48 research outputs found

    Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps

    Get PDF
    We apply the semidefinite programming approach developed in arxiv:math.MG/0608426 to obtain new upper bounds for codes in spherical caps. We compute new upper bounds for the one-sided kissing number in several dimensions where we in particular get a new tight bound in dimension 8. Furthermore we show how to use the SDP framework to get analytic bounds.Comment: 15 pages, (v2) referee comments and suggestions incorporate

    Optimality and uniqueness of the (4,10,1/6) spherical code

    Full text link
    Linear programming bounds provide an elegant method to prove optimality and uniqueness of an (n,N,t) spherical code. However, this method does not apply to the parameters (4,10,1/6). We use semidefinite programming bounds instead to show that the Petersen code, which consists of the midpoints of the edges of the regular simplex in dimension 4, is the unique (4,10,1/6) spherical code.Comment: 12 pages, (v2) several small changes and corrections suggested by referees, accepted in Journal of Combinatorial Theory, Series

    Lecture notes: Semidefinite programs and harmonic analysis

    Full text link
    Lecture notes for the tutorial at the workshop HPOPT 2008 - 10th International Workshop on High Performance Optimization Techniques (Algebraic Structure in Semidefinite Programming), June 11th to 13th, 2008, Tilburg University, The Netherlands.Comment: 31 page

    Semidefinite programming, harmonic analysis and coding theory

    Full text link
    These lecture notes where presented as a course of the CIMPA summer school in Manila, July 20-30, 2009, Semidefinite programming in algebraic combinatorics. This version is an update June 2010

    Three-point bounds for energy minimization

    Full text link
    Three-point semidefinite programming bounds are one of the most powerful known tools for bounding the size of spherical codes. In this paper, we use them to prove lower bounds for the potential energy of particles interacting via a pair potential function. We show that our bounds are sharp for seven points in RP^2. Specifically, we prove that the seven lines connecting opposite vertices of a cube and of its dual octahedron are universally optimal. (In other words, among all configurations of seven lines through the origin, this one minimizes energy for all potential functions that are completely monotonic functions of squared chordal distance.) This configuration is the only known universal optimum that is not distance regular, and the last remaining universal optimum in RP^2. We also give a new derivation of semidefinite programming bounds and present several surprising conjectures about them.Comment: 30 page

    On Bounded Weight Codes

    Full text link
    The maximum size of a binary code is studied as a function of its length N, minimum distance D, and minimum codeword weight W. This function B(N,D,W) is first characterized in terms of its exponential growth rate in the limit as N tends to infinity for fixed d=D/N and w=W/N. The exponential growth rate of B(N,D,W) is shown to be equal to the exponential growth rate of A(N,D) for w <= 1/2, and equal to the exponential growth rate of A(N,D,W) for 1/2< w <= 1. Second, analytic and numerical upper bounds on B(N,D,W) are derived using the semidefinite programming (SDP) method. These bounds yield a non-asymptotic improvement of the second Johnson bound and are tight for certain values of the parameters

    Semidefinite programming bounds for distance distribution of spherical codes

    Get PDF
    We present an extension of known semidefinite and linear programming upper bounds for spherical codes. We apply the main result for the distance distribution of a spherical code and show that this method can work effectively In particular, we get a shorter solution to the kissing number problem in dimension 4
    corecore