2 research outputs found

    Computational assessment of smooth and rough parameter dependence of statistics in chaotic dynamical systems

    Full text link
    An assumption of smooth response to small parameter changes, of statistics or long-time averages of a chaotic system, is generally made in the field of sensitivity analysis, and the parametric derivatives of statistical quantities are critically used in science and engineering. In this paper, we propose a numerical procedure to assess the differentiability of statistics with respect to parameters in chaotic systems. We numerically show that the existence of the derivative depends on the Lebesgue-integrability of a certain density gradient function, which we define as the derivative of logarithmic SRB density along the unstable manifold. We develop a recursive formula for the density gradient that can be efficiently computed along trajectories, and demonstrate its use in determining the differentiability of statistics. Our numerical procedure is illustrated on low-dimensional chaotic systems whose statistics exhibit both smooth and rough regions in parameter space.Comment: 32 pages, 13 figures, submitted to journal, under revie
    corecore