3 research outputs found

    Semicomputable Geometry

    Get PDF
    Computability and semicomputability of compact subsets of the Euclidean spaces are important notions, that have been investigated for many classes of sets including fractals (Julia sets, Mandelbrot set) and objects with geometrical or topological constraints (embedding of a sphere). In this paper we investigate one of the simplest classes, namely the filled triangles in the plane. We study the properties of the parameters of semicomputable triangles, such as the coordinates of their vertices. This problem is surprisingly rich. We introduce and develop a notion of semicomputability of points of the plane which is a generalization in dimension 2 of the left-c.e. and right-c.e. numbers. We relate this notion to Solovay reducibility. We show that semicomputable triangles admit no finite parametrization, for some notion of parametrization

    Semicomputable Points in Euclidean Spaces

    Get PDF
    We introduce the notion of a semicomputable point in R^n, defined as a point having left-c.e. projections. We study the range of such a point, which is the set of directions on which its projections are left-c.e., and is a convex cone. We provide a thorough study of these notions, proving along the way new results on the computability of convex sets. We prove realization results, by identifying computability properties of convex cones that make them ranges of semicomputable points. We give two applications of the theory. The first one provides a better understanding of the Solovay derivatives. The second one is the investigation of left-c.e. quadratic polynomials. We show that this is, in fact, a particular case of the general theory of semicomputable points

    Aspects Topologiques des Représentations en Analyse Calculable

    Get PDF
    Computable analysis provides a formalization of algorithmic computations over infinite mathematical objects. The central notion of this theory is the symbolic representation of objects, which determines the computation power of the machine, and has a direct impact on the difficulty to solve any given problem. The friction between the discrete nature of computations and the continuous nature of mathematical objects is captured by topology, which expresses the idea of finite approximations of infinite objects.We thoroughly study the multiple interactions between computations and topology, analysing the information that can be algorithmically extracted from a representation. In particular, we focus on the comparison between two representations of a single family of objects, on the precise relationship between algorithmic and topological complexity of problems, and on the relationship between finite and infinite representations.L’analyse calculable permet de formaliser le traitement algorithmique d’objets mathématiques infinis. La théorie repose sur une représentation symbolique des objets, dont le choix détermine les capacités de calcul de la machine, notamment sa difficulté à résoudre chaque problème donné. La friction entre le caractère discret du calcul et la nature continue des objets est capturée par la topologie, qui exprime l’idée d’approximation finie d’objets infinis.Nous étudions en profondeur les multiples interactions entre calcul et topologie, cherchant à analyser l’information qui peut être extraite algorithmiquement d’une représentation. Je me penche plus particulièrement sur la comparaison entre deux représentations d’une même famille d’objets, sur les liens détaillés entre complexité algorithmique et topologique des problèmes, ainsi que sur les relations entre représentations finies et infinies
    corecore