38,365 research outputs found

    Size-dependent bandgap and particle size distribution of colloidal semiconductor nanocrystals

    Get PDF
    A new analytical expression for the size-dependent bandgap of colloidal semiconductor nanocrystals is proposed within the framework of the finite-depth square-well effective mass approximation in order to provide a quantitative description of the quantum confinement effect. This allows one to convert optical spectroscopic data (photoluminescence spectrum and absorbance edge) into accurate estimates for the particle size distributions of colloidal systems even if the traditional effective mass model is expected to fail, which occurs typically for very small particles belonging to the so-called strong confinement limit. By applying the reported theoretical methodologies to CdTe nanocrystals synthesized through wet chemical routes, size distributions are inferred and compared directly to those obtained from atomic force microscopy and transmission electron microscopy. This analysis can be used as a complementary tool for the characterization of nanocrystal samples of many other systems such as the II-VI and III-V semiconductor materials.Comment: 9 pages, 5 figure

    Ultrafast supercontinuum spectroscopy of carrier multiplication and biexcitonic effects in excited states of PbS quantum dots

    Full text link
    We examine the multiple exciton population dynamics in PbS quantum dots by ultrafast spectrally-resolved supercontinuum transient absorption (SC-TA). We simultaneously probe the first three excitonic transitions over a broad spectral range. Transient spectra show the presence of first order bleach of absorption for the 1S_h-1S_e transition and second order bleach along with photoinduced absorption band for 1P_h-1P_e transition. We also report evidence of the one-photon forbidden 1S_{h,e}-1P_{h,e} transition. We examine signatures of carrier multiplication (multiexcitons for the single absorbed photon) from analysis of the first and second order bleaches, in the limit of low absorbed photon numbers (~ 10^-2), at pump energies from two to four times the semiconductor band gap. The multiexciton generation efficiency is discussed both in terms of a broadband global fit and the ratio between early- to long-time transient absorption signals.. Analysis of population dynamics shows that the bleach peak due to the biexciton population is red-shifted respect the single exciton one, indicating a positive binding energy.Comment: 16 pages, 5 figure

    Effect of the Surface on the Electron Quantum Size Levels and Electron g-Factor in Spherical Semiconductor Nanocrystals

    Full text link
    The structure of the electron quantum size levels in spherical nanocrystals is studied in the framework of an eight--band effective mass model at zero and weak magnetic fields. The effect of the nanocrystal surface is modeled through the boundary condition imposed on the envelope wave function at the surface. We show that the spin--orbit splitting of the valence band leads to the surface--induced spin--orbit splitting of the excited conduction band states and to the additional surface--induced magnetic moment for electrons in bare nanocrystals. This additional magnetic moment manifests itself in a nonzero surface contribution to the linear Zeeman splitting of all quantum size energy levels including the ground 1S electron state. The fitting of the size dependence of the ground state electron g factor in CdSe nanocrystals has allowed us to determine the appropriate surface parameter of the boundary conditions. The structure of the excited electron states is considered in the limits of weak and strong magnetic fields.Comment: 11 pages, 4 figures, submitted to Phys. Rev.

    Fabrication and characterization of red-emitting electroluminescent devices based on thiol-stabilized semiconductor nanocrystals

    Get PDF
    Thiol-capped CdTe nanocrystals were used to fabricate light-emitting diodes, consisting of an emissive nanocrystal multilayer deposited via layer-by-layer, sandwiched between indium-tin-oxide and aluminum electrodes. The emissive and electrical properties of devices with different numbers of nanocrystal layers were studied. The improved structural homogeneity of the nanocrystal multilayer allowed for stable and repeatable current- and electroluminescence-voltage characteristics. These indicate that both current and electroluminescence are electric-field dependent. Devices were operated under ambient conditions and a clear red-light was detected. The best-performing device shows a peak external efficiency of 0.51% and was measured at 0.35mA/cm2 and 3.3V

    Functionalisation of colloidal transition metal sulphides nanocrystals: A fascinating and challenging playground for the chemist

    Get PDF
    Metal sulphides, and in particular transition metal sulphide colloids, are a broad, versatile and exciting class of inorganic compounds which deserve growing interest and attention ascribable to the functional properties that many of them display. With respect to their oxide homologues, however, they are characterised by noticeably different chemical, structural and hence functional features. Their potential applications span several fields, and in many of the foreseen applications (e.g., in bioimaging and related fields), the achievement of stable colloidal suspensions of metal sulphides is highly desirable or either an unavoidable requirement to be met. To this aim, robust functionalisation strategies should be devised, which however are, with respect to metal or metal oxides colloids, much more challenging. This has to be ascribed, inter alia, also to the still limited knowledge of the sulphides surface chemistry, particularly when comparing it to the better established, though multifaceted, oxide surface chemistry. A ground-breaking endeavour in this field is hence the detailed understanding of the nature of the complex surface chemistry of transition metal sulphides, which ideally requires an integrated experimental and modelling approach. In this review, an overview of the state-of-the-art on the existing examples of functionalisation of transition metal sulphides is provided, also by focusing on selected case studies, exemplifying the manifold nature of this class of binary inorganic compounds

    Evolution of the electronic structure with size in II-VI semiconductor nanocrystals

    Get PDF
    In order to provide a quantitatively accurate description of the band gap variation with sizes in various II-VI semiconductor nanocrystals, we make use of the recently reported tight-binding parametrization of the corresponding bulk systems. Using the same tight-binding scheme and parameters, we calculate the electronic structure of II-VI nanocrystals in real space with sizes ranging between 5 and 80 {\AA} in diameter. A comparison with available experimental results from the literature shows an excellent agreement over the entire range of sizes.Comment: 17 pages, 4 figures, accepted in Phys. Rev.

    Inorganic–organic nanocomposites of CdSe nanocrystals surface-modified with oligo- and poly(fluorene) moieties

    Get PDF
    We report a facile grafting-from strategy towards the synthesis of inorganic–organic composites of semiconductor nanocrystals and wide-bandgap polymers. Amino-functional fluorenes have been used as co-ligands for CdSe nanocrystals, thus enabling us to design their surface directly during the synthesis. Highly monodisperse, strongly emitting CdSe nanocrystals have been obtained. Subsequently, a straightforward Yamamoto C–C coupling protocol was used to carry out surface polymerisation, hence modifying CdSe nanocrystals with oligo- and poly(fluorene) moieties. Both amino-fluorene capped CdSe nanocrystals and the resulting nanocrystal–polymer composites were characterized in detail by optical and FT-IR spectroscopy, TEM, AFM, and gel permeation chromatography, showing their potential as novel functional inorganic–organic hybrid materials
    corecore