
PREPRINT; FINAL PAPER PUBLISHED @ ARRAY, 15, 100233, 2022 

Selection of Unlabeled Source Domains for Domain 
Adaptation in Remote Sensing 

 

Christian Geißa, *, Alexander Rabuskea, Patrick Aravena Pelizaria, Stefan Bauera, 
Hannes Taubenböcka 

 

a German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Weßling-
Oberpfaffenhofen, Germany 

 Corresponding author. Tel.: +49-8153-28-1255; fax: +49-8153-28-1445; e-mail: 
christian.geiss@dlr.de 

 

Abstract—In the context of supervised learning techniques, it can be desirable to utilize 
existing prior knowledge from a source domain to estimate a target variable in a target 
domain by exploiting the concept of domain adaptation. This is done to alleviate the costly 
compilation of prior knowledge, i.e., training data. Here, our goal is to select a single 
source domain for domain adaptation from multiple potentially helpful but unlabeled 
source domains. The training data is solely obtained for a source domain if it was 
identified as being relevant for estimating the target variable in the corresponding target 
domain by a selection mechanism. From a methodological point of view, we propose 
unsupervised source selection by voting from (an ensemble of) similarity metrics that 
follow aligned marginal distributions regarding image features of source and target 
domains. Thereby, we also propose an unsupervised pruning heuristic to solely include 
robust similarity metrics in an ensemble voting scheme. We provide an evaluation of the 
methods by learning models from training data sets created with Level-of-Detail-1 
building models and regress built-up density and height on Sentinel-2 satellite imagery. To 
evaluate the domain adaptation capability, we learn and apply models interchangeably 
for the four largest cities in Germany. Experimental results underline the capability of 
the methods to obtain more frequently higher accuracy levels with an improvement of up 
to almost 10 percentage points regarding the most robust selection mechanisms compared 
to random source-target domain selections. 

 

Index Terms—domain adaptation; remote sensing; multiple source domains; similarity 
metrics; regression; built-up density and height 
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1. Introduction  

The extraction of thematic information from remote sensing imagery in an automated way is 
frequently addressed by resorting to supervised learning techniques due to their adaptive nature and 
accuracy properties. Such techniques determine assigning a discrete thematic label (in classification 
problems) or continuous value (in regression problems) based on a sufficient amount of properly 
encoded prior knowledge, i.e., training data. The training data is deployed to infer a rule (e.g., a decision 
function), that enables favorable generalizations capabilities for unseen instances [1],[2]. 

Unfortunately, the compilation of prior knowledge is frequently very costly [3],[4]. Consequently, it 
can be desirable to utilize existing prior knowledge from a source domain to estimate the target variable 
in a target domain by exploiting the concept of domain adaptation. Domain adaptation methods are 
frequently categorized according to the amount of available prior knowledge in the source and target 
domain. Supervised domain adaptation methods can exploit labeled samples from both source and target 
domain. Thereby, labeled samples in the target domain are substantially less numerous than labeled 
samples available in the source domain (otherwise there would be no need to render the estimation 
problem as a domain adaption problem, i.e., solely using a supervised learning algorithm in the target 
domain would be appropriate). In contrast, unsupervised domain adaptation methods assume that two 
unlabeled domains need to be matched. If there is prior knowledge available in the source domain but 
not in the target domain, and if the joint distributions of source and target domain are different, but 
related enough to ensure that the source domain information can be of help for solving the prediction 
problem in the target domain, we can regard the situation as a semi-supervised domain adaptation 
problem [5]. 

Domain adaptation frequently includes two further subproblems, i.e., covariate shift and sample 
selection bias. The latter refers to changes in the nature of the objects observed regarding the source and 
target domain, i.e., the samples of the source domain are non-representative for the (unlabeled) samples 
of the target domain. Covariate shift is a particular case of a sample selection bias. This kind of bias is 
induced by the independent variables. In the field of remote sensing, such a situation is frequently related 
to changes in the source and target domain imagery. Those changes are induced by varying data 
acquisition properties related to illumination and acquisition angle, among others [5]. Hence, by 
definition, it is crucial to avoid a negative model transfer from a source to a target domain, i.e., to ensure 
that the general assumption of transfer learning, namely that the domains have to be related, is not 
violated [6]. 

We address this aspect by a proper selection of the source domain the model should be learned from 
before transferring it, i.e., we aim to establish an efficient way for domain adaptation when multiple 
potentially helpful but unlabeled source domains exist. Hence, the goal is to select a source-target 
domain combination that allows for beneficial model estimates in the target domain, i.e., to enable a 
positive model transfer. Subsequent to selection, the training data is obtained for the selected source 
domain and a prediction model is learned thereof (Fig. 1). Previous works in the context of domain 
adaptation either dealt with a given labeled source domain or had access to multiple labeled source 
domains. Regarding the first family of methods, feature-based methods jointly map the distributions of 
source and target domain in a latent subspace for direct inference, e.g., [7],[8], whereas instance-based 
methods estimate the instances in the original space by deploying semi-labeled samples of the target 
domain, e.g., [9],[10]. Only recently, techniques in the context of remote sensing evolved, that are 
concerned with domain adaptation including multiple labeled source domains. Those works followed 
the idea of synthetization of sources, i.e., creating an optimal source domain from multiple suboptimal 
source domains: Lu et al. [11] consider the case where a single source domain does not contain all the 
categories of a target variable regarding the target domain. They use multiple complementary source 
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domains to form the categories of the target domain and learn a multisource compensation network 
thereof. Likewise, Gong et al. [12] integrate multiple incomplete source domains and propose a 
separation mechanism so that only source domains with relevant manifestations of the target variable 
are considered for cross-domain alignment. Elshamli et al. [13] propose a CNN architecture that is 
learned and adaptively optimized across multiple source domains.  

 
Fig. 1. Illustration of the considered unique problem setting of this work: a) multiple potentially helpful but 
unlabeled source domains exist; b) the source and target domains are compared individually regarding their 
similarity; c) the most similar source domain regarding the target domain is selected and solely for this source 
domain the (frequently very costly) training data is obtained. Subsequently, the selected source domain is 
deployed for learning the prediction model and transferring it to the target domain. 

However, the uniqueness of this study is related to the selection of a single source domain from 
multiple potentially helpful but unlabeled source domains and subsequent labeling only after selection. 
Our motivation is related to the circumstance that domains are particularly associated with distinct 
geographic locations in remote sensing. This frequently implies that the compilation of labels remains 
very costly since it requires, e.g., field campaigns in dedicated areas or the acquisition of additional 
geospatial data for an area to enable the compilation of labeled samples. Ideally, such labor-intensive 
efforts must solely be carried out for a source domain that was identified beforehand to likely enable a 
positive model transfer later on. From an application-oriented point of view, such a setting frequently 
occurs if the direct compilation of training data for a target domain is not possible or inefficient. The 
latter refers to situations where a target variable needs to be estimated over various domains, i.e., large 
geographical areas, whereby solely a small subset of them can be labeled due to limited resources.  

Generally, we aim for a method that is independent of the learning algorithm. This is intended to 
account for the No-free-Lunch-Theorem. It states that there is no algorithm that can provide the highest 
accuracies in any domain at all times [14]. Algorithm-independent methods can be easily adapted to the 
problem at hand by employing suitable base learners and ensemble models. The latter were found to be 
particularly beneficial in terms of accuracy and reliability properties in the context of remote sensing 
[15],[16]. Consequently, we designed an unsupervised source selection approach, which builds upon the 
robust quantification of the similarity between the source and target domains. We consider the main 
contributions of this work as follows: 

 From a methodological point of view, we propose unsupervised source selection mechanisms 
by voting from similarity metrics that follow aligned marginal distributions regarding image 
features of source and target domains for remote sensing imagery. Thereby, we also establish 
an unsupervised pruning heuristic to solely consider robust similarity metrics in an ensemble 
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voting scheme. Finally, labeled samples are solely obtained for a selected source domain and 
used to learn a prediction model which is subsequently applied to the target domain. 

 We provide an evaluation of the method within an innovative application field. Recently, efforts 
were carried out to derive properties of the urban morphology for large areas based on regression 
techniques using Sentinel-2 imagery [15]. In this application context, we learn models from 
training data sets created with Level-of-Detail-1 (LoD-1) building models and regress built-up 
density and height for spatial processing units which correspond to urban neighborhood scales 
using features from multispectral Sentinel-2 imagery. To evaluate the domain adaptation 
capability of the methods, we learn and apply models interchangeably for the four largest cities 
in Germany. 

Section 2 details the source selection method. We describe the experimental setup in section 3, report 
the results of experiments in section 4, and give concluding remarks in section 5.  

2. Proposed Methodology  

An overview of the approach with affiliated processing steps is provided in Fig. 2. The individual 
steps include matching the image data and computation of image features (sec. 2.1), comparative 
evaluation of source-target domain combinations by computing a variety of similarity metrics, ensemble 
pruning for identifying a set of robust similarity metrics (sec. 2.2), implementation of a voting strategy 
to select a favorable source-target domain combination and learning a regression model thereof (sec. 
2.3). 
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Fig. 2. Overview of the individual processing steps; (a) a histogram matching procedure aligns the shapes of 
the histograms of the spectral bands of the satellite imagery which covers a target domain to the spectral bands 
of the satellite imagery which cover the potential source domains individually; (b) the matched data is deployed 
for computing an exhaustive set of spectral-spatial features; (c) the features are deployed to compute a variety 
of similarity metrics; (d) an ensemble pruning strategy aims for identifying a robust subset of similarity metrics; 
(e) the selected similarity metrics are used to evaluate all possible source-target domain combinations and 
identify the combination which is most similar; the identified combinations from the similarity metrics are 
combined via a majority voting strategy; (f) labeled samples are obtained for a selected source domain and a 
regression model is learned from the corresponding source image features and applied to estimate the target 
variable in the target domain. 

2.1 Histogram Matching and Feature Computation  

To enable domain adaptation under covariate shift, we implement a histogram matching procedure of 
the imagery covering the source and target domains first. At this point, we consider image data from 𝐾 

potentially helpful but unlabeled source domains {𝑆௞}௞ୀଵ
௄ , where 𝑆௞ = 𝑋ௌ

௞ = ൛𝐱ௌ೔

௞ ൟ
௜ୀଵ

௡ೄ
ೖ

 represents the set 

of 𝑛ௌ
௞ unlabeled source samples of the 𝑘th domain and image data from the target domain where 𝑋் =

ቄ𝐱்ೕ
ቅ

௝ୀଵ

௡೅
 represents the set of 𝑛் unlabeled target samples, with samples 𝐱ௌ೔

௞ , 𝐱்ೕ
 ∈ ℝௗ∀𝑖, 𝑗. Histogram 

matching is a method for adapting data distributions. To that purpose, the representations of the original 
data are matched independently of the subsequent processing model. The latter aspect is relevant since 
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our goal is to establish a method, that can handle multiple independently learned models. Histogram 
matching implements a relative normalization. Thus, the method provides similarly distributed digital 
numbers rather than physical units as an output [5]. A nonlinear transformation 𝜙 is deployed to align 
the shapes of the cumulative histograms of the spectral bands of the image of the target domain to the 
spectral bands of the image of the source domain [17]. This procedure is carried out for the considered 
possible source-target domain combinations individually to obtain a set of matched target domain 

distributions concerning 𝐾 source domains, i.e., 𝑋் → 𝜙(𝑋்) = 𝑋்
௞ (Fig. 2a). Generally, we deploy 

histogram matching as a method for domain alignment here, since it showed viable properties for domain 
adaptation problems in the past [5]. However, given the modular nature of the proposed method, also 
other unsupervised domain alignment methods could be considered.  

Subsequently, features are computed from the matched imagery (Fig. 2b). To estimate the target 
variables, we integrate into this work multispectral Sentinel-2 imagery. In particular, we deploy the R-
G-B-NIR bands of Sentinel-2, which feature a pixel spacing of 10 meters [18]. Previous works 
demonstrated already the capacity of multispectral Sentinel-2 imagery to describe the built environment 
in a discriminative way [15]. We computed an exhaustive set of spectral-spatial features, i.e., spectral 
features derived from the R-G-B-NIR bands, features that are based on the concept of mathematical 
morphology [19], and texture measures using the gray–level co–occurrence matrix [20]. We deploy 
features as described in detail in Geiß et al. [15]. Given the different feature categories and various 
window sizes used for the aforementioned spatial features, each characterized source and target domain 

𝑋ෘௌ
௞ and 𝑋ෘ்

௞ carries a 413-dimensional feature vector. Thus, it can be noted that we consider a 
homogeneous domain adaptation setting here since all domains share the same features [13]. 
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TABLE I: DEPLOYED METRICS WITH FORMULAE; ARROWS (↓↑) INDICATE WHETHER A 
HIGH OR LOW NUMERICAL VALUE, RESPECTIVELY, INDICATES A HIGH AGREEMENT 

BETWEEN THE INSTANCES (RECTANGULAR GRID CELLS DESCRIBING THE BUILT 
ENVIRONMENT IN THIS STUDY) OF A SOURCE AND A TARGET DOMAIN. 

2.2 Computation of Similarity Metrics and Unsupervised Ensemble Pruning 

To address problems related to sample selection bias, we compute similarity metrics regarding a 

characterized source domain – aligned target domain combination, i.e., 𝑋ෘௌ
௞ and 𝑋ෘ்

௞, and select a proper 
combination thereof. The empirical estimate of the similarity of a source and a target domain 𝛿 is 
computed with eight different metrics in this study (Table I; Fig. 2c).  

We aimed to consider metrics that feature a low level of sensitivity regarding, e.g., outliers, the scale 
of measurement, or data dimensionality [21]. Besides evaluating the suitability of a single metric to 
select a proper source-target domain combination, we also follow the idea to establish an ensemble of 
metrics as a selection mechanism. In our work, an ensemble strategy foresees the combination of votes 
for certain source-target domain combinations from multiple metrics via a decision fusion strategy to 
obtain the final selection. This strategy is implemented to alleviate the risk of eventually picking an 
inadequate single metric. From a conceptual point of view, in contrast to, e.g., supervised classification 
problems, we do not have access here to knowledge on actual prediction accuracy which could facilitate 

METRIC DESCRIPTION AGREE-
MENT 

NO. 

BRAY–CURTIS 
𝛿 = 1 −

∑ ห𝐱ුௌ೔
− 𝐱ු்೔

ห௡
௜ୀଵ

∑ (௡
௜ୀଵ 𝐱ුௌ೔

+ 𝐱ු்೔
)
 

↓ (1) 

CHORD 
𝛿 = ൬2 − 2

∑ 𝐱ුೄ೔
·𝐱ු೅೔

೙
೔సభ

‖𝐱ුೄ‖మ‖𝐱ු೅‖మ
൰

భ

మ

, where ‖𝐱ු௦‖ଶ is the L²-norm ‖𝐱ු௦‖ଶ = ට∑ 𝐱ුௌ೔

ଶ௡
௜ୀଵ  

↓ (2) 

HELLINGER 
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௜ୀଵ

− ඨ
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௜ୀଵ

ቍ

ଶ
௡

௜ୀଵ

 

↓ (3) 

WHITTAKER β 

𝛿 = ෍

ብ
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ብ
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COSINE 
𝛿 =
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೙
೔సభ
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the selection of a suitable metric. Instead, we need to select a proper source-target domain combination 
in an unsupervised way. 

To compile a robust ensemble, we establish a heuristically-guided ensemble pruning strategy. The 
goal is to select a subset of metrics 𝑀 = {𝛿ଵ, … , 𝛿௠} from the full set of metrics 𝑁 = {𝛿ଵ, … , 𝛿௡}, which 
enables a robust source-target domain selection later on (Fig. 2d). We exploit the notion of a small 
margin distance of empirical estimates obtained with a certain similarity metric 𝛿௜ regarding all possible 
source-target domain combinations 𝑘 =  1, … , 𝐾. To this purpose, we compute the percentage deviation 
𝑝̂ of the numerical value which indicates the highest agreement between a source and target domain 𝑎ఋ೔

 

and the mean value of all estimates µఋ೔
, i.e., 𝑝̂ =

ቚ௔ഃ೔
ିµഃ೔

ቚ

µഃ೔

·100. This is motivated by the circumstance 

that metrics that can properly describe the similarity of source-target domain combinations feature a 
rather small range of numerical values. Subsequently, we compile 𝑀 based on the smallest numerical 
values of 𝑝̂, while simultaneously selecting interchangeably metrics that quantify the distance (eq. 1-4) 
and similarity (eq. 5-8) (Table I) of source-target domain combinations to account for a multi-view 
perspective, i.e., to impose the consideration of complementary subspaces with a particular physical 
meaning and statistical properties [22]. Thereby, the number of metrics to be included in the pruned 
ensemble can be set according to a stopping criterion. 

2.3 Ranking Strategy and Learning of Regression Model 

To select a proper source-target domain combination, we translate the numerical values as obtained 
with the metrics in ordinal ranks, which reproduce the levels of agreement of source-target domain 
combinations. In the context of an ensemble strategy, i.e., creating a committee of experts, the ranks 
from multiple metrics are integrated via majority voting. The source domain which is ranked as having 
the highest level of agreement according to the majority voting is finally selected (Fig. 2e). The full 
procedure to select a source domain with a pruned ensemble of similarity metrics is also documented in 

the pseudocode of Algorithm 1. Lastly, we obtain the manifestations of the target variable 𝑌ௌ
௞ =

൛𝑦ௌ೔

௞ ൟ
௜ୀଵ

௡ೄ
ೖ

 for the selected source domain. Subsequently, we compile the training set 𝐷ௌ
௞ = ൛𝑋ௌ

௞ , 𝑌ௌ
௞ൟ which 

is fed to the learning algorithm. The learned model is deployed to estimate the target variable on 𝑋ෘ்
௞ 

(Fig. 2f). 
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Algorithm 1 Unlabeled source selection with a pruned ensemble of similarity metrics 

 

Input: 𝐾 unlabeled source domains {𝑆௞}௞ୀଵ
௄ , unlabeled target domain 𝑋் 

Output: selected source domain 

1: Align the image of the target domain to the images of the source domains with 𝜙 for all source–target 
combinations individually 

2: Compute features for all source domains and aligned target domains 

3: Compute 𝑁 for each characterized source domain–aligned target domain combination 

4: do 

5:  Select interchangeably metrics that quantify the distance (eq. 1-4) and similarity (eq. 5-8) based on the 
smallest numerical values of 𝑝̂  

6: while stopping criterion is not met 

7: return 𝑀 

8: Establish ordinal rank for each source domain according to similarity metrics contained in 𝑀 

9: Integrate ranks for each source domain via majority voting 

10: Select source domain with lowest rank  

3. Experimental Setup 

We evaluate the methods in the context of predicting built-up density and height using features from 
Sentinel-2 multispectral satellite imagery. The imagery was atmospherically corrected according to level 
2A [23]. The acquisition timeframe was constrained to autumn and winter of the years 2015–2016 to 
minimize the influence of photosynthetically active vegetation on the built-up density and height 
estimates. Moreover, the acquisition timeframe offers the possibility to exploit shadow information, that 
encodes further helpful information regarding the target variables. Results are calculated for the 
settlement areas of the four largest German cities (Fig. 3a). The covered areas of the domains comprise 
513 km² for Berlin, 577 km² for Hamburg, 535 km² for Munich, and 508 km² for Cologne, respectively.  
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Fig. 3. Overview of the experimental setup; (a) study area with the four largest cities in Germany which 
correspond to the different domains; (b) procedure for establishing a fully characterized and labeled source 
domain after it was selected regarding the two target variables: i) we integrate the so-called Global Urban 
Footprint (GUF) layer that distinguishes “built-up” from “non-built-up” and establish rectangular grid cells 
thereof; ii) multispectral Sentinel-2 imagery is deployed to compute a set of spectral features, features that are 
based on the concept of mathematical morphology, and texture measures; iii) for the computation of the target 
variables, we integrated LoD-1 building models and affiliated height measurements from cadastral sources.  

Fig. 3b briefly visualizes the generation of the target variables to be estimated. We integrate the so-
called Global Urban Footprint (GUF) layer that distinguishes “built-up” from “non-built-up” in a binary 
way. The data set covers the whole globe with a high spatial resolution of 12 meters and a classification 
accuracy beyond 85% [24]. Generally, the spatial resolution characteristics of the Sentinel-2 imagery 
restrict analyses on the individual building level. This is due to the circumstance that the pixel spacing 
of ten meters of the R-G-B-NIR bands of Sentinel-2 can exceed the extent of individual buildings. 
Consequently, analyses are carried out for spatial entities with a higher level of aggregation, i.e., we 
create rectangular grid cells to compute built-up density and height thereof. In our setup, we establish 
rectangular grid cells with linearly progressing side lengths of 200, 500, and 800 meters, respectively. 
For the actual computation of the target variables, we integrated LoD-1 building geometries (LoD-1 
resolution foresees the representation of buildings as extruded footprints [25]) and corresponding height 
measurements from cadastral information: Built-up density per grid cell is computed by the ratio 
between the area of elevated pixels according to LoD-1 footprints and the whole settlement area as 
indicated by the GUF data set; built-up height per grid cell is computed by extracting the median height 
value according to the LoD-1-based height values within a grid cell [26]. 

We used both Random Forest Regression (RFR) and Support Vector Regression (SVR) as learning 
algorithms for estimating the two target variables. For the RFR models [27] hyperparameters tuning was 
carried out as follows: 𝑛௧௥௘௘ = 500 and 𝑚௧௥௬ = 1,2, … ,51. Regarding the SVR models [28], we used 

Gaussian radial basis function kernels: 𝐾൫𝐱௜𝐱௝൯ = exp(− ฮ𝐱௜ − 𝐱௝ฮ
ଶ

/2𝜎ଶ). The regularization 

parameter 𝐶, the tolerance value 𝜀, and the kernel parameter 𝜎 were optimized according to 𝜎 =

 {0.01, 0.02, … ,0.1}, 𝐶 = {5,6, … ,15}, and 𝜀 =  {0.05, 0.06, … , 0.15}, respectively. In the experiments, 
we learn and optimize a model based on cross-validation in the source domain and compute 
generalization capabilities from unseen labeled samples in the target domain. Corresponding numbers 
of available labeled samples, i.e., labeled grid cells, are provided in Table II.  
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TABLE II: NUMBER OF LABELED RECTANGULAR GRID CELLS FOR EACH DOMAIN USED IN 
THE REGRESSION EXPERIMENT 

 

 

 

 

 

 

 

 

 

Model selection was carried out using the root-mean-square error (RMSE). In the context of the 
ensemble pruning strategy, we set the number of metrics to be selected to four to establish a tradeoff 
between the computational burden and enabling an extensive description of a source-target domain 
combination. Beyond, we also created an ensemble that includes all metrics and ensembles based on the 
random selection of four metrics (20 random selections) for benchmarking our proposed ensemble 
scheme. Overall, we evaluate 11 selection mechanisms, whereby 8 correspond to the deployment of the 
considered similarity metrics, and 3 represent ensemble schemes. Results were also tested regarding 
statistical significance using a paired t-test with a significance cutoff of p = 0.05. 

4. Experimental Results and Discussion 

To investigate whether the proposed domain adaptation techniques are generally beneficial in this 
empirical setting, Fig. 4 provides mean absolute errors (MAEs) for estimated built-up density and height 
regarding four different situations: i) non-domain adaptation setting, i.e., supervised learning and 
applying a model within a domain (i.e., upper benchmark); ii) proposed domain adaptation strategy that 
foresees both a domain alignment and selection of a proper source domain (mean values across all 11 
selection mechanisms are plotted); iii) domain adaptation strategy that foresees solely a domain 
alignment without selection, i.e., all source domains are deployed interchangeably and accuracy 
estimates are averaged; iv) no domain adaptation strategy was implemented, i.e., a model from a source 
domain is learned and applied to the target domain without adaptation (i.e., lower benchmark). Thereby, 
results from 24 realizations per target variable are plotted (composed of four cities, three sizes of the 
spatial processing units, and two regressors). 

 

domain Number of grid cells for model 
learning/validation 

200m 500m 800m 

Berlin 10450 2051 859 

Hamburg 9982 2307 1054 

Munich 9250 2138 953 

Cologne 9131 2030 895 
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Fig. 4. MAE values for built-up height and density obtained when rendering the prediction problem as a non-
domain adaptation (DA) setting (i.e., learning a model within a domain; this correspond to a regular supervised 
learning task and represents an upper benchmark here), when deploying the proposed DA strategy that foresees 
both a domain alignment and selection of a proper source domain (mean values across all 11 selection 
mechanisms are plotted), using a DA strategy that foresees solely a domain alignment, and without a dedicated 
DA strategy (i.e., learning a model over a source domain and apply it over a target domain without prior domain 
alignment and selection of a suitable source domain; this represents a lower benchmark here). 

First, it can be noted that the unadapted models, despite featuring the largest deviations in this setup, 
yield accuracy levels that indicate that the models did not fail when applied to a new domain. This can 
be attributed to the exhaustive set of spectral-spatial features which imposes invariance in the models. 
However, when actually aligning source and target domains, a substantial decrease of MAE can be 
achieved. Compared to the domain adaptation strategy which solely foresees to align domains, our 
proposed additional mechanisms to select a proper source domain for an aligned target domain enable 
on average a further increase of 4.7 and 4.9 percentage points (p.p.) regarding built-up density and 
height, respectively. Expectably, MAEs are by far the lowest when learning and applying a model within 
a domain. Thus, the difference in accuracy compared to the domain adaptation settings can be regarded 
as an error cost, that is related to the acquisition of training data for a target domain.  

However, to enable a more detailed perspective which source selection mechanisms are most 
beneficial, more differentiated results are revealed in Fig. 5. It shows the median percentage differences 
in terms of MAE as obtained with source-target domain selections with the (ensemble) similarity metrics 
compared to random source-target domain selections computed from the aligned data across all 
configurations. Thereby, we also depict empirical MAEs when always the worst source domain for a 
certain target domain would be selected (lower bound) and when always the best source domain for a 
certain target domain would be selected (upper bound), respectively. 

First, it can be noted that all values of all considered (ensemble) similarity metric-based selections 
are positive, i.e., the majority of models could benefit from the guided source-target domain selection 
based on (ensemble) similarity metrics (Fig. 5a). Regarding the individual similarity metrics, the 
Pearson correlation coefficient proved to be the most useful similarity metric here, since an improvement 
of 9.9 p.p. could be achieved. This measure turned out to be useful in the context of, e.g., unsupervised 
classification of high-dimensional data sets also [21].  

However, our proposed pruned ensemble enabled the 2nd highest overall improvement (9.4 p.p.). Its 
implementation was particularly motivated to alleviate the risk of eventually picking an inadequate 
single metric. In this manner, our pruned ensemble of four also enabled more favorable improvements 
compared to an ensemble that includes all metrics (7.1 p.p.) and random selections of four metrics (6.0 
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p.p.). Besides, also t-test results confirm the significant improvement of source selection based on 
Hellinger, Pearson, and the ensemble compiled with our proposed heuristically-guided ensemble 
pruning strategy. T-statistics of 2.33, 5.41, and 2.4, respectively, indicate that the null hypothesis (i.e., 
the selection mechanisms feature the same accuracy as random selection) can be rejected since the 
corresponding critical t-value of 1.68 is exceeded.  

Overall, the experimental results underline the capability of the proposed methods to obtain 
substantially higher accuracy levels more frequently compared to random source-target domain 
selections. Those accuracy patterns are also unambiguously reflected in the achieved average ranks of 
the selection mechanisms which are shown in Fig. 5b. For instance, Hellinger, Pearson, and the 
ensemble compiled with our proposed heuristically-guided ensemble pruning strategy also feature the 
lowest average ranks. 

Fig. 5. (a) Median percentage difference in terms of MAE as obtained with source-target domain selections with 
(ensemble) similarity metrics compared to random source-target domain selections considering all 
configurations; results are obtained from 48 realizations (composed of four cities, three sizes of the spatial 
processing units, two regressors, and two target variables) except for the randomly compiled ensemble of four 
which was assembled and applied 20 times (i.e., the numerical value regarding 960 realizations is plotted); (b) 
corresponding mean ranks of the ordinal voting schemes. 

5. Conclusions  

In this work, we established a way for domain adaptation by source selection when multiple potentially 
helpful but unlabeled source domains exist. In contrast to previous works, we aimed to select an 
unlabeled source domain for an unlabeled target domain and obtain labeled samples for the source 
domain solely after it was selected successfully. The main findings comprise: 

 Domain alignment based on histogram matching turned out to allow viable estimates of the 
target variables in the regression experiment, which aimed to estimate properties of the urban 
morphology, i.e., built-up density and height computed from Sentinel-2 imagery.  

 The use of similarity metrics as applied to aligned marginal distributions of various image 
features proved useful to select proper source-target domain combinations, which allowed 
obtaining frequently higher accuracy levels compared to random source-target domain 
selections.  

 We evaluated different similarity metrics, whereby Hellinger and Pearson turned out to be the 
most favorable individual metrics in the considered empirical setting. 

 Our proposed heuristically-guided ensemble pruning strategy, which was particularly motivated 
to alleviate the risk of eventually picking an inadequate single metric in this unsupervised 
selection problem, allowed the 2nd best overall estimations. 



PREPRINT; FINAL PAPER PUBLISHED @ ARRAY, 15, 100233, 2022 

Overall, the beneficial accuracy properties of the proposed methods encourage further deployment for 
remote sensing data analysis. Given the modular nature of the method, we are interested in adapting the 
method for multiple image modalities, e.g., integrating SAR measurements with corresponding feature 
set. Further, we aim to integrate this domain adaptation approach, which is independent of the learning 
algorithm, in supervised multitask ensemble learning models [15],[29]. 
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