5 research outputs found

    High capacity multiuser multiantenna communication techniques

    Get PDF
    One of the main issues involved in the development of future wireless communication systems is the multiple access technique used to efficiently share the available spectrum among users. In rich multipath environment, spatial dimension can be exploited to meet the increasing number of users and their demands without consuming extra bandwidth and power. Therefore, it is utilized in the multiple-input multiple-output (MIMO) technology to increase the spectral efficiency significantly. However, multiuser MIMO (MU-MIMO) systems are still challenging to be widely adopted in next generation standards. In this thesis, new techniques are proposed to increase the channel and user capacity and improve the error performance of MU-MIMO over Rayleigh fading channel environment. For realistic system design and performance evaluation, channel correlation is considered as one of the main channel impurities due its severe influence on capacity and reliability. Two simple methods called generalized successive coloring technique (GSCT) and generalized iterative coloring technique (GICT) are proposed for accurate generation of correlated Rayleigh fading channels (CRFC). They are designed to overcome the shortcomings of existing methods by avoiding factorization of desired covariance matrix of the Gaussian samples. The superiority of these techniques is demonstrated by extensive simulations of different practical system scenarios. To mitigate the effects of channel correlations, a novel constellation constrained MU-MIMO (CC-MU-MIMO) scheme is proposed using transmit signal design and maximum likelihood joint detection (MLJD) at the receiver. It is designed to maximize the channel capacity and error performance based on principles of maximizing the minimum Euclidean distance (dmin) of composite received signals. Two signal design methods named as unequal power allocation (UPA) and rotation constellation (RC) are utilized to resolve the detection ambiguity caused by correlation. Extensive analysis and simulations demonstrate the effectiveness of considered scheme compared with conventional MU-MIMO. Furthermore, significant gain in SNR is achieved particularly in moderate to high correlations which have direct impact to maintain high user capacity. A new efficient receive antenna selection (RAS) technique referred to as phase difference based selection (PDBS) is proposed for single and multiuser MIMO systems to maximize the capacity over CRFC. It utilizes the received signal constellation to select the subset of antennas with highest (dmin) constellations due to its direct impact on the capacity and BER performance. A low complexity algorithm is designed by employing the Euclidean norm of channel matrix rows with their corresponding phase differences. Capacity analysis and simulation results show that PDBS outperforms norm based selection (NBS) and near to optimal selection (OS) for all correlation and SNR values. This technique provides fast RAS to capture most of the gains promised by multiantenna systems over different channel conditions. Finally, novel group layered MU-MIMO (GL-MU-MIMO) scheme is introduced to exploit the available spectrum for higher user capacity with affordable complexity. It takes the advantages of spatial difference among users and power control at base station to increase the number of users beyond the available number of RF chains. It is achieved by dividing the users into two groups according to their received power, high power group (HPG) and low power group (LPG). Different configurations of low complexity group layered multiuser detection (GL-MUD) and group power allocation ratio (η) are utilized to provide a valuable tradeoff between complexity and overall system performance. Furthermore, RAS diversity is incorporated by using NBS and a new selection algorithm called HPG-PDBS to increase the channel capacity and enhance the error performance. Extensive analysis and simulations demonstrate the superiority of proposed scheme compared with conventional MU-MIMO. By using appropriate value of (η), it shows higher sum rate capacity and substantial increase in the user capacity up to two-fold at target BER and SNR values

    Joint Communication and Positioning based on Channel Estimation

    Get PDF
    Mobile wireless communication systems have rapidly and globally become an integral part of everyday life and have brought forth the internet of things. With the evolution of mobile wireless communication systems, joint communication and positioning becomes increasingly important and enables a growing range of new applications. Humanity has already grown used to having access to multimedia data everywhere at every time and thereby employing all sorts of location-based services. Global navigation satellite systems can provide highly accurate positioning results whenever a line-of-sight path is available. Unfortunately, harsh physical environments are known to degrade the performance of existing systems. Therefore, ground-based systems can assist the existing position estimation gained by satellite systems. Determining positioning-relevant information from a unified signal structure designed for a ground-based joint communication and positioning system can either complement existing systems or substitute them. Such a system framework promises to enhance the existing systems by enabling a highly accurate and reliable positioning performance and increased coverage. Furthermore, the unified signal structure yields synergetic effects. In this thesis, I propose a channel estimation-based joint communication and positioning system that employs a virtual training matrix. This matrix consists of a relatively small training percentage, plus the detected communication data itself. Via a core semi- blind estimation approach, this iteratively includes the already detected data to accurately determine the positioning-relevant parameter, by mutually exchanging information between the communication part and the positioning part of the receiver. Synergy is created. I propose a generalized system framework, suitable to be used in conjunction with various communication system techniques. The most critical positioning-relevant parameter, the time-of-arrival, is part of a physical multipath parameter vector. Estimating the time-of-arrival, therefore, means solving a global, non-linear, multi-dimensional optimization problem. More precisely, it means solving the so-called inverse problem. I thoroughly assess various problem formulations and variations thereof, including several different measurements and estimation algorithms. A significant challenge, when it comes to solving the inverse problem to determine the positioning-relevant path parameters, is imposed by realistic multipath channels. Most parameter estimation algorithms have proven to perform well in moderate multipath environments. It is mathematically straightforward to optimize this performance in the sense that the number of observations has to exceed the number of parameters to be estimated. The typical parameter estimation problem, on the other hand, is based on channel estimates, and it assumes that so-called snapshot measurements are available. In the case of realistic channel models, however, the number of observations does not necessarily exceed the number of unknowns. In this thesis, I overcome this problem, proposing a method to reduce the problem dimensionality via joint model order selection and parameter estimation. Employing the approximated and estimated parameter covariance matrix inherently constrains the estimation problem’s model order selection to result in optimal parameter estimation performance and hence optimal positioning performance. To compare these results with the optimally achievable solution, I introduce a focused order-related lower bound in this thesis. Additionally, I use soft information as a weighting matrix to enhance the positioning algorithm positioning performance. For demonstrating the feasibility and the interplay of the proposed system components, I utilize a prototype system, based on multi-layer interleave division multiple access. This proposed system framework and the investigated techniques can be employed for multiple existing systems or build the basis for future joint communication and positioning systems. The assessed estimation algorithms are transferrable to all kinds of joint communication and positioning system designs. This thesis demonstrates their capability to, in principle, successfully cope with challenging estimation problems stemming from harsh physical environments

    Semiblind multiuser MIMO channel estimation using capon and MUSIC techniques

    No full text
    corecore