7 research outputs found

    Deep domain adaptation by weighted entropy minimization for the classification of aerial images

    Get PDF
    Fully convolutional neural networks (FCN) are successfully used for the automated pixel-wise classification of aerial images and possibly additional data. However, they require many labelled training samples to perform well. One approach addressing this issue is semi-supervised domain adaptation (SSDA). Here, labelled training samples from a source domain and unlabelled samples from a target domain are used jointly to obtain a target domain classifier, without requiring any labelled samples from the target domain. In this paper, a two-step approach for SSDA is proposed. The first step corresponds to a supervised training on the source domain, making use of strong data augmentation to increase the initial performance on the target domain. Secondly, the model is adapted by entropy minimization using a novel weighting strategy. The approach is evaluated on the basis of five domains, corresponding to five cities. Several training variants and adaptation scenarios are tested, indicating that proper data augmentation can already improve the initial target domain performance significantly resulting in an average overall accuracy of 77.5%. The weighted entropy minimization improves the overall accuracy on the target domains in 19 out of 20 scenarios on average by 1.8%. In all experiments a novel FCN architecture is used that yields results comparable to those of the best-performing models on the ISPRS labelling challenge while having an order of magnitude fewer parameters than commonly used FCNs. © 2020 Copernicus GmbH. All rights reserved

    Selection of Unlabeled Source Domains for Domain Adaptation in Remote Sensing

    Get PDF
    In the context of supervised learning techniques, it can be desirable to utilize existing prior knowledge from a source domain to estimate a target variable in a target domain by exploiting the concept of domain adaptation. This is done to alleviate the costly compilation of prior knowledge, i.e., training data. Here, our goal is to select a single source domain for domain adaptation from multiple potentially helpful but unlabeled source domains. The training data is solely obtained for a source domain if it was identified as being relevant for estimating the target variable in the corresponding target domain by a selection mechanism. From a methodological point of view, we propose unsupervised source selection by voting from (an ensemble of) similarity metrics that follow aligned marginal distributions regarding image features of source and target domains. Thereby, we also propose an unsupervised pruning heuristic to solely include robust similarity metrics in an ensemble voting scheme. We provide an evaluation of the methods by learning models from training data sets created with Level-of-Detail-1 building models and regress built-up density and height on Sentinel-2 satellite imagery. To evaluate the domain adaptation capability, we learn and apply models interchangeably for the four largest cities in Germany. Experimental results underline the capability of the methods to obtain more frequently higher accuracy levels with an improvement of up to almost 10 percentage points regarding the most robust selection mechanisms compared to random source-target domain selections

    Learning and Adapting Robust Features for Satellite Image Segmentation on Heterogeneous Datasets

    Get PDF
    This work addresses the problem of training a deep neural network for satellite image segmentation so that it can be deployed over images whose statistics differ from those used for training. For example, in post-disaster damage assessment, the tight time constraints make it impractical to train a network from scratch for each image to be segmented. We propose a convolutional encoder-decoder network able to learn visual representations of increasing semantic level as its depth increases, allowing it to generalize over a wider range of satellite images. Then, we propose two additional methods to improve the network performance over each specific image to be segmented. First, we observe that updating the batch normalization layers statistics over the target image improves the network performance without human intervention. Second, we show that refining a trained network over a few samples of the image boosts the network performance with minimal human intervention. We evaluate our architecture over three datasets of satellite images, showing state-of-the-art performance in binary segmentation of previously unseen images and competitive performance with respect to more complex techniques in a multiclass segmentation task

    Evaluation of Machine Learning Algorithms for Lake Ice Classification from Optical Remote Sensing Data

    Get PDF
    The topic of lake ice cover mapping from satellite remote sensing data has gained interest in recent years since it allows the extent of lake ice and the dynamics of ice phenology over large areas to be monitored. Mapping lake ice extent can record the loss of the perennial ice cover for lakes located in the High Arctic. Moreover, ice phenology dates, retrieved from lake ice maps, are useful for assessing long-term trends and variability in climate, particularly due to their sensitivity to changes in near-surface air temperature. However, existing knowledge-driven (threshold-based) retrieval algorithms for lake ice-water classification that use top-of-the-atmosphere (TOA) reflectance products do not perform well under the condition of large solar zenith angles, resulting in low TOA reflectance. Machine learning (ML) techniques have received considerable attention in the remote sensing field for the past several decades, but they have not yet been applied in lake ice classification from optical remote sensing imagery. Therefore, this research has evaluated the capability of ML classifiers to enhance lake ice mapping using multispectral optical remote sensing data (MODIS L1B (TOA) product). Chapter 3, the main manuscript of this thesis, presents an investigation of four ML classifiers (i.e. multinomial logistic regression, MLR; support vector machine, SVM; random forest, RF; gradient boosting trees, GBT) in lake ice classification. Results are reported using 17 lakes located in the Northern Hemisphere, which represent different characteristics regarding area, altitude, freezing frequency, and ice cover duration. According to the overall accuracy assessment using a random k-fold cross-validation (k = 100), all ML classifiers were able to produce classification accuracies above 94%, and RF and GBT provided above 98% classification accuracies. Moreover, the RF and GBT algorithms provided a more visually accurate depiction of lake ice cover under challenging conditions (i.e., high solar zenith angles, black ice, and thin cloud cover). The two tree-based classifiers were found to provide the most robust spatial transferability over the 17 lakes and performed consistently well across three ice seasons, better than the other classifiers. Moreover, RF was insensitive to the choice of the hyperparameters compared to the other three classifiers. The results demonstrate that RF and GBT provide a great potential to map accurately lake ice cover globally over a long time-series. Additionally, a case study applying a convolution neural network (CNN) model for ice classification in Great Slave Lake, Canada is presented in Appendix A. Eighteen images acquired during the the ice season of 2009-2010 were used in this study. The proposed CNN produced a 98.03% accuracy with the testing dataset; however, the accuracy dropped to 90.13% using an independent (out-of-sample) validation dataset. Results show the powerful learning performance of the proposed CNN with the testing data accuracy obtained. At the same time, the accuracy reduction of the validation dataset indicates the overfitting behavior of the proposed model. A follow-up investigation would be needed to improve its performance. This thesis investigated the capability of ML algorithms (both pixel-based and spatial-based) in lake ice classification from the MODIS L1B product. Overall, ML techniques showed promising performances for lake ice cover mapping from the optical remote sensing data. The tree-based classifiers (pixel-based) exhibited the potential to produce accurate lake ice classification at a large-scale over long time-series. In addition, more work would be of benefit for improving the application of CNN in lake ice cover mapping from optical remote sensing imagery

    Interpretable Hyperspectral AI: When Non-Convex Modeling meets Hyperspectral Remote Sensing

    Full text link
    Hyperspectral imaging, also known as image spectrometry, is a landmark technique in geoscience and remote sensing (RS). In the past decade, enormous efforts have been made to process and analyze these hyperspectral (HS) products mainly by means of seasoned experts. However, with the ever-growing volume of data, the bulk of costs in manpower and material resources poses new challenges on reducing the burden of manual labor and improving efficiency. For this reason, it is, therefore, urgent to develop more intelligent and automatic approaches for various HS RS applications. Machine learning (ML) tools with convex optimization have successfully undertaken the tasks of numerous artificial intelligence (AI)-related applications. However, their ability in handling complex practical problems remains limited, particularly for HS data, due to the effects of various spectral variabilities in the process of HS imaging and the complexity and redundancy of higher dimensional HS signals. Compared to the convex models, non-convex modeling, which is capable of characterizing more complex real scenes and providing the model interpretability technically and theoretically, has been proven to be a feasible solution to reduce the gap between challenging HS vision tasks and currently advanced intelligent data processing models

    Semisupervised transfer component analysis for domain adaptation in remote sensing image classification

    Full text link
    In this paper, we study the problem of feature extraction for knowledge transfer between multiple remotely sensed images in the context of land-cover classification. Several factors such as illumination, atmospheric, and ground conditions cause radiometric differences between images of similar scenes acquired on different geographical areas or over the same scene but at different time instants. Accordingly, a change in the probability distributions of the classes is observed. The purpose of this work is to statistically align in the feature space an image of interest that still has to be classified (the target image) to another image whose ground truth is already available (the source image). Following a specifically designed feature extraction step applied to both images, we show that classifiers trained on the source image can successfully predict the classes of the target image despite the shift that has occurred. In this context, we analyze a recently proposed domain adaptation method aiming at reducing the distance between domains, Transfer Component Analysis, and assess the potential of its unsupervised and semisupervised implementations. In particular, with a dedicated study of its key additional objectives, namely the alignment of the projection with the labels and the preservation of the local data structures, we demonstrate the advantages of Semisupervised Transfer Component Analysis. We compare this approach with other both linear and kernel-based feature extraction techniques. Experiments on multi- and hyperspectral acquisitions show remarkable crossimage classification performances for the considered strategy, thus confirming its suitability when applied to remotely sensed images
    corecore