4,195 research outputs found

    Hierarchical structure-and-motion recovery from uncalibrated images

    Full text link
    This paper addresses the structure-and-motion problem, that requires to find camera motion and 3D struc- ture from point matches. A new pipeline, dubbed Samantha, is presented, that departs from the prevailing sequential paradigm and embraces instead a hierarchical approach. This method has several advantages, like a provably lower computational complexity, which is necessary to achieve true scalability, and better error containment, leading to more stability and less drift. Moreover, a practical autocalibration procedure allows to process images without ancillary information. Experiments with real data assess the accuracy and the computational efficiency of the method.Comment: Accepted for publication in CVI

    First operation of a double phase LAr Large Electron Multiplier Time Projection Chamber with a two-dimensional projective readout anode

    Full text link
    We have previously reported on the construction and successful operation of the novel double phase Liquid Argon Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC). This detector concept provides a 3D-tracking and calorimetric device capable of adjustable charge amplification, a promising readout technology for next-generation neutrino detectors and direct Dark Matter searches. In this paper, we report on the first operation of a LAr LEM-TPC prototype - with an active area of 10×\times10 cm2^2 and 21 cm drift length - equipped with a single 1 mm thick LEM amplifying stage and a two dimensional projective readout anode. Cosmic muon events were collected, fully reconstructed and used to characterize the performance of the chamber. The obtained signals provide images of very high quality and the energy loss distributions of minimum ionizing tracks give a direct estimate of the amplification. We find that a stable gain of 27 can be achieved with this detector configuration corresponding to a signal-over-noise ratio larger than 200 for minimum ionizing tracks. The decoupling of the amplification stage and the use of the 2D readout anode offer several advantages which are described in the text.Comment: 25 pages, 17 figure

    MScMS-II: an innovative IR-based indoor coordinate measuring system for large-scale metrology applications

    No full text
    According to the current great interest concerning large-scale metrology applications in many different fields of manufacturing industry, technologies and techniques for dimensional measurement have recently shown a substantial improvement. Ease-of-use, logistic and economic issues, as well as metrological performance are assuming a more and more important role among system requirements. This paper describes the architecture and the working principles of a novel infrared (IR) optical-based system, designed to perform low-cost and easy indoor coordinate measurements of large-size objects. The system consists of a distributed network-based layout, whose modularity allows fitting differently sized and shaped working volumes by adequately increasing the number of sensing units. Differently from existing spatially distributed metrological instruments, the remote sensor devices are intended to provide embedded data elaboration capabilities, in order to share the overall computational load. The overall system functionalities, including distributed layout configuration, network self-calibration, 3D point localization, and measurement data elaboration, are discussed. A preliminary metrological characterization of system performance, based on experimental testing, is also presente

    Calibration and Sensitivity Analysis of a Stereo Vision-Based Driver Assistance System

    Get PDF
    Az http://intechweb.org/ alatti "Books" fül alatt kell rákeresni a "Stereo Vision" címre és az 1. fejezetre

    Geometric Properties of Central Catadioptric Line Images and Their Application in Calibration

    Get PDF
    In central catadioptric systems, lines in a scene are projected to conic curves in the image. This work studies the geometry of the central catadioptric projection of lines and its use in calibration. It is shown that the conic curves where the lines are mapped possess several projective invariant properties. From these properties, it follows that any central catadioptric system can be fully calibrated from an image of three or more lines. The image of the absolute conic, the relative pose between the camera and the mirror, and the shape of the reflective surface can be recovered using a geometric construction based on the conic loci where the lines are projected. This result is valid for any central catadioptric system and generalizes previous results for paracatadioptric sensors. Moreover, it is proven that systems with a hyperbolic/elliptical mirror can be calibrated from the image of two lines. If both the shape and the pose of the mirror are known, then two line images are enough to determine the image of the absolute conic encoding the camera’s intrinsic parameters. The sensitivity to errors is evaluated and the approach is used to calibrate a real camer

    3D Reconstruction through Segmentation of Multi-View Image Sequences

    Get PDF
    We propose what we believe is a new approach to 3D reconstruction through the design of a 3D voxel volume, such that all the image information and camera geometry are embedded into one feature space. By customising the volume to be suitable for segmentation, the key idea that we propose is the recovery of a 3D scene through the use of globally optimal geodesic active contours. We also present an extension to this idea by proposing the novel design of a 4D voxel volume to analyse the stereo motion problem in multi-view image sequences
    • …
    corecore