38,365 research outputs found
Size-dependent bandgap and particle size distribution of colloidal semiconductor nanocrystals
A new analytical expression for the size-dependent bandgap of colloidal
semiconductor nanocrystals is proposed within the framework of the finite-depth
square-well effective mass approximation in order to provide a quantitative
description of the quantum confinement effect. This allows one to convert
optical spectroscopic data (photoluminescence spectrum and absorbance edge)
into accurate estimates for the particle size distributions of colloidal
systems even if the traditional effective mass model is expected to fail, which
occurs typically for very small particles belonging to the so-called strong
confinement limit. By applying the reported theoretical methodologies to CdTe
nanocrystals synthesized through wet chemical routes, size distributions are
inferred and compared directly to those obtained from atomic force microscopy
and transmission electron microscopy. This analysis can be used as a
complementary tool for the characterization of nanocrystal samples of many
other systems such as the II-VI and III-V semiconductor materials.Comment: 9 pages, 5 figure
Ultrafast supercontinuum spectroscopy of carrier multiplication and biexcitonic effects in excited states of PbS quantum dots
We examine the multiple exciton population dynamics in PbS quantum dots by
ultrafast spectrally-resolved supercontinuum transient absorption (SC-TA). We
simultaneously probe the first three excitonic transitions over a broad
spectral range. Transient spectra show the presence of first order bleach of
absorption for the 1S_h-1S_e transition and second order bleach along with
photoinduced absorption band for 1P_h-1P_e transition. We also report evidence
of the one-photon forbidden 1S_{h,e}-1P_{h,e} transition. We examine signatures
of carrier multiplication (multiexcitons for the single absorbed photon) from
analysis of the first and second order bleaches, in the limit of low absorbed
photon numbers (~ 10^-2), at pump energies from two to four times the
semiconductor band gap. The multiexciton generation efficiency is discussed
both in terms of a broadband global fit and the ratio between early- to
long-time transient absorption signals.. Analysis of population dynamics shows
that the bleach peak due to the biexciton population is red-shifted respect the
single exciton one, indicating a positive binding energy.Comment: 16 pages, 5 figure
Effect of the Surface on the Electron Quantum Size Levels and Electron g-Factor in Spherical Semiconductor Nanocrystals
The structure of the electron quantum size levels in spherical nanocrystals
is studied in the framework of an eight--band effective mass model at zero and
weak magnetic fields. The effect of the nanocrystal surface is modeled through
the boundary condition imposed on the envelope wave function at the surface. We
show that the spin--orbit splitting of the valence band leads to the
surface--induced spin--orbit splitting of the excited conduction band states
and to the additional surface--induced magnetic moment for electrons in bare
nanocrystals. This additional magnetic moment manifests itself in a nonzero
surface contribution to the linear Zeeman splitting of all quantum size energy
levels including the ground 1S electron state. The fitting of the size
dependence of the ground state electron g factor in CdSe nanocrystals has
allowed us to determine the appropriate surface parameter of the boundary
conditions. The structure of the excited electron states is considered in the
limits of weak and strong magnetic fields.Comment: 11 pages, 4 figures, submitted to Phys. Rev.
Fabrication and characterization of red-emitting electroluminescent devices based on thiol-stabilized semiconductor nanocrystals
Thiol-capped CdTe nanocrystals were used to fabricate light-emitting diodes,
consisting of an emissive nanocrystal multilayer deposited via layer-by-layer,
sandwiched between indium-tin-oxide and aluminum electrodes. The emissive and
electrical properties of devices with different numbers of nanocrystal layers
were studied. The improved structural homogeneity of the nanocrystal multilayer
allowed for stable and repeatable current- and electroluminescence-voltage
characteristics. These indicate that both current and electroluminescence are
electric-field dependent. Devices were operated under ambient conditions and a
clear red-light was detected. The best-performing device shows a peak external
efficiency of 0.51% and was measured at 0.35mA/cm2 and 3.3V
Functionalisation of colloidal transition metal sulphides nanocrystals: A fascinating and challenging playground for the chemist
Metal sulphides, and in particular transition metal sulphide colloids, are a broad, versatile and exciting class of inorganic compounds which deserve growing interest and attention ascribable to the functional properties that many of them display. With respect to their oxide homologues, however, they are characterised by noticeably different chemical, structural and hence functional features. Their potential applications span several fields, and in many of the foreseen applications (e.g., in bioimaging and related fields), the achievement of stable colloidal suspensions of metal sulphides is highly desirable or either an unavoidable requirement to be met. To this aim, robust functionalisation strategies should be devised, which however are, with respect to metal or metal oxides colloids, much more challenging. This has to be ascribed, inter alia, also to the still limited knowledge of the sulphides surface chemistry, particularly when comparing it to the better established, though multifaceted, oxide surface chemistry. A ground-breaking endeavour in this field is hence the detailed understanding of the nature of the complex surface chemistry of transition metal sulphides, which ideally requires an integrated experimental and modelling approach. In this review, an overview of the state-of-the-art on the existing examples of functionalisation of transition metal sulphides is provided, also by focusing on selected case studies, exemplifying the manifold nature of this class of binary inorganic compounds
Evolution of the electronic structure with size in II-VI semiconductor nanocrystals
In order to provide a quantitatively accurate description of the band gap
variation with sizes in various II-VI semiconductor nanocrystals, we make use
of the recently reported tight-binding parametrization of the corresponding
bulk systems. Using the same tight-binding scheme and parameters, we calculate
the electronic structure of II-VI nanocrystals in real space with sizes ranging
between 5 and 80 {\AA} in diameter. A comparison with available experimental
results from the literature shows an excellent agreement over the entire range
of sizes.Comment: 17 pages, 4 figures, accepted in Phys. Rev.
Inorganic–organic nanocomposites of CdSe nanocrystals surface-modified with oligo- and poly(fluorene) moieties
We report a facile grafting-from strategy towards the synthesis of inorganic–organic composites of semiconductor nanocrystals and wide-bandgap polymers. Amino-functional fluorenes have been used as co-ligands for CdSe nanocrystals, thus enabling us to design their surface directly during the synthesis. Highly monodisperse, strongly emitting CdSe nanocrystals have been obtained. Subsequently, a straightforward Yamamoto C–C coupling protocol was used to carry out surface polymerisation, hence modifying CdSe nanocrystals with oligo- and poly(fluorene) moieties. Both amino-fluorene capped CdSe nanocrystals and the resulting nanocrystal–polymer composites were characterized in detail by optical and FT-IR spectroscopy, TEM, AFM, and gel permeation chromatography, showing their potential as novel functional inorganic–organic hybrid materials
- …
