337 research outputs found

    Improved Spectrum Mobility using Virtual Reservation in Collaborative Cognitive Radio Networks

    Full text link
    Cognitive radio technology would enable a set of secondary users (SU) to opportunistically use the spectrum licensed to a primary user (PU). On the appearance of this PU on a specific frequency band, any SU occupying this band should free it for PUs. Typically, SUs may collaborate to reduce the impact of cognitive users on the primary network and to improve the performance of the SUs. In this paper, we propose and analyze the performance of virtual reservation in collaborative cognitive networks. Virtual reservation is a novel link maintenance strategy that aims to maximize the throughput of the cognitive network through full spectrum utilization. Our performance evaluation shows significant improvements not only in the SUs blocking and forced termination probabilities but also in the throughput of cognitive users.Comment: 7 pages, 10 figures, IEEE ISCC 201

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Opportunistic Spectrum Access in Cognitive Radio Network

    Get PDF

    Analysis and Optimization of Random Sensing Order in Cognitive Radio Networks

    Full text link
    Developing an efficient spectrum access policy enables cognitive radios to dramatically increase spectrum utilization while ensuring predetermined quality of service levels for primary users. In this paper, modeling, performance analysis, and optimization of a distributed secondary network with random sensing order policy are studied. Specifically, the secondary users create a random order of available channels upon primary users return, and then find optimal transmission and handoff opportunities in a distributed manner. By a Markov chain analysis, the average throughputs of the secondary users and average interference level among the secondary and primary users are investigated. A maximization of the secondary network performance in terms of the throughput while keeping under control the average interference is proposed. It is shown that despite of traditional view, non-zero false alarm in the channel sensing can increase channel utilization, especially in a dense secondary network where the contention is too high. Then, two simple and practical adaptive algorithms are established to optimize the network. The second algorithm follows the variations of the wireless channels in non-stationary conditions and outperforms even static brute force optimization, while demanding few computations. The convergence of the distributed algorithms are theoretically investigated based on the analytical performance indicators established by the Markov chain analysis. Finally, numerical results validate the analytical derivations and demonstrate the efficiency of the proposed schemes. It is concluded that fully distributed sensing order algorithms can lead to substantial performance improvements in cognitive radio networks without the need of centralized management or message passing among the users.Comment: 16 pages, 12 figures, 7 tables, accepted in Journal of Selected Areas in Communications (J-SAC) CR series and will be published in Apr'1
    • …
    corecore