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Abstract
We introduce the notion of a semicomputable point in Rn, defined as a point having left-c.e. projec-
tions. We study the range of such a point, which is the set of directions on which its projections are
left-c.e., and is a convex cone. We provide a thorough study of these notions, proving along the
way new results on the computability of convex sets. We prove realization results, by identifying
computability properties of convex cones that make them ranges of semicomputable points. We
give two applications of the theory. The first one provides a better understanding of the Solovay
derivatives. The second one is the investigation of left-c.e. quadratic polynomials. We show that
this is, in fact, a particular case of the general theory of semicomputable points.
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1 Introduction

The general goal of this paper is to improve our understanding of weak notions of computability
in computable analysis. Usually these notions are more difficult to understand than plain
computability, and have a rich theory. For instance we mention the notions of computably
enumerable (c.e.) subsets of N, left-c.e. reals numbers, left-c.e. real functions, c.e. closed
subsets of Rn, co-c.e. closed sets, etc.

A closed subset of Rn is co-c.e. if its complement is a computable union of rational balls.
When a closed set can be described by a few parameters, such as a simple geometrical figure,
what properties must these parameters satisfy to make it a co-c.e. closed set? The case of
filled triangles has been studied in [5], but the case of disks is more challenging.

A function f : R→ R is left-c.e. if there is a program that takes x as input and outputs
better and better approximations of f(x) from the left (with no assumption on the speed
of convergence to f(x)). When a function is described by a few parameters, such as a
polynomial, what properties must these parameters satisfy to make it a left-c.e. function?

The cases of co-c.e. disks and left-c.e. polynomials are surprisingly two instances of a
common framework that we investigate in this paper. In both cases, the object can be
identified with a point in some Euclidean space (for instance, a polynomial is a vector of
coefficients) and the computability notion can be expressed as the point having uniformly
left-c.e. projections in some set of directions (the directions (1, X,X2) in the case of quadratic
polynomials). This observation leads us to introduce and study the notion of a semicomputable
point in Euclidean spaces. It is an extension to several dimensions of a notion introduced
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48:2 Semicomputable Points in Euclidean Spaces

in [5] in the plane. In particular we define the semicomputability range of a point as the set
of directions in which it is left-c.e., and investigate the possible sets that can be obtained as
ranges of semicomputable points.

The extension from the plane to higher-dimensional Euclidean spaces is not a straightfor-
ward generalization because many subtleties appear in R3. For instance, the range of a point
is a convex cone, so it is determined by two angles in R2 but can have many different shapes
in R3. Another example is that the operation of taking the conical hull of two convex cones,
while simple in R2, is not as simple in R3 in terms of computability.

The main results of the paper are realizations results: given a convex cone in Rn with
some computability property, there exists a semicomputable point in Rn whose range is
exactly that cone:

Theorem 4.6: every Σ0
2 cone is the range of some semicomputable point. If its closure is

not Π0
2 then the point is non-uniformly left-c.e. in the directions of the cone.

Theorem 4.8: every salient Π0
2 convex cone is the range of some semicomputable point.

Moreover, that point is uniformly left-c.e. in the directions of the cone.

In Section 2.4 we give results about computability of convex sets and convex cones. In
Section 3 we define semicomputable points of Rn and develop a thorough study of this notion.
In particular we define the range of a semicommputable point, which is the set of directions
in which its projections are left-c.e. In Section 4 we prove the main results of the paper, in
which we identify classes of convex cones that can be realized as ranges of semicomputable
points. In Section 5 we use these results to study Solovay derivatives and precisely identify
the possible shapes of the functions S(aX + b, c) and S(aX + b, c) when a, b, c are fixed
and X varies over the computable reals. In Section 6 we investigate the left-c.e. quadratic
polynomials, which can be identified with semicomputable points with a certain range.

2 Background

2.1 Computability in Euclidean spaces
We endow Rn with the inner product 〈x, y〉 =

∑n
i=1 xiyi, where x = (x1, . . . , xn) and y =

(y1, . . . , yn), the associated norm ‖x‖ =
√
〈x, x〉 and the distance d(x, y) = ‖x− y‖. An

open set U ⊆ Rn is effectively open if it is the union of a computable sequence of
rational open balls (centered at rational points with rational radii). Let A ⊆ Rn be a
closed set. A is c.e. closed if A contains a dense computable sequence, or equivalently the
function x 7→ d(x,A) = miny∈A d(x, y) is right-c.e. A is co-c.e. closed if the complement
of A is effectively open, or equivalently the function x 7→ d(x,A) is left-c.e. A closed set
is computably closed if it is both c.e. closed and co-c.e. closed. A compact set K is
effectively compact if the set of finite lists of rational balls covering K is c.e. A compact
set is effectively compact if and only if it is co-c.e. closed. More details on these notions can
be found in [3].

A real number is left-c.e. if it is the limit of a computable increasing sequence of rational
numbers. A real number x is right-c.e. if −x is left-c.e. It is computable if it is both
left-c.e. and right-c.e. If D ⊆ Rn then a function f : D → [−∞,+∞] is left-c.e. if there exist
uniformly effective open sets (Uq)q∈Q such that for all q ∈ Q, f−1(q,+∞) = D ∩ Uq. f is
right-c.e. if −f is left-c.e.

Let f : Rm × Rn be left-c.e.. If K ⊆ Rn is effectively compact then fmin : Rm → R
defined by fmin(x) = miny∈K f(x, y) is left-c.e. If A ⊆ Rn is c.e. closed then fsup : Rm → R
defined by fsup(x) = supy∈A f(x, y) is left-c.e.
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Each of these computability notions can be relativized to any oracle. We will be particu-
larly interested in their relativization to the halting set, denoted by ∅′. For instance, a real
is ∅′-left-c.e. if it is left-c.e. relative to ∅′.

2.2 Solovay derivatives
The quantitative study of Solovay reducibility was initiated in [1] and continued in [7] and
[5]. We briefly recall that if a, b are real numbers such that b is left-c.e., then we define

S(a, b) = inf{q ∈ Q : qb− a is left-c.e.},
S(a, b) = sup{q ∈ Q : qb− a is right-c.e.}.

We say that a is Solovay reducible to b if S(a, b) < +∞ and S(a, b) > −∞. Intuitively, it
means that a is easier to approximate than b in the following sense: if S(a, b) < q and S(a, b) >
r, then there exist computable sequences ai, bi converging to a, b such that r ≤ a−ai

b−bi
≤ q.

Some left-c.e. real numbers are Solovay complete, meaning that each left-c.e. number is
reducible to them, and it is proved in [1] that if b is Solovay complete, then S(a, b) = S(a, b).

2.3 Background on convex cones
We give the minimal amount of background on convex analysis and refer the reader to
[2] for more details. A cone is a set C ⊆ Rn that is closed under multiplication by a
nonnegative scalar. A convex cone is a cone that is convex, i.e. a set that is closed under
addition and multiplication by a nonnegative scalar. The dual of a set C is the closed
convex cone C∗ = {x ∈ Rn : ∀y ∈ C, 〈x, y〉 ≥ 0}. (C∗)∗ is the smallest closed convex cone
containing C. In particular if C is a closed convex cone then (C∗)∗ = C.

For x 6= 0, let Hx = {z : 〈x, z〉 ≥ 0} be the half-space delimited by the hyperplane
orthogonal to x, in the direction of x. One has C∗ =

⋂
x∈C Hx. As a result, d(z, C∗) ≥

supx∈C d(z,Hx) and we show that equality holds. Observe that d(z,Hx) = max(− 〈z,x〉‖x‖ , 0).

I Lemma 2.1. Let C be a convex set. One has d(z, C∗) = supx∈C d(z,Hx).

For a convex cone C, let C1 be the intersection of C with the unit sphere. In the previous
lemma, one has d(z, C∗) = supx∈C1 d(z,Hx) if C is a convex cone.

A convex cone is flat if it contains some x 6= 0 and its opposite −x. It is called salient if
it is not flat. C is salient if and only if C∗ is full-dimensional if and only if there exist ε > 0
and y such that 〈x, y〉 > ε for all x ∈ C1.

If A ⊆ Rn is a full-dimensional convex set, then A ⊆ int(A) and int(A) ⊆ A. In particular,
among the class of full-dimensional convex sets, every closed set is regular closed and every
open set is regular open.

2.4 Computability of convex sets and cones
Computability of convex sets has been investigated in [6] and [9]. Here we present new results
that are used to prove the results of the paper and are of independent interest.

I Proposition 2.2. Let C ⊆ Rn be a closed convex cone.
C is co-c.e. closed ⇐⇒ C∗ is c.e. closed,
C is c.e. closed ⇐⇒ C∗ is co-c.e. closed,
C is computably closed ⇐⇒ C∗ is computably closed.

MFCS 2019
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Proof. If C is c.e. closed then let (xi)i∈N be a dense computable sequence in C. One
has C∗ =

⋂
iHxi

which is therefore co-c.e. closed.
If C is co-c.e. then the intersection C1 of C with the unit sphere is effectively compact.

By Lemma 2.1 one has d(z, C∗) = maxx∈C d(z,Hx) = maxx∈C1 d(z,Hx) which is a right-
c.e. function of z, so C∗ is c.e. closed.

The other implications can be obtained by observing that (C∗)∗ = C. J

Observe that these results relativize to any oracle. The first equivalence in the next result
was proved by Ziegler [9].

I Proposition 2.3. Let C ⊆ Rn be a full-dimensional closed convex set.
C is co-c.e. closed ⇐⇒ the set of rational points outside C is c.e.,
C is c.e. closed ⇐⇒ its interior is effectively open.

Proof. If C is co-c.e. closed then the set of rational points outside C is obviously c.e.
Conversely, assume that the set of rational points outside C is c.e. Let C0 ⊆ C be any
fixed full-dimensional rational polytope. Given z ∈ Rn, one can compute the convex hull
of C0 ∪ {z} and in particular enumerate its interior Uz. As Uz is dense in that convex hull,
one has z /∈ C ⇐⇒ Uz contains a rational point outside C. It gives a procedure that given z,
halts exactly when z /∈ C, showing that C is co-c.e.

If the interior of C is effectively open then one can enumerate the rational points in the
interior, which are dense in C. Conversely, if C is c.e. closed then let (xi)i∈N be a dense
computable sequence in C. A point z belongs to the interior of C iff there exist n+1 points in
the sequence such that z belongs to the interior of their convex hull, which gives a procedure
that halts exactly when z ∈ int(C). J

The assumption that C is full-dimensional is needed. For the first item, if C contains
no rational point then no information about C can be obtained from an enumeration of the
rationals ouside C (i.e., all the rational points). For the second item, C needs to have a
non-empty interior.

I Lemma 2.4. Let A,B ⊆ Rn be c.e. closed convex sets.
If A ∩B has non-empty interior then A ∩B is c.e. closed.
A ∩B is ∅′-co-c.e. closed. There exist A,B ⊆ R3 such that A ∩B is not ∅′-c.e. closed.

Proof. The interiors of A and B are effectively open and dense in A and B respectively.
Their intersection is effectively open and dense in A ∩B, which is then c.e. closed.

In general, if A,B are c.e. closed then they are ∅′-computable and in particular ∅′-co-
c.e. closed and so is their intersection.

There exists a right-c.e. convex function f : R→ R such that f−1(0) is not ∅′-c.e. closed.
Let α > 0 be ∅′-right-c.e. but not ∅′-left-c.e. There exists a sequence of uniformly left-
c.e. reals αi > 0 such that α = infi αi. Let fi(x) = max(0, x− αi) and f =

∑
i 2−ifi. The

functions fi are uniformly right-c.e. so f is right-c.e., and f−1(0) = [0, α] is not ∅′-c.e. closed
because α is not ∅′-left-c.e.

Let A = {(x, y) : y ≥ f(x)} be the epigraph of f and B = {(x, y) : y ≤ 0}. A and B are
c.e. closed but A ∩B = {(x, 0) : f(x) = 0} is not ∅′-c.e. closed. J

I Proposition 2.5. Let C ⊆ Rn be a full-dimensional closed convex set.
C is ∅′-co-c.e. closed ⇐⇒ the set of rational points outside C is ∅′-c.e. ⇐⇒ C is Π0

2,
C is ∅′-c.e. closed ⇐⇒ its interior is ∅′-effectively open ⇐⇒ C contains a dense Σ0

2-set.
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Proof. Several equivalences are obtained by relativizing Proposition 2.3, we prove the others.
Any set that is ∅′-co-c.e. is Π0

2, and if C is Π0
2 then the set of rational points ouside C is

obviously ∅′-c.e.
Any ∅′-effectively open set is a Σ0

2-set, and int(C) is dense in C. If C contains a
dense Σ0

2-set, then, with ∅′ as oracle, one can compute a dense sequence in that set, so C
is ∅′-c.e. closed. J

Again the full dimension assumption is needed. For the first item, there exists a Π0
2-

singleton whose unique element is not computable relative to ∅′ (even relative to any ∅(n), n ∈
N, see Proposition 1.8.62 in [8]). For the second item, if x is ∅′-computable but not computable,
then {x} is ∅′-c.e. closed convex but does not contain any non-empty Σ0

2-set.

3 Semicomputable point

The notions of left-c.e. and right-c.e. real number can be extended to higher dimensions. A
first extension to points of the plane has been introduced in [5]. We pursue this extension
to Rn for any n ≥ 1. Although the definition extends immediately to this more general
setting, the results are more involved because higher dimensions allow richer behaviors. For
instance, a convex cone in R2 is delimited by two directions only, while a convex cone in R3

is a delimited by an uncountable set of directions.

I Definition 3.1. A point x ∈ Rn is semicomputable if there exist n linearly independent
rational vectors v1, . . . , vn such that each 〈vi, x〉 is left-c.e., 1 ≤ i ≤ n.

I Definition 3.2. Let D ⊆ Rn be a closed convex cone. We say that x ∈ Rn is D-c.e. if the
mapping d ∈ D 7→ 〈d, x〉 is left-c.e.

Observe that this notion really makes sense when D is full-dimensional (or full-dimensional
in some computable subspace), otherwise x could be D-c.e. only because the elements of D
encode information about x. For instance, if ‖x‖ is left-c.e. and D = {λx : λ ≥ 0} then the
mapping d ∈ D 7→ 〈d, x〉 = ‖d‖ · ‖x‖ is left-c.e., which should not be interpreted as “x is
left-c.e. in some direction”.

The closedness condition on D is justified by the next observation: D can always be
assumed to be closed.

I Proposition 3.3. Let x ∈ Rn and D ⊆ Rn be a full-dimensional convex cone. If the
mapping d ∈ D 7→ 〈d, x〉 is left-c.e. then x is D-c.e.

Proof. Let d0 ∈ D be a rational vector in the interior of D. Let d ∈ D be given as oracle.
The vectors dn = (1− 2−n)d+ 2−nd0 are uniformly computable in d and belong to D. The
number 〈d, x〉 is the effective limit of 〈dn, x〉, which is left-c.e. uniformly in n and d, so 〈d, x〉
is left-c.e. uniformly in d. J

Being C∗-c.e. can be dually expressed in terms of C.

I Proposition 3.4. Let x ∈ Rn and C ⊆ Rn be a closed convex cone.
When C is co-c.e. closed, x is C∗-c.e. ⇐⇒ x+ C is co-c.e. closed,
When C is c.e. closed and full-dimensional, x is C∗-c.e. ⇐⇒ x− C is c.e. closed.

Proof.
If x is C∗-c.e. then the complement of x+ C is effectively open. Indeed, y /∈ x+ C ⇐⇒
y − x /∈ C ⇐⇒ infd∈C∗ 〈d, y − x〉 < 0 which is a c.e. condition as C∗ is c.e. closed
and 〈d, y − x〉 is right c.e. in d, y.

MFCS 2019
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If x+C is co-c.e. then let K ∈ N be an upper bound on ‖x‖ and A = (x+C) ∩B(0,K).
A is effectively compact, contains x and for d ∈ C∗, 〈d, x〉 = minz∈A 〈d, z〉 which is a
left-c.e. function of d.
If x is C∗-c.e. then int(x− C) is effectively open. Indeed y ∈ int(x− C) ⇐⇒ x− y ∈
int(C) ⇐⇒ mind∈C∗1 〈d, x− y〉 > 0 which is a c.e. condition as C∗1 is effectively compact
and 〈d, x− y〉 is left-c.e. in d, y.
If x−C is c.e. closed and (xi)i∈N is a dense computable sequence in x−C, then for d ∈ C∗
one has 〈d, x〉 = supi 〈d, xi〉 which is left-c.e. uniformly in d. J

I Proposition 3.5. Let C ⊆ Rn be a closed convex cone.
If x+ C is co-c.e. closed for some x ∈ Rn, then C is co-c.e. closed.
If x+ C is c.e. closed for some x ∈ Rn, then C is c.e. closed.

Proof. Let E ⊆ Rn be a set such that 0 belongs to the convex hull of E. One has C∗ =⋃
e∈E(C+ e)∗. Indeed, if y ∈ C∗ then there exists e ∈ E such that 〈e, y〉 ≥ 0, so y ∈ (C+ e)∗.

Conversely, if y ∈ (C + e)∗ and c ∈ C then 〈y, c〉 = limn→∞
1
n 〈y, e+ nc〉 ≥ 0 so y ∈ C∗.

Given x, there exists a finite set E of rational points such that the convex hull of x+ E

contains 0. As a result, C∗ =
⋃
e∈E(C+x+e)∗. If C+x is co-c.e. closed then each (C+x+e)∗

is c.e. closed so C∗ is c.e. closed, hence C is co-c.e. closed. If C + x is c.e. closed then
each (C + x+ e)∗ is co-c.e. closed so C∗ is co-c.e. closed, hence C is c.e. closed. J

It was proved in [7] and [5] that if f is computable and differentiable at c then S(f(c), c) =
S(f(c), c) = f ′(c). If x = (c, f(c)) and v = (1, f ′(c)) then it means that 〈d, x〉 is left-c.e. for
all rational directions d such that 〈d, v〉 > 0. We now investigate when this is uniform in d,
i.e. when x is {v}∗-c.e.

I Proposition 3.6 (Positive case). Let f : R → R be computable and convex or concave.
If c ∈ R is left-c.e. and x = (c, f(c)) and v = (1, f ′−(c)) where f ′−(c) is the left-derivative of f
at c, then x is {v}∗-c.e.

Proof. Assume that f is convex, the other case is obtained by considering −f . Let ci
be a computable increasing sequence converging to x. Let q, r be rational numbers such
that r < f ′−(c) < q. Compute i such that f(ci+1)−f(ci)

ci+1−ci
> r. For j ≥ i one has r <

f(c)−f(cj)
c−cj

≤ f ′(c) < q, so rc − f(c) = infj≥i rcj − f(cj) and qc − f(c) = supj≥i qcj − f(cj)
are respectively right-c.e. and left-c.e., uniformly in r and q. J

I Proposition 3.7 (Negative case). Let c ∈ R be left-c.e. and f : R→ R be computable and
such that f ′(c) = 0 and f(c) is not right-c.e. Let x = (c, f(c)) and v = (1, f ′(c)) = (1, 0). x
is not {v}∗-c.e.

Proof. Simply take d = (0,−1) ∈ {v}∗. d is computable but 〈d, x〉 = −f(c) is not left-c.e. J

Said differently, in that case qc− f(c) is non-uniformly left-c.e. for rationals q > 0.

3.1 Converging sequences
We may equivalently define semicomputable points to be those points which are the limit of
a computable sequence converging in some restricted region of the space, namely a salient
convex cone. There is a precise relation between the cones where such sequences can live
and the cones of directions in which the point is left-c.e.

The first observation is straightforward.
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I Proposition 3.8. Let x ∈ Rn and C ⊆ Rn be a convex cone. If there exists a computable
sequence xi converging to x in x− C, then x is C∗-c.e.

Proof. If d ∈ C∗ then 〈d, x− xi〉 ≥ 0 so 〈d, x〉 = supi 〈d, xi〉 is left-c.e. uniformly in d. J

In general it is not an equivalence. However when C is c.e. closed, or equivalently when C∗
is co-c.e. closed, the equivalence holds.

I Proposition 3.9. Let x ∈ Rn and C ⊆ Rn be a salient c.e. closed convex cone. x

is C∗-c.e. ⇐⇒ there exists a computable sequence converging to x in x− C.

Proof. Assume that x is C∗-c.e. The interior of x − C is an effective open set. Indeed, y
belongs to that set iff mind∈C∗1 〈d, x− y〉 > 0, which is a c.e. condition as C∗1 is effectively
compact. As a result, there is a computable enumeration (yi)i∈N of the rational vectors
in that set. Define a computable sequence (xi)i∈N as follows: take xi+1 ∈

∫
(x − C) such

that y0, . . . , yi ≺ xi+1.
As C is salient, the growing sequence xi converges to a point in x− C. As it eventually

exceeds each yi, the limit must be x. J

3.2 Taking unions of convex cones

In R2, let P,Q be full-dimensional closed convex cones and R be the conical hull of P ∪Q.
If x ∈ R2 is P -c.e. and Q-c.e., then x is R-c.e. However we will see below (Theorem 3.12)
that this property fails in higher dimensions. We first show that it can be recovered under
computability assumptions on P,Q.

I Proposition 3.10. Let P,Q ⊆ Rn be closed convex cones, R be the conical hull of P ∪Q
and x ∈ Rn be P -c.e. and Q-c.e.

If P and Q are c.e. closed then R is c.e. closed and x is R-c.e.,
If P and Q are co-c.e. closed and R is salient, then R is co-c.e. closed and x is R-c.e.

In the second statement, the condition that R is salient is needed otherwise the complexity
of R can increase, as we now show.

I Proposition 3.11. If P,Q ⊆ Rn are co-c.e. closed convex cones and R is the convex cone
induced by P ∪Q, then R is ∅′-c.e. closed. In dimension n ≥ 3 one can take P,Q so that R
is not ∅′-co-c.e. closed.

The proof essentially uses Lemma 2.4. Indeed, P ∗ and Q∗ are c.e. closed and R∗ = P ∗ ∩Q∗.
One can embed the convex sets A,B from Lemma 2.4 in R3 and take their conical hulls.

We will see that the second item fails when R is not salient (Corollary 4.7). We now
build a simpler example without the co-c.e. assumption about P and Q.

I Theorem 3.12. In dimension n ≥ 3, there exist closed convex cones P,Q ⊆ Rn and a
point x ∈ Rn that is P -c.e. and Q-c.e. but not R-c.e., where R is the conical hull of P ∪Q.

The idea of the proof is to build a, b, c such that qc − a and rc − b are uniformly left-
c.e. for q > S(a, c) and r > S(b, c), but sc−(a+b) is non-uniformly left-c.e. for q > S(a+b, c).
To do this, we take a = f(c) ang b = g(c) where f, g satisfy the conditions of Proposition 3.6
but f + g satisfies the conditions of Proposition 3.7.

MFCS 2019
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3.3 Semicomputability range of a point
I Definition 3.13. If x ∈ Rn then its semicomputability range, or simply range, is the
set of computable d ∈ Rn such that 〈d, x〉 is left-c.e., and is denoted by range(x).

One of the main goals of the paper is to investigate the following problem.

I Problem 1. What sets can be realized as range(x) for some x?

Let Rc be the field of computable real numbers. From the definition we see that range(x)
contains computable points from Rnc only. By abuse of language, when we write A ⊆ range(x)
we mean A ∩ Rnc ⊆ range(x), and similarly, range(x) = A means range(x) = A ∩ Rnc . The
interior of range(x) is meant to be the interior of range(x) in the subspace topology on Rnc .

I Proposition 3.14. Let x ∈ Rn:
1. range(x) is a convex cone over the field Rc.
2. If D ⊆ Rn is a closed polygonal convex cone with computable coordinates, then x is D-

c.e. ⇐⇒ D ⊆ range(x).
3. If D ⊆ Rn be a closed convex cone contained in the interior of range(x), then x is D-c.e.

Proof.
1. Straightforward.
2. x is D-c.e. ⇐⇒ x is d-c.e. for each extreme direction d ∈ D ⇐⇒ each such direction

belongs to range(x).
3. There exists a rational polygonal convex cone E containing D and contained in range(x).

By 2., x is E-c.e. hence D-c.e. J

We will see that range(x) is not necessarily closed (in the subspace Rnc ), and that the
third item sometimes fails when D is just contained in range(x) (Theorem 4.6).

I Proposition 3.15. Let x ∈ Rn be a semicomputable point. Let D ⊆ Rn be a closed convex
cone such that x is D-c.e. and range(x) = D. Then D is ∅′-co-c.e. closed.

Proof. Let M be a machine that given a rational point d ∈ D approximates 〈d, x〉 from
the left. With ∅′ as oracle, given a rational point d, one can compute x, 〈d, x〉 and M(d)
and eventually see whether M(d) 6= 〈d, x〉, which means that d /∈ D. As a result, the set of
rational points outside D is c.e. relative to ∅′ so D is Π0

2 by Proposition 2.5. J

We will see that this is tight: every ∅′-co-c.e. closed convex cone can be obtained (Theorem
4.8).

3.4 Solovay complete coordinates
When one of the coordinates of x ∈ Rn is Solovay complete, the range of x is easily described.

I Proposition 3.16. Let x = (x1, . . . , xn) ∈ Rn where x1 is Solovay complete. Let v =
(1, S(x2, x1), . . . , S(xn, x1)). One has range(x) = {v}∗.

For a closed convex cone C,

v ∈ int(C) =⇒ x is C∗-c.e. =⇒ v ∈ C.

Proof. A computable sequence xi converging to x must asymptotically converge along the
direction v, for each rational d such that 〈d, v〉 > 0, one eventually has 〈d, x− xi〉 > 0,
so 〈d, x〉 is left-c.e. The set of such vectors d is dense in {v}∗.
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If v belongs to the interior of C then C∗ is contained in the interior of {v}∗ = range(x)
so x is C∗-c.e. by Proposition 3.14 item 3. If x is C∗-c.e. then C∗ ⊆ range(x) ⊆ {v}∗,
i.e. v ∈ C. J

In particular, if d is a computable vector such that 〈d, v〉 > 0, then 〈d, x〉 is left-c.e.

4 Realizing convex cones

In this section we investigate the possible ranges of semicomputable points. In order to realize
a given convex cone D, we build a point that is left-c.e. along each computable direction
in D, and no more. To do so, we make the point generic in some sense. Let us briefly recall
from [4] the notion of genericity that we need.

4.1 Genericity

I Definition 4.1. Let A ⊆ Rn. A point x ∈ A is generic inside A if for every effective
open set U ⊆ Rn, either x ∈ U or there exists a neighborhood B of x such that B∩U ∩A = ∅.

I Example 4.2.
Taking A = X, being generic inside X amounts to being 1-generic,
Every x is obviously generic inside {x},
In the space of real numbers with the Euclidean topology, a real number x ∈ (0, 1) is said
to be right-generic if x is generic inside [x, 1],

The last example is a particular instance of the following general situation.
If τ ′ is a weaker topology on X then we define S(x) as the intersection of the τ ′-open

sets containing x. Equivalently, S(x) = {y ∈ X : x ≤τ ′ y} where ≤τ ′ is the specialization
pre-order defined by x ≤ y iff every τ ′-neighborhood of x contains y.

Let τ be the Euclidean topology on Rn.

I Theorem 4.3 (Theorem 4.1.1 in [4]). Let τ ′ a topology that is effectively weaker than τ ,
such that emptiness of finite intersections of basic open sets in τ and τ ′ is decidable. There
exists a point x that is computable in (Rn, τ ′) and generic inside S(x).

For instance, the topology τ ′ generated by the semi-lines (q,+∞) is effectively weaker than τ ,
and its specialization pre-order is the natural ordering ≤ on R. Theorem 4.3 implies the
existence of right-generic left-c.e. reals.

I Proposition 4.4. Let C ⊆ Rn be a closed convex cone. If x is generic inside x + C

then range(x) ⊆ C∗.

Proof. Let d /∈ C∗ be computable and assume that α := 〈d, x〉 is left-c.e. The set U = {y :
〈d, y〉 < α} is effectively open and x /∈ U . As d /∈ C∗ there exists c ∈ C such that 〈d, c〉 < 0.
For ε > 0, 〈d, x+ εc〉 < 〈d, x〉 = α so x + εc ∈ U ∩ (x + C). As a result, x belongs to the
closure of U ∩ (x+ C) so x is not generic inside x+ C. J

In particular, if x is C∗-c.e. and generic inside x+ C then range(x) = C∗.
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4.2 Realizing convex cones
Theorem 4.3 can now be applied to obtain a first class of cones realized as ranges of points.

I Theorem 4.5 (C.e. closed cones). Let C ⊆ Rn be a co-c.e. closed convex cone. There
exists x that is C∗-c.e. and generic inside x+ C, hence range(x) = C∗.

Proof. C∗ is c.e. closed, llet di ∈ C∗ be a computable dense sequence. Consider the
topology τ ′ generated by the basic open sets Ui,j = {x : 〈di, x〉 > qj}, where (qj)j∈N is some
computable enumeration of the positive rational numbers. One easily checks that emptiness
of finite intersections of basic open sets in τ, τ ′ is decidable, so we can apply Theorem 4.3.
We obtain a point x that is computable in (Rn, τ ′), i.e. the numbers 〈di, x〉 are uniformly
left-c.e. hence x is C∗-c.e. and C∗ ⊆ range(x). Moreover x is generic inside S(x) = x+ C,
hence range(x) ⊆ C∗ by Proposition 4.4. J

Therefore, any c.e. closed convex cone can be realized as the range of a point. We can
extend the result to other classes of closed convex cones. To do so, we need to refine the
construction techniques.

I Theorem 4.6 (Σ0
2 cones). Let (Dk)k∈N be a growing sequence of uniformly co-c.e. closed

convex cones in Rn. There exists x such that for any co-c.e. closed convex cone K, x
is K-c.e. ⇐⇒ K is contained in some Dk. In particular, range(x) =

⋃
kDk.

In particular, any ∅′-effectively open convex cone is the range of a point.
We can use this result to give a counter-example to Proposition 3.10 when the cone is

not salient.

I Corollary 4.7. There exists co-c.e. closed convex cones P,Q ⊆ R3 and a point x that
is P -c.e. and Q-c.e. but not R-c.e., where R is the convex cone induced by P ∪Q.

Proof. Take P,Q from Proposition 3.11. The induced cone R is ∅′-c.e. closed but not ∅′-co-
c.e. closed. By Proposition 2.3, R contains a dense Σ0

2-set R′, and we can assume that R′
contains P and Q (otherwise replace R′ with R′ ∪ P ∪Q). By Theorem 4.6 there exists x
such that range(x) = R′, x is P -c.e. and Q-c.e. But x is not R-c.e., otherwise R would
be ∅′-co-c.e. closed by Proposition 3.15. J

I Theorem 4.8 (Π0
2 cones). Let D ⊆ Rn be a salient Π0

2 convex cone. There exists x that
is D-c.e. and such that range(x) = D.

4.3 Beyond linear maps
If x is C∗-c.e. and generic inside x+ C then we know for which computable linear maps f :
Rn → R the number f(x) is left-c.e.: exactly when f ∈ C∗ (f can be identified with the
vector v such that f(x) = 〈v, x〉).

Genericity has also consequences on functions f : Rn → R that are not linear but
totally differentiable. We recall that if f is totally differentiable at x then there exists a
vector gradf(x) such that f(x+ h) = f(x) + 〈gradf(x), h〉+ o(h).

I Proposition 4.9. Let C ⊆ Rn be a closed convex cone. Let x ∈ Rn be C∗-c.e. and generic
inside x+ C. Let f : Rn → R be computable and totally differentiable at x.

If gradf(x) ∈ int(C∗) then f(x) is left-c.e.
If gradf(x) /∈ C∗ then f(x) is not left-c.e.
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Proof. Let D∗ ⊆ int(C∗) be a computable polygonal convex salient cone containing gradf(x)
in its interior. There exists δ > 0 such that 〈gradf(x), d〉 > δ for all d ∈ D1. As x is D∗-c.e.,
there exists a computable sequence xi ∈ x−D converging to x by Proposition 3.9. Therefore
one has f(xi) = f(x)−〈gradf(x), (x− xi)〉+o(x−xi) < f(x)−‖x− xi‖ δ+o(x−xi) < f(x)
for i larger than some i0, so f(x) = supi≥i0 f(xi) is left-c.e.

Assume that gradf(x) /∈ C∗ and that α := f(x) is left-c.e. The set U = {y : f(y) < α}
is effectively open. As gradf(x) /∈ C∗, there exists c ∈ C such that 〈gradf(x), c〉 < 0. One
has f(x+εc) = f(x)+ε〈gradf(x), c〉+o(ε) < f(x) for sufficiently small ε, so x+εc ∈ U∩(x+C).
Therefore x /∈ U and belongs to the closure of (x+ C) ∩ U , contradicting the assumption
that x is generic inside x+ C. J

5 Application to the Solovay derivatives

We pursue the study of the Solovay derivatives S(a, b) and S(a, b) started in [5] in the general
case, i.e. without assuming that b is Solovay complete. The general goal is to find ways to
calculate S(a, b) and S(a, b) for given a, b. Although formulae are available in some cases, we
investigate one of the simplest situations in which no general formula exists:

I Problem 2. If a, b, c ∈ R are fixed, what can be the shapes of the functions S(aX + b, c)
and S(aX + b, c), where X varies among the computable real numbers?

When c is Solovay complete, one has S(x, c) := S(x, c) = S(x, c) for any d-c.e. x and

S(aX + b, c) = S(a, c)X + S(b, c).

However in general only inequalities can be derived (see [5]):

If X ≥ 0, If X ≤ 0,
S(aX + b, c) ≤ S(a, c)X + S(b, c) S(aX + b, c) ≤ S(a, c)X + S(b, c)
S(aX + b, c) ≥ S(a, c)X + S(b, c). S(aX + b, c)) ≥ S(a, c)X + S(b, c).

It seems at first that these two functions of X should be very rigid because a, b, c are
fixed, so their local shape should not depend too much on X. However, we will see that, up
to some geometrical contraints, they can have a wide variety of possible shapes. Fortunately,
we can use the notions and results of this paper to precisely identify the class of possible
shapes of these two functions. The idea is geometrical: these functions can be read in some
way from the convex cone range(x), where x = (a, b, c). Therefore their shapes are precisely
the shapes that can be obtained from arbitrary convex cones. Let R = [−∞,+∞].

I Definition 5.1. Let F be the family of pairs of functions (f, g) from R to R such that:
f ≥ g,
f is convex and g is concave (i.e., the epigraphs of f and −g are convex sets),
Every line segment joining the graph of f to the graph of g lies below the graph of f and
above the graph of g.

The third condition implies that limx→−∞ f ′(x) = limx→+∞ g′(x) and limx→+∞ f ′(x) =
limx→−∞ g′(x). Examples of such pairs are: f(X) = −g(X) =

√
1 +X2, or f(X) = X2

and g(X) = −∞.
The main result of this section is that F captures essentially the possible shapes of (S(aX+

b, c), S(aX + b, c)), up to computability conditions.
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I Theorem 5.2. Let a, b, c ∈ R with c left-c.e. and non-computable. One has (S(aX +
b, c), S(aX + b, c)) ∈ F . Conversely,

Any pair (f, g) ∈ F where f is ∅′-left-c.e. and g is ∅′-right-c.e. can be realized,
Any pair (f, g) ∈ F where f is ∅′-right-c.e. and g is ∅′-left-c.e. can be realized,

To prove this result we show that the pairs (f, g) ∈ F are exactly the functions that can
be read on convex cones in R3 in the following way: given a cone C in R3, the intersection
of C with the planes y = ±1 convex sets, and the curves delimiting them are exactly the
pairs (f, g) ∈ F .

Now, if x = (a, b, c) ∈ R∗ then the pair (S(aX + b, c), S(aX + b, c)) is obtained in this
way from the cone C = range(x), so it belongs to F . A pair (f, g) ∈ F can be realized by
building a point whose range induces (f, g), which can be done by imposing computability
conditions on f and g and applying the results from Section 4.

6 Left-c.e. quadratic polynomials

In this section, we briefly investigate the quadratic real polynomials Pa,b,c(X) = aX2 +bX+c
that are left-c.e. functions of X. Our main problem is the following:

I Problem 3. For which triples (a, b, c) is the polynomial Pa,b,c left-c.e.?

The key observation is that Pa,b,c(X) is linear in (a, b, c), which allows to think of a
left-c.e. polynomial as a semicomputable point (a, b, c) ∈ R3. More precisely, the order-
ing (a, b, c) � (a′, b′, c′) defined by Pa,b,c ≤ Pa′,b′,c′ is a vector space ordering. Hence its
positive cone is a convex cone C = {(a, b, c) ∈ R3 : Pa,b,c ≥ 0} = {(a, b, c) ∈ R3 : a, c ≥
0 and b2 ≤ 4ac}. Its dual is C∗ = {(a, b, c) ∈ R3 : a, c ≥ 0 and b2 ≤ ac} and is the closure of
the conical hull of the vectors (X2, X, 1), with X ∈ R.

Thus Pa,b,c is left-c.e. if and only if (a, b, c) is C∗-c.e. This reformulation allows us to
think geometrically about left-c.e. polynomials, and to apply the results of this paper to
these objects. Let us list a few properties of left-c.e. polynomials, some of them being derived
from the analysis developed in the paper:
1. There is a symmetry between a and c and between b and −b. More precisely, Pa,b,c is

left-c.e. ⇐⇒ Pa,b,c, Pc,b,a, Pa,−b,c and Pc,−b,a are left-c.e. for X ≥ 1.
2. If Pa,b,c is left-c.e. then a, c are left-c.e. and b is d-c.e. (b is a difference of left-c.e. numbers).
3. If a is Solovay complete left-c.e. then (Proposition 3.16)

S(b, a)2 < 4S(c, a) =⇒ Pa,b,c is left-c.e. =⇒ S(b, a)2 ≤ 4S(c, a).

4. Let Pa,b,c be left-c.e. For computable X > 0,

− 1√
X
≤ S(b, aX + c) and S(b, aX + c) ≤ 1√

X
.

Indeed, aX2 + bX + c is left-c.e. for all computable X ∈ R ⇐⇒ 1√
Y

(aY + c) ± b is
left-c.e. for all computable Y > 0 (take Y = X2).

5. Let x = (a, b, c) be C∗-c.e. and generic inside x+ C (it exists as C∗ is computable, see
Theorem 4.3). Pa,b,c is left-c.e. and for computable X > 0,

− 1√
X

= S(b, aX + c) and S(b, aX + c) = 1√
X
.

The second equality is obtained as follows: for a rational q < 1√
X
, (qX,−1, q) /∈ C∗ =

range(x) so q(aX + c)− b is not left-c.e., hence S(b, aX + c) = 1√
X
.
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Although b is Solovay reducible to aX + c for each computable X > 0, b is not reducible
to neither a nor c and S(b, a) = S(b, c) = −∞ and S(b, a) = S(b, c) = +∞. Indeed,
for q ∈ Q, both (q,±1, 0) and (0,±1, q) are outside C∗.

6. The condition that Pa,b,c is left-c.e. cannot be reduced to a finite number of linear
combination of a, b, c being left-c.e. Indeed, such a condition would express that the
point (a, b, c) is D-c.e. for some polygonal convex cone D, but the convex cone C∗ is not
polygonal (it is determined by infinitely many directions).

7. The condition that Pa,b,c is left-c.e. cannot be characterized by simply considering the
values of S(b, c), S(b, c), S(a, c), S(a, c), S(b, a), S(b, a). Indeed, these values only reflect
the intersections of range(a, b, c) with the three planes z = 0, x = 0 and y = 0, which do
not determine completely range(a, b, c).

We do not know if it is possible to better understand Problem 3, i.e. whether it is possible
to reduce this property to more fundamental properties of a, b, c. The results presented above
suggest a negative answer to that question.

We mention that a similar analysis can be made of co-c.e. disks in the plane. The disk
centered at (a, b) with radius c is co-c.e. if and only if the point (a, b, c) ∈ R3 is C∗-c.e.,
where C = C∗ = {(x, y, z) : z ≤ 0, x2 + y2 ≤ z2}. Again C∗ is not polygonal so one cannot
reduce the condition that the disk is co-c.e. to a finite number of conditions.
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