12,205 research outputs found

    On semidefinite representations of plane quartics

    Full text link
    This note focuses on the problem of representing convex sets as projections of the cone of positive semidefinite matrices, in the particular case of sets generated by bivariate polynomials of degree four. Conditions are given for the convex hull of a plane quartic to be exactly semidefinite representable with at most 12 lifting variables. If the quartic is rationally parametrizable, an exact semidefinite representation with 2 lifting variables can be obtained. Various numerical examples illustrate the techniques and suggest further research directions

    Dualities in Convex Algebraic Geometry

    Full text link
    Convex algebraic geometry concerns the interplay between optimization theory and real algebraic geometry. Its objects of study include convex semialgebraic sets that arise in semidefinite programming and from sums of squares. This article compares three notions of duality that are relevant in these contexts: duality of convex bodies, duality of projective varieties, and the Karush-Kuhn-Tucker conditions derived from Lagrange duality. We show that the optimal value of a polynomial program is an algebraic function whose minimal polynomial is expressed by the hypersurface projectively dual to the constraint set. We give an exposition of recent results on the boundary structure of the convex hull of a compact variety, we contrast this to Lasserre's representation as a spectrahedral shadow, and we explore the geometric underpinnings of semidefinite programming duality.Comment: 48 pages, 11 figure

    Convergence of the Lasserre Hierarchy of SDP Relaxations for Convex Polynomial Programs without Compactness

    Full text link
    The Lasserre hierarchy of semidefinite programming (SDP) relaxations is an effective scheme for finding computationally feasible SDP approximations of polynomial optimization over compact semi-algebraic sets. In this paper, we show that, for convex polynomial optimization, the Lasserre hierarchy with a slightly extended quadratic module always converges asymptotically even in the face of non-compact semi-algebraic feasible sets. We do this by exploiting a coercivity property of convex polynomials that are bounded below. We further establish that the positive definiteness of the Hessian of the associated Lagrangian at a saddle-point (rather than the objective function at each minimizer) guarantees finite convergence of the hierarchy. We obtain finite convergence by first establishing a new sum-of-squares polynomial representation of convex polynomials over convex semi-algebraic sets under a saddle-point condition. We finally prove that the existence of a saddle-point of the Lagrangian for a convex polynomial program is also necessary for the hierarchy to have finite convergence.Comment: 17 page

    The convex Positivstellensatz in a free algebra

    Get PDF
    Given a monic linear pencil L in g variables let D_L be its positivity domain, i.e., the set of all g-tuples X of symmetric matrices of all sizes making L(X) positive semidefinite. Because L is a monic linear pencil, D_L is convex with interior, and conversely it is known that convex bounded noncommutative semialgebraic sets with interior are all of the form D_L. The main result of this paper establishes a perfect noncommutative Nichtnegativstellensatz on a convex semialgebraic set. Namely, a noncommutative polynomial p is positive semidefinite on D_L if and only if it has a weighted sum of squares representation with optimal degree bounds: p = s^* s + \sum_j f_j^* L f_j, where s, f_j are vectors of noncommutative polynomials of degree no greater than 1/2 deg(p). This noncommutative result contrasts sharply with the commutative setting, where there is no control on the degrees of s, f_j and assuming only p nonnegative, as opposed to p strictly positive, yields a clean Positivstellensatz so seldom that such cases are noteworthy.Comment: 22 page

    Lifts of convex sets and cone factorizations

    Get PDF
    In this paper we address the basic geometric question of when a given convex set is the image under a linear map of an affine slice of a given closed convex cone. Such a representation or 'lift' of the convex set is especially useful if the cone admits an efficient algorithm for linear optimization over its affine slices. We show that the existence of a lift of a convex set to a cone is equivalent to the existence of a factorization of an operator associated to the set and its polar via elements in the cone and its dual. This generalizes a theorem of Yannakakis that established a connection between polyhedral lifts of a polytope and nonnegative factorizations of its slack matrix. Symmetric lifts of convex sets can also be characterized similarly. When the cones live in a family, our results lead to the definition of the rank of a convex set with respect to this family. We present results about this rank in the context of cones of positive semidefinite matrices. Our methods provide new tools for understanding cone lifts of convex sets.Comment: 20 pages, 2 figure

    On semidefinite representations of non-closed sets

    Get PDF
    Spectrahedra are sets defined by linear matrix inequalities. Projections of spectrahedra are called semidefinitely representable sets. Both kinds of sets are of practical use in polynomial optimization, since they occur as feasible sets in semidefinite programming. There are several recent results on the question which sets are semidefinite representable. So far, all results focus on the case of closed sets. In this work we develop a new method to prove semidefinite representability of sets which are not closed. For example, the interior of a semidefinite representable set is shown to be semidefinite representable. More general, one can remove faces of a semidefinite representable set and preserve semidefinite representability, as long as the faces are parametrized in a suitable way.Comment: 13 page
    • …
    corecore