5 research outputs found

    Monitoring crops water needs at high spatio-temporal resolution by synergy of optical/thermal and radar observations

    Get PDF
    L'optimisation de la gestion de l'eau en agriculture est essentielle dans les zones semi-arides afin de préserver les ressources en eau qui sont déjà faibles et erratiques dues à des actions humaines et au changement climatique. Cette thèse vise à utiliser la synergie des observations de télédétection multispectrales (données radar, optiques et thermiques) pour un suivi à haute résolution spatio-temporelle des besoins en eau des cultures. Dans ce contexte, différentes approches utilisant divers capteurs (Landsat-7/8, Sentinel-1 et MODIS) ont été developpées pour apporter une information sur l'humidité du sol (SM) et le stress hydrique des cultures à une échelle spatio-temporelle pertinente pour la gestion de l'irrigation. Ce travail va parfaitement dans le sens des objectifs du projet REC "Root zone soil moisture Estimates at the daily and agricultural parcel scales for Crop irrigation management and water use impact: a multi-sensor remote sensing approach" (http://rec.isardsat.com/) qui visent à estimer l'humidité du sol dans la zone racinaire (RZSM) afin d'optimiser la gestion de l'eau d'irrigation. Des approches innovantes et prometteuses sont mises en place pour estimer l'évapotranspiration (ET), RZSM, la température de surface du sol (LST) et le stress hydrique de la végétation à travers des indices de SM dérivés des observations multispectrales à haute résolution spatio-temporelle. Les méthodologies proposées reposent sur des méthodes basées sur l'imagerie, la modélisation du transfert radiatif et la modélisation du bilan hydrique et d'énergie et sont appliquées dans une région à climat semi-aride (centre du Maroc). Dans le cadre de ma thèse, trois axes ont été explorés. Dans le premier axe, un indice de RZSM dérivé de LST-Landsat est utilisé pour estimer l'ET sur des parcelles de blé et des sols nus. L'estimation par modélisation de ET a été explorée en utilisant l'équation de Penman-monteith modifiée obtenue en introduisant une relation empirique simple entre la résistance de surface (rc) et l'indice de RZSM. Ce dernier est estimé à partir de la température de surface (LST) dérivée de Landsat, combinée avec les températures extrêmes (en conditions humides et sèches) simulée par un modèle de bilan d'énergie de surface piloté par le forçage météorologique et la fraction de couverture végétale dérivée de Landsat. La méthode utilisée est calibrée et validée sur deux parcelles de blé situées dans la même zone près de Marrakech au Maroc. Dans l'axe suivant, une méthode permettant de récupérer la SM de la surface (0-5 cm) à une résolution spatiale et temporelle élevée est développée à partir d'une synergie entre données radar (Sentinel-1) et thermique (Landsat) et en utilisant un modèle de bilan d'énergie du sol. L'approche développée a été validée sur des parcelles agricoles en sol nu et elle donne une estimation précise de la SM avec une différence quadratique moyenne en comparant à la SM in situ, égale à 0,03 m3 m-3. Dans le dernier axe, une nouvelle méthode est développée pour désagréger la MODIS LST de 1 km à 100 m de résolution en intégrant le SM proche de la surface dérivée des données radar Sentinel-1 et l'indice de végétation optique dérivé des observations Landsat. Le nouvel algorithme, qui inclut la rétrodiffusion S-1 en tant qu'entrée dans la désagrégation, produit des résultats plus stables et robustes au cours de l'année sélectionnée. Dont, 3,35 °C était le RMSE le plus bas et 0,75 le coefficient de corrélation le plus élevé évalués en utilisant le nouvel algorithme.Optimizing water management in agriculture is essential over semi-arid areas in order to preserve water resources which are already low and erratic due to human actions and climate change. This thesis aims to use the synergy of multispectral remote sensing observations (radar, optical and thermal data) for high spatio-temporal resolution monitoring of crops water needs. In this context, different approaches using various sensors (Landsat-7/8, Sentinel-1 and MODIS) have been developed to provide information on the crop Soil Moisture (SM) and water stress at a spatio-temporal scale relevant to irrigation management. This work fits well the REC "Root zone soil moisture Estimates at the daily and agricultural parcel scales for Crop irrigation management and water use impact: a multi-sensor remote sensing approach" (http://rec.isardsat.com/) project objectives, which aim to estimate the Root Zone Soil Moisture (RZSM) for optimizing the management of irrigation water. Innovative and promising approaches are set up to estimate evapotranspiration (ET), RZSM, land surface temperature (LST) and vegetation water stress through SM indices derived from multispectral observations with high spatio-temporal resolution. The proposed methodologies rely on image-based methods, radiative transfer modelling and water and energy balance modelling and are applied in a semi-arid climate region (central Morocco). In the frame of my PhD thesis, three axes have been investigated. In the first axis, a Landsat LST-derived RZSM index is used to estimate the ET over wheat parcels and bare soil. The ET modelling estimation is explored using a modified Penman-Monteith equation obtained by introducing a simple empirical relationship between surface resistance (rc) and a RZSM index. The later is estimated from Landsat-derived land surface temperature (LST) combined with the LST endmembers (in wet and dry conditions) simulated by a surface energy balance model driven by meteorological forcing and Landsat-derived fractional vegetation cover. The investigated method is calibrated and validated over two wheat parcels located in the same area near Marrakech City in Morocco. In the next axis, a method to retrieve near surface (0-5 cm) SM at high spatial and temporal resolution is developed from a synergy between radar (Sentinel-1) and thermal (Landsat) data and by using a soil energy balance model. The developed approach is validated over bare soil agricultural fields and gives an accurate estimates of near surface SM with a root mean square difference compared to in situ SM equal to 0.03 m3 m-3. In the final axis a new method is developed to disaggregate the 1 km resolution MODIS LST at 100 m resolution by integrating the near surface SM derived from Sentinel-1 radar data and the optical-vegetation index derived from Landsat observations. The new algorithm including the S-1 backscatter as input to the disaggregation, produces more stable and robust results during the selected year. Where, 3.35 °C and 0.75 were the lowest RMSE and the highest correlation coefficient assessed using the new algorithm

    Quantitative Estimation of Surface Soil Moisture in Agricultural Landscapes using Spaceborne Synthetic Aperture Radar Imaging at Different Frequencies and Polarizations

    Get PDF
    Soil moisture and its distribution in space and time plays an important role in the surface energy balance at the soil-atmosphere interface. It is a key variable influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Due to their large spatial variability, estimation of spatial patterns of soil moisture from field measurements is difficult and not feasible for large scale analyses. In the past decades, Synthetic Aperture Radar (SAR) remote sensing has proven its potential to quantitatively estimate near surface soil moisture at high spatial resolutions. Since the knowledge of the basic SAR concepts is important to understand the impact of different natural terrain features on the quantitative estimation of soil moisture and other surface parameters, the fundamental principles of synthetic aperture radar imaging are discussed. Also the two spaceborne SAR missions whose data was used in this study, the ENVISAT of the European Space Agency (ESA) and the ALOS of the Japanese Aerospace Exploration Agency (JAXA), are introduced. Subsequently, the two essential surface properties in the field of radar remote sensing, surface soil moisture and surface roughness are defined, and the established methods of their measurement are described. The in situ data used in this study, as well as the research area, the River Rur catchment, with the individual test sites where the data was collected between 2007 and 2010, are specified. On this basis, the important scattering theories in radar polarimetry are discussed and their application is demonstrated using novel polarimetric ALOS/PALSAR data. A critical review of different classical approaches to invert soil moisture from SAR imaging is provided. Five prevalent models have been chosen with the aim to provide an overview of the evolution of ideas and techniques in the field of soil moisture estimation from active microwave data. As the core of this work, a new semi-empirical model for the inversion of surface soil moisture from dual polarimetric L-band SAR data is introduced. This novel approach utilizes advanced polarimetric decomposition techniques to correct for the disturbing effects from surface roughness and vegetation on the soil moisture retrieval without the use of a priori knowledge. The land use specific algorithms for bare soil, grassland, sugar beet, and winter wheat allow quantitative estimations with accuracies in the order of 4 Vol.-%. Application of remotely sensed soil moisture patterns is demonstrated on the basis of mesoscale SAR data by investigating the variability of soil moisture patterns at different spatial scales ranging from field scale to catchment scale. The results show that the variability of surface soil moisture decreases with increasing wetness states at all scales. Finally, the conclusions from this dissertational research are summarized and future perspectives on how to extend the proposed model by means of improved ground based measurements and upcoming advances in sensor technology are discussed. The results obtained in this thesis lead to the conclusion that state-of-the-art spaceborne dual polarimetric L-band SAR systems are not only suitable to accurately retrieve surface soil moisture contents of bare as well as of vegetated agricultural fields and grassland, but for the first time also allow investigating within-field spatial heterogeneities from space

    衛星搭載型多偏波SARを用いた土壌水分分布評価手法の開発とALOS/PALSARへの適用

    Get PDF
    学位の種別: 論文博士審査委員会委員 : (主査)東京大学教授 小池 俊雄, 東京大学教授 田島 芳満, 東京大学教授 西村 拓, 東京大学准教授 平林 由希子, 東京大学准教授 沖 一雄, 東京大学准教授 竹内 渉University of Tokyo(東京大学

    Apports de données radar pour l'estimation des paramètres biophysiques des surfaces agricoles

    Get PDF
    Les travaux de thèse s'inscrivent au sein du chantier Sud-Ouest, dont le principal objectif est de contribuer à la compréhension et à la modélisation du fonctionnement des surfaces continentales à l'échelle du paysage. Ces travaux visent à améliorer les capacités de suivi et d'analyses de surfaces fortement anthropisées : les agrosystèmes. A la fois acteurs et spectateurs vis-à-vis du changement climatique, ces surfaces sont également dédiées à la production alimentaire. La problématique vise donc à concilier durabilité des ressources et niveau de production suffisant, en identifiant des outils comme la télédétection utiles à la prise de décision à des échelles allant de la parcelle au territoire. Dans ce contexte, les radars à synthèse d'ouverture (RSO) embarqués au sein de satellites, présentent le double avantage d'être sensibles à différents paramètres des surfaces continentales (en lien avec le sol, ou la végétation), et la capacité d'observation par condition nuageuse (à l'inverse des capteurs opérant dans le visible). Depuis les années 90, différentes études basées sur des images acquises avec la technologie RSO ont montré l'intérêt des données micro-ondes pour le suivi des surfaces continentales. Ces dernières années, l'émergence de missions satellites dans les bandes de fréquence X et L vient enrichir les possibilités d'étude autrefois limitées à la seule bande C. Ces couples capteurs-satellites fournissent aujourd'hui des produits à haute résolution spatiale (allant jusqu'au mètre), avec des possibilités de revisite hebdomadaire, critères nécessaires pour le suivi des zones hétérogènes, associées à de fortes dynamiques temporelles. Les travaux effectués dans le cadre de cette thèse visent à établir la complémentarité entre les données radars (TerraSAR-X, Radarsat-2 et Alos, dans les bandes spectrales X, C et L) et optiques (Formosat-2, Spot-4/5) acquises par satellites pour le suivi des agrosytèmes. Ils s'articulent autour de trois axes complémentaires : - Le premier consiste en la mise en oeuvre d'une campagne expérimentale basée sur l'acquisition d'un jeu de données (satellitaire et de terrain), nécessaire au développement de nouvelles approches pour l'analyse du paysage. La zone suivie, caractérisée par une forte anthropisation, est située à 50 km au sud-ouest de Toulouse. Les images satellitaires regroupent trois séries temporelles radar (bandes X, C et L), auxquelles s'ajoutent des acquisitions réalisées dans l'optique (Formosat-2, Spot-4/5). Avec un total d'une centaine d'images acquises dans les hyperfréquences, la zone commune aux différentes scènes couvre une surface de 10×10 km². Conjointement, les protocoles de mesures de terrain ont permis de considérer de manière indépendante les deux éléments clés de la surface : le sol et la culture. En complément des stations météorologiques installées dans le cadre du chantier, des mesures qualitatives et quantitatives ont été réalisés de manière synchrone avec les acquisitions satellites, sur un total de 387 parcelles. Cinq cultures sont principalement étudiées : blé, colza, tournesol, mais et soja. - Les signatures temporelles de chacune des cultures sont ensuite établies à chaque longueur d'onde d'acquisition satellitaire (optique et radar) à travers une approche originale de normalisation angulaire des signaux radar (combinaison de l'information radar et optique). Les résultats obtenus durant le cycle phénologique des cultures d'hiver (blé et colza) et d'été (maïs, soja et tournesol) montrent clairement la complémentarité des approches multi-capteurs, et la spécificité des signaux radars (en lien avec les états de polarisations et les fréquences considérées). Deux paramètres biophysiques relatifs à la végétation sont enfin estimés (LAI et hauteur), les données micro-ondes montrant à la fois une importante sensibilité et de bonnes performances. - La modélisation électromagnétique sur sol nu a tout d'abord permis d'évaluer différents formalismes, à savoir : les modèles de Dubois et d'Oh (1992 et 2004) ayant comme caractéristiques communes une description simplifiée des processus. Ils sont confrontés à un modèle reposant sur des bases physiques, le modèle IEM (Integral Equation Model). L'application des modèles dans les différentes bandes spectrales (X, C et L), montre des résultats très hétérogènes, les meilleures performances étant obtenue en bande X, avec le modèle d'Oh 1992. Par la suite, l'amélioration des modèles tire parti de l'analyse des résidus (vis-à-vis des variables d'entrée), afin de réduire la dispersion observée. Les modèles testés sont optimisés et validés selon une approche de type résidus. Une forte amélioration est observée pour la plupart des modèles. Les résultats mettent en évidence l'intérêt des données multi-capteurs pour le suivi des surfaces dédiées à l'agriculture. Dans un futur proche, les missions spatiales telles que Tandem-X, Sentinel-1/-2, Radarsat Constellation ou Alos-2 devraient pérenniser l'accès à ces données, et préciser ainsi les résultats obtenus dans le cadre de cette thèse.The thesis fall within the "SudOuest" project, whose main objective is to contribute to the understanding and the modeling of the land surface functioning, at the landscape scale. This work aims to improve the capacity of monitoring and analysis of highly anthropic surfaces: agrosystems. Both actors and audience to climate change, these surfaces are also dedicated to the food production. So the problem is to reconcile sustainability of resources and sufficient level of production, identifying tools, such as remote sensing, useful in making decision at scales ranging from plot to land. In this context, the Synthetic Aperture Radar (SAR) embedded in satellites have the twofold advantages of being sensitive to different parameters of the land surface (related to soil, and vegetation), and the ability to observe by cloudy condition (unlike sensors operating in the visible). Since the 90s, several studies based on images acquired with SAR technology have shown the interest of microwave data for the monitoring of land surface. In recent years, the emergence of satellite missions at X- and L-bands enriches study opportunities once only limited to the C-band. These sensor/satellite couples now provide products with high spatial resolution (up to a meter), with the possibility of weekly revisits, necessary criteria for the monitoring of heterogeneous areas associated with high temporal dynamics. Works done in this thesis aim to establish the complementarities between the radar (TerraSAR-X, Radarsat-2 and Alos, at X-, C- and L-bands) and optical data (Formosat-2, Spot-4/-5) acquired by satellites for the monitoring of agrosystems. They revolve around three complementary areas: - The first is the implementation of an experimental campaign based on the acquisition of a set of data (satellite and ground), necessary for the development of new approaches to landscape analysis. The studied area, characterized by a strong human impact, is located near Toulouse (at 50 km in the South West). Satellite images include three radar time series acquired at X-, C- and L-bands, and images acquired in the optical (Formosat-2, Spot-4/-5). With a total of one hundred images acquired in the microwave domain, the common area to the different scenes covering a region of 10×10 km². Together, the protocols used for field measurements consider independently the two key elements of the surface: the soil and the culture. In addition to the weather stations (part of the "SudOuest" project), qualitative and quantitative measurements are performed synchronously with the satellite acquisitions, on a total of 387 plots. Five crops are mainly studied: wheat, rapeseed, sunflower, corn and soybean. - The temporal signatures of these crops are then established for each satellite wavelength (optical and radar), through an original approach based on an angular normalization of radar signals (combining the optical and radar information). The results obtained during the phenological cycle of winter (wheat and rapeseed) and summer crops (corn, soybean and sunflower) clearly show the complementarity of multi-sensor approaches and the specificity of radar signals (associated with the considered polarization states and frequencies). Two biophysical parameters related to vegetation are finally estimated (leaf area index and height), the microwave data showing both high sensitivity and good performances. - The electromagnetic modeling of bare soil is first used to evaluate different formalisms, namely Dubois and Oh (1992 and 2004) models, with common characteristics, a simplified description of the process. They are confronted with a model based on the physical laws, the IEM (Integral Equation Model). The application of models in different spectral bands (X, C and L), shows very mixed results; the best performances are obtained at X-band with Oh 1992 model. Thereafter, the enhancement of the models takes advantage of the residue analysis (as a function of the input variables), to reduce the observed dispersion. The tested models are optimized and validated using an approach such residues. A significant improvement is observed for most models. The results highlight the interest of multi-sensor data for the monitoring of continental surfaces dedicated to agriculture. In the near future, satellite missions such as Tandem -X, Sentinel-1/-2, Radarsat Constellation or Alos-2 should sustain access to these data, and define the results obtained in this thesis
    corecore