897 research outputs found

    RF-Powered Cognitive Radio Networks: Technical Challenges and Limitations

    Full text link
    The increasing demand for spectral and energy efficient communication networks has spurred a great interest in energy harvesting (EH) cognitive radio networks (CRNs). Such a revolutionary technology represents a paradigm shift in the development of wireless networks, as it can simultaneously enable the efficient use of the available spectrum and the exploitation of radio frequency (RF) energy in order to reduce the reliance on traditional energy sources. This is mainly triggered by the recent advancements in microelectronics that puts forward RF energy harvesting as a plausible technique in the near future. On the other hand, it is suggested that the operation of a network relying on harvested energy needs to be redesigned to allow the network to reliably function in the long term. To this end, the aim of this survey paper is to provide a comprehensive overview of the recent development and the challenges regarding the operation of CRNs powered by RF energy. In addition, the potential open issues that might be considered for the future research are also discussed in this paper.Comment: 8 pages, 2 figures, 1 table, Accepted in IEEE Communications Magazin

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Interference-Assisted Wireless Energy Harvesting in Cognitive Relay Network with Multiple Primary Transceivers

    Full text link
    We consider a spectrum sharing scenario, where a secondary network coexists with a primary network of multiple transceivers. The secondary network consists of an energy-constrained decode-and-forward secondary relay which assists the communication between a secondary transmitter and a destination in the presence of the interference from multiple primary transmitters. The secondary relay harvests energy from the received radio-frequency signals, which include the information signal from the secondary transmitter and the primary interference. The harvested energy is then used to decode the secondary information and forward it to the secondary destination. At the relay, we adopt a time switching policy due to its simplicity that switches between the energy harvesting and information decoding over time. Specifically, we derive a closed-form expression for the secondary outage probability under the primary outage constraint and the peak power constraint at both secondary transmitter and relay. In addition, we investigate the effect of the number of primary transceivers on the optimal energy harvesting duration that minimizes the secondary outage probability. By utilizing the primary interference as a useful energy source in the energy harvesting phase, the secondary network achieves a better outage performance.Comment: 6 pages, 5 figures, To be presented at IEEE GLOBECOM 201

    Coalition Formation Game for Cooperative Cognitive Radio Using Gibbs Sampling

    Get PDF
    This paper considers a cognitive radio network in which each secondary user selects a primary user to assist in order to get a chance of accessing the primary user channel. Thus, each group of secondary users assisting the same primary user forms a coaltion. Within each coalition, sequential relaying is employed, and a relay ordering algorithm is used to make use of the relays in an efficient manner. It is required then to find the optimal sets of secondary users assisting each primary user such that the sum of their rates is maximized. The problem is formulated as a coalition formation game, and a Gibbs Sampling based algorithm is used to find the optimal coalition structure.Comment: 7 pages, 2 figure
    • …
    corecore