited accuracy of time-domain characteristics. In this study, we explore the possibility of providing accurate time-domain pulse and inter-beat interval measurements using a high- quality image sensor camera and various signal processing approaches, and use these measurements to diagnose atrial fibrillation. We capture synchronized signals using a high- quality camera, a simple webcam, an earlobe photoplethysmography sensor, and a body- surface electrocardiogram from a large group of subjects, including subjects diagnosed with cardiac arrhythmias. All signals are processed using both blind source separation and color conversion. We then assess accuracy of IBI detection, heart rate variability estimation, and atrial fibrillation diagnose by comparing to a body-surface electrocardiogram. We present a new heart variability indicator for blood volume pulsating signals. Our results demonstrate that the accuracy of a facial VPG system is greatly improved when using a high-quality camera. Coupling the high-quality camera with color conversion from RGB to Hue provides a level of accuracy equivalent to that of commercially available photoplethysmography sensors, and offers a non-contact alternative to current technology for heart rate variability assessment and atrial fibrillation screening

    A Deep Learning Classifier for Detecting Atrial Fibrillation in Hospital Settings Applicable to Various Sensing Modalities

    Get PDF
    Cardiac signals provide variety of information related to the patient\u27s health. One of the most important is for medical experts to diagnose the functionality of a patient’s heart. This information helps the medical experts monitor heart disease such as atrial fibrillation and heart failure. Atrial fibrillation (AF) is one of the most major diseases that are threatening patients’ health. Medical experts measure cardiac signals usng the Electrocardiogram (ECG or EKG), the Photoplethysmogram (PPG), and more recently the Videoplethysmogram (VPG). Then they can use these measurements to analyze the heart functionality to detect heart diseases. In this study, these three major cardiac signals were used with different classification methodologies such as Basic Thresholding Classifiers (BTC), Machine Learning (SVM) classifiers, and deep learning classifiers based on Convolutional Neural Networks (CNN) to detect AF. To support the work, cardiac signals were acquired from forty-six AF subjects scheduled for cardioversion who were enrolled in a clinical study that was approved by the Internal Review Committees to protect human subjects at the University of Rochester Medical Center (URMC, Rochester, NY), and the Rochester Institute of Technology (RIT, Rochester, NY). The study included synchronized measurements of 5 minutes and 30 seconds of ECG, PPG, VPG 180Hz (High-quality camera), VPG 30 Hz (low quality webcam), taken before and after cardioversion of AF subjects receiving treatment at the AF Clinic of URMC. These data are subjected to BTC, SVM, and CNN classifiers to detect AF and compare the result for each classifier depending on the signal type. We propose a deep learning approach that is applicable to different kinds of cardiac signals to detect AF in a similar manner. By building this technique for different sensors we aim to provide a framework to implement a technique that can be used for most devices, such as, phones, tablets, PCs, ECG devices, and wearable PPG sensors. This conversion of the different sensing platforms provides a single AF detection classifier that can support a complete monitoring cycle that is referring to screen the patient whether at a hospital or home. By using that, the risk factor of heart attack, stroke, or other kind of heart complications can be reduced to a low level to prevent major dangers, since increasing monitoring AF patients helps to predict the disease at an early stage as well as track its progress. We show that the proposed approach provides around 99% accuracy for each type of classifier on the test dataset, thereby helping generalize AF detection by simplifying implementation using a sensor-agnostic deep learning model

    2021 ISHNE/ HRS/ EHRA/ APHRS collaborative statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals: From the International Society for Holter and Noninvasive Electrocardiology/Heart Rhythm Society/European Heart Rhythm Association/Asia Pacific Heart Rhythm Society.

    Get PDF
    This collaborative statement from the International Society for Holter and Noninvasive Electrocardiology/ Heart Rhythm Society/ European Heart Rhythm Association/ Asia Pacific Heart Rhythm Society describes the current status of mobile health ("mHealth") technologies in arrhythmia management. The range of digital medical tools and heart rhythm disorders that they may be applied to and clinical decisions that may be enabled are discussed. The facilitation of comorbidity and lifestyle management (increasingly recognized to play a role in heart rhythm disorders) and patient self-management are novel aspects of mHealth. The promises of predictive analytics but also operational challenges in embedding mHealth into routine clinical care are explored

    Towards multimodal driver state monitoring systems for highly automated driving

    Get PDF
    Real-time monitoring of drivers’ functional states will soon become a required safety feature for commercially available vehicles with automated driving capability. Automated driving technology aims to mitigate human error from road transport with the progressive automatisation of specific driving tasks. However, while control of the driving task remains shared between humans and automated systems, the inclusion of this new technology is not exempt from other human factors-related challenges. Drivers’ functional states are essentially a combination of psychological, emotional, and cognitive states, and they generate a constant activity footprint available for measurement through neural and peripheral physiology, among other measures. These factors can determine drivers’ functional states and, thus, drivers’ availability to safely perform control transitions between human and vehicle. This doctoral project aims at investigating the potential of electrocardiogram (ECG), electrodermal activity (EDA) and functional near-infrared spectroscopy (fNIRS) as measures for a multimodal driver state monitoring (DSM) system for highly automated driving (i.e., SAE levels 3 and 4). While current DSM systems relying on gaze behaviour measures have proven valid and effective, several limitations and challenges could only be overcome using eye-tracking in tandem with physiological parameters. This thesis investigates whether ECG, EDA and fNIRS would be good candidates for such a purpose. Two driving simulator studies were performed to measure mental workload, trust in automation, stress and perceived risk, all identified as modulators of drivers’ functional states and that could eventually determine drivers’ availability to take-over manual control. The main findings demonstrate that DSM systems should adopt multiple physiological measures to capture changes in functional states relevant for driver readiness. Future DSM systems will benefit from the knowledge generated by this research by applying machine learning methods to these measures for determining drivers’ availability for optimal take-over performance
    corecore