620 research outputs found

    ASIME 2018 White Paper. In-Space Utilisation of Asteroids: Asteroid Composition -- Answers to Questions from the Asteroid Miners

    Full text link
    In keeping with the Luxembourg government's initiative to support the future use of space resources, ASIME 2018 was held in Belval, Luxembourg on April 16-17, 2018. The goal of ASIME 2018: Asteroid Intersections with Mine Engineering, was to focus on asteroid composition for advancing the asteroid in-space resource utilisation domain. What do we know about asteroid composition from remote-sensing observations? What are the potential caveats in the interpretation of Earth-based spectral observations? What are the next steps to improve our knowledge on asteroid composition by means of ground-based and space-based observations and asteroid rendez-vous and sample return missions? How can asteroid mining companies use this knowledge? ASIME 2018 was a two-day workshop of almost 70 scientists and engineers in the context of the engineering needs of space missions with in-space asteroid utilisation. The 21 Questions from the asteroid mining companies were sorted into the four asteroid science themes: 1) Potential Targets, 2) Asteroid-Meteorite Links, 3) In-Situ Measurements and 4) Laboratory Measurements. The Answers to those Questions were provided by the scientists with their conference presentations and collected by A. Graps or edited directly into an open-access collaborative Google document or inserted by A. Graps using additional reference materials. During the ASIME 2018, first day and second day Wrap-Ups, the answers to the questions were discussed further. New readers to the asteroid mining topic may find the Conversation boxes and the Mission Design discussions especially interesting.Comment: Outcome from the ASIME 2018: Asteroid Intersections with Mine Engineering, Luxembourg. April 16-17, 2018. 65 Pages. arXiv admin note: substantial text overlap with arXiv:1612.0070

    The Mistastin Lake Impact Structure As A Terrestrial Analogue Site For Lunar Science And Exploration

    Get PDF
    The impact cratering record on the Moon is important for many reasons, from understanding early solar system chronology to probing the lunar interior. In order to maximize scientific return from future lunar missions, it is useful to: 1) study terrestrial impact craters to better understand impact processes and products, and 2) develop appropriate human and robotic exploration strategies aligned with geological goals. This research shows that the intermediate-size Mistastin Lake impact structure, in northern Labrador, Canada, is an unparalleled lunar analogue site, which includes both an anorthositic target and an almost complete suite of impact lithologies, including proximal ejecta deposits. New remote sensing, field mapping, and microscopy data are used to develop new structural and geological models of the Mistastin Lake impact structure. The results of this study show that a multi-stage ejecta emplacement model is required to explain the observations. It is also shown that impact melt-bearing breccias or “suevites” at Mistastin were emplaced as flows, were never airborne, and were formed from the mixing of impact melt flows with underlying lithic materials. In order to maximize scientific return from future lunar missions, this work also focused on developing appropriate human and robotic exploration strategies aligned with geological goals. We show that precursor reconnaissance missions provide surface geology visualization at resolutions and from viewpoints not achievable from orbit. Within such a mission concept, geological tasks are best divided between fixed-executional approaches, in which tasks are fairly repetitive and are carried out by an unskilled surface agent, and an adaptive-exploratory approach, where a skilled agent makes observations and interpretations and the field plan can adapt to these findings as the agent progresses. Operational considerations that help increase scientific return include: extensive pre-mission planning using remote sensing data; defining flexible plans and science priorities to respond to changing conditions; including mutually cross-trained scientists and engineers on the field team; and adapting traverses to accommodate field crew input and autonomy. A phased approach for human exploration proved successful in incorporating astronaut feedback and allowed more autonomy for astronauts to determine optimal sampling localities and sites for detailed observations

    Hyper-spectral imaging for airborne meteorite detection

    Get PDF
    Meteorites are sought after by both scientists and enthusiasts due to their unique characteristics and the window they provide to the broader universe. Current meteorite collection methods are labour and resource intensive and return only relatively few finds in the context of the investment. The basis of this project was to investigate whether meteorites can be identified through a hyper-spectral camera which would be ultimately fitted to an unmanned aerial vehicle (UAV). Such an approach would allow greater geographic coverage of search areas, less human resources and potentially due to these factors, a greater return on investment. While work has been undertaken on identifying the spectral signatures of meteorites and on the use of hyper-spectral imaging in detection and identification, a search of the literature reveals that no earlier work on the use of hyper-spectral imaging for the identification and detection of meteorites. This project therefore builds on the more general work undertaken to apply hyper-spectral imaging to meteorite detection and identification. A key component of this project was the design and construction of a low cost hyper-spectral camera, which involved the development of two prototypes. Collection of hyper-spectral data, including of meteorites and known and unknown terrestrial rocks, was performed. This was then analysed for the presence of meteorites. The analysis and interpretation of this data required the research and development of a system to analyse the data to determine the presence and location of objects of interest. Ultimately this has produced a system that analyses hyper-spectral data to determine the the presence of particular types of meteorites under full sun lit conditions. The software that produces these results also logs the presence of the meteorites against the frame number and location of the find. The findings of the project indicate that hyper-spectral imaging is an appropriate way to detect and identify meteorites both at a pure spectral level and practically with imperfect equipment that relies upon reflections of sunlight off the sample materials. The project identifies further work which would allow meteorite detection from an aerial vehicle. While, the software which enables the meteorite detection system to perform hyper-spectral analysis and meteorite detection on board an aerial vehicle has been written, the hardware requires further work. The hardware (that is, the hyper-spectral camera) requires refinement to support its use on an aerial vehicle, including ensuring an appropriate level of robustness to support its use on an aerial vehicle in remote areas

    Space resources. Overview

    Get PDF
    Space resources must be used to support life on the Moon and in the exploration of Mars. Just as the pioneers applied the tools they brought with them to resources they found along the way rather than trying to haul all their needs over a long supply line, so too must space travelers apply their high technology tools to local resources. This overview describes the findings of a study on the use of space resources in the development of future space activities and defines the necessary research and development that must precede the practical utilization of these resources. Space resources considered included lunar soil, oxygen derived from lunar soil, material retrieved from near-Earth asteroids, abundant sunlight, low gravity, and high vacuum. The study participants analyzed the direct use of these resources, the potential demand for products from them, the techniques for retrieving and processing space resources, the necessary infrastructure, and the economic tradeoffs

    Geoscience and a Lunar Base: A Comprehensive Plan for Lunar Exploration

    Get PDF
    This document represents the proceedings of the Workshop on Geoscience from a Lunar Base. It describes a comprehensive plan for the geologic exploration of the Moon. The document begins by explaining the scientific importance of studying the Moon and outlines the many unsolved problems in lunar science. Subsequent chapters detail different, complementary approaches to geologic studies: global surveys, including orbiting spacecraft such as Lunar Observer and installation of a global geophysical network; reconnaissance sample return mission, by either automated rovers or landers, or by piloted forays; detailed field studies, which involve astronauts and teleoperated robotic field geologists. The document then develops a flexible scenario for exploration and sketches the technological developments needed to carry out the exploration scenario

    Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST) Final Report

    Get PDF
    The Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST) was a two-month effort, chartered by NASA, to provide timely inputs for mission requirement formulation in support of the Asteroid Redirect Robotic Mission (ARRM) Requirements Closure Technical Interchange Meeting held December 15-16, 2015, to assist in developing an initial list of potential mission investigations, and to provide input on potential hosted payloads and partnerships. The FAST explored several aspects of potential science benefits and knowledge gain from the ARM. Expertise from the science, engineering, and technology communities was represented in exploring lines of inquiry related to key characteristics of the ARRM reference target asteroid (2008 EV5) for engineering design purposes. Specific areas of interest included target origin, spatial distribution and size of boulders, surface geotechnical properties, boulder physical properties, and considerations for boulder handling, crew safety, and containment. In order to increase knowledge gain potential from the mission, opportunities for partnerships and accompanying payloads were also investigated. Potential investigations could be conducted to reduce mission risks and increase knowledge return in the areas of science, planetary defense, asteroid resources and in-situ resource utilization, and capability and technology demonstrations. This report represents the FAST"TM"s final product for the ARM
    corecore